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Abstract

Gain scheduled contrel is one very useful control technique
for linear parameter-varying (LPV) and nonlinear systems,
A disadvantage of gain-scheduled control is that it is not
easy to design a controller that guarantees the global stabil-
ity of the closed-loop system over the entire operating range
from the theoretical point of view. Another disadvantage
is that the interpolation increases in complexity as number
of scheduling parameters increases. As an improvement,
this paper presents a gain-scheduling control technique, in
which fuzzy logic is used to construct a model representing
a quasi-LPV or a nonlinear missile and to perform a con-
trol law. The fuzzy inference system is generated using a
multi-objective evolutionary algorithm to optimise the per-
formance characteristics of the plant.

1 Introduction

The performance of an air vehicle is highly dependent on
the capabilities of the gnidance, navigation and control sys-
tems. To achieve improved performance in such aerospace
systems, it is important that more sophisticated control sys-
tems be developed and implemented. In particular, as the
performance envelope is expanded, the control schemes
must become adaptive and quasi-linear, to provide perfor-
mance over a greater range, in the face of changing operat-
ing conditions.

The tracking performance of a missile is also dependent
on the location within the flight envelope and varies with
factors such as Mach number and incidence. Several ap-
proaches, including adaptive control {1], [2], nonlinear con-
trot [3], and gain scheduling [4] have been used to alleviate
these tracking problems,

One of the most popular methods for applying linear time-
invariant (LTT) control theory to time-varying and/or quasi-
linear systems is gain scheduling [5]. This strategy involves
obtaining Taylor linearised models for the plant at finitely
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many equilibria (*set points™), designing an LTI control law
(“point design”) to satisfy local performance objectives for
each point, and then adjusting (“scheduling™) the controller
gains in real time as the operating conditions vary. This ap-
proach has been applied successfully for many years, par-
ticularly for aircraft and process control problems.

Despite past success of gain scheduling in practice, until re-
cently little has been known about it theoretically as a time-
varying and/or quasi-linear control technique. Also, deter-
mining the actual scheduling routine is more of an art than a
science. While ad hoc approaches such as linear interpola-
tion and curve fitting may be sufficient for simple static-gain
controllers, doing the same for dynamic multi-variable con-
trollers can be a rather tedious process.

An early theoretical investigation into the performance of
parameter-varying systems can b d in [6). During
the 1980’s, Rugh and his colleagues developed an analyt-
ical framework for gain scheduling using extended lineari-
sation [5]. Also, Shamma and Athans [7] introduced lin-
ear parameter-varying (LPV) systems as a tool for quanti-
fying such heuristic design rules as “the resulting parame-
ter raust vary slowly” and “the scheduling parameter must
capture the nonlinearities of the plant”. Shahruz and Be-
htash [8] suggested using LPV systems for synthesising
gain-scheduled controllers.

Attention has since tummed to performance and design of
parameter-dependent controllers for LPV systems. Vari-
ous design methods which have been proposed share sev-
eral common features, e.g., the current methods are based
on extended state-space approaches to H.. optimal control
for LTI systems [9], [10}, and LTV systems [11]. Perfor-
mance is usually measured in terms of the induced L,-norm,
and controllers are designed for certain classes of parame-
ter variations, e.g., real or complex values, arbitrarily fast
or bounded rates of variation, shape of the parameter enve-
lope etc. The resulting parameter-dependent controllers are
scheduled automatically, so that the often arduous task of
scheduling a complex multivariable contioller a posteriori



is avoided.

In this paper fuzzy pole-placement control design technique
is applied to the autopilot design for the missile. The mis-
sile motion is modelled to be quasi-linear with unknown pa-
rameters. Based on the quasi-linear model, we adopt for
design procedure the fuzzy pole-placement method. The
performance objectives related with the transient, i.e. set-
tling time, rising time, peak overshoot are achieved with
the fuzzy pole-placement. However, since our problem is
one of tracking, an “additional performance ohjective, that
of zero steady-state e}lrcr should be taken into account. This
can be achieved with an integral term in forward loop. In
this scheme, unknown parameters are estimated and based
on these estimates, control parameters are updated. Com-
puter simulations show that this approach is very promis-
ing to apply the motion control design for missiles, which
are-highly quasi-linear in dynamics. The optimisation of the
fuzzy system is performed using a multiobjective evolution-
ary algorithm [12].

Section 2 details the missile model and coefficients, sec-
tion 3 describes the design of the controller and the struc-
ture of the fuzzy inference system. The multiobjective evo-
lutionary algorithm is detailed in section 4. Section 5 shows
typical resuits from the optimisation process and section 6
concludes,

2 Missile model

Missile autopilots are usually designed using linear models
of nonlinear equations of motion and aerodynamic forces
and moments [13], [14]. The objective of this paper is ro-
bust design of a sideslip (yaw) velocity autopilot for a non-
linear missile model. This model describes a reasonably
realistic airframe of a tail-controlled tactical missile in the
cruciform fin configuration (Figure 1). The aerodynamic
parameters in this model are derived from wind-tunnel mea-
surements [15].

Figure 1: Airframe axes.

The starting point for mathematical description of the mis-
sile is the following nonlinear model [16], [15] of the hori-
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Table 1: Coefficients in nonlinear model {1).

Interpolated formula l
Gy, | 0.5[(—25+M—60[c]|)(1 + cosdA)+
(=26 + 1.5M — 30|o|)(1 — cos4l)]
G, 104 0.5[(—1.6M + 2|o|)(1 +cos4d )+
{—1.4M +1.5|0|)(1 — cos4A)]
C,, | —500~ 30M + 200|a]
Ca, | 5mGy,, where: ]
sm=d 1.3 +0.1M +0.2(1 +cos4d) |G|+
0.3(1 —cos4A)|o| — (1.3 +m/500)]
C"c sty;, where:
s; =d~'[2.6—(1.3+m/500)}

zontal motion (on the xy plane in Figure 1):

p =

y,,(M,l,o)v—UH—yg(M,l,o)C

1 .
= ~2—m'1 PVoS(Cy v+ VoG §) ~Ur
m(M, A, oW +n(MA c)r+ nC(M,k,c)C

i 1
= 5 ]pV,,Sd(EdC,.,r+C,,,v+V0C,,CC). )

where the variables are defined in Figure 1. Here v is the
sideslip velocity, r is the bedy rate, { the rudder fin deflec-
tions, yy,y c semi-non-dimensional force derivatives due to
lateral and fin angle, N, g,y semi-non-dimensional mo-
ment derivatives due to sideslip velocity, fin angle and body
rate. Figally, U is the longitudinal velocity. Furthermore,
m = 125 kg is the missile mass, p = p, — 0.094# air den-
sity (p, = 1.23 kgm™3 is the sea level air density and &
the missile altitede in km), V, the total velocity in ms~1,
S = nd%/4 = 0.0314 m?® the reference area (d = 0.2 m is
the reference diameter) and I, == 67.5 kgm? is the lateral in-
ertia. For the coefficients Gy, Cy . +Cnps Cayy G . only discrete
data points are available, obtained from wind tunnel experi-
ments. Hence, an interpolation formula, involving the Mach
number M € [0.6,6.0], roll angle A € [4.5°,45°] and total
incidence & € [3°,30°], has been calculated with the results
summarised in Table 1.

The total velocity vector V, is the sum of the longitudi-
nal velocity vector I and the sideslip velocity vector ¥,
i.e. V, = U + 7, with all three vectors lying on the xy plane
{see Figure 1). We assume that U > v, so that the total in-
cidence o, or the angle between T and V,, can be taken
as ¢ = v/V,, as sing &= ¢ for small g. Thus, we have
& =v/V, = v/y\2 + UZ, so that the total incidence is a
nonlinear function of the sideslip velocity and longitudinal
velocity, & = o(v, U).

The Mach number is obviously defined as M = V,,/a, where
a is the speed of sound. Since V, = vv2+ U2, the Mach
number is also a nonlinear function of the sideslip velocity
and longitudinal velocity, M = M{v,17).

It follows from the above discussion that all coefficients in



Table 1 can be interpreted as nonlinear functions of three
variables: sideslip velocity v, longitudinal velocity U and
roll angle A.

For an equilibrium (vy, ry, &) it is possible to derive from
(1} a linear model in incremental variables, ¥ = v—y,
F=r—ryand { ={ —{, In particular, for the straight
fevel flight (with gravity influence neglected), we have
(vg: 7o, &) = (0,0,0), so that the incremental and absolute
variables are numerically identical, although conceptually
different.

3 Design of Lateral Missile Autopilot

3.1 Control design via fuzzy pole-placement

The general structure of the feedback control law is given
in 2 where x is the state variable vector to be determined in
terms of x and the reference signal.

0, = -K(p)Tx 2

It should be noted that K{p) is determined recursively but
its structure and in particular the values of the longitudinal
and lateral controllers K, {p) and K,(p) are obtained using
the pole-placement technique. )

Substituting the control law in the state equation yields:

F=A' (3)

with the augmented matrix A* to be given by A* = A(p) —
BK(p)".

The characteristic equation of the augmented system can
now be determined from |47 — A*|

The coefficients A ;; are parameter dependent. Equating the
above mathematical expression of the characteristic poly-
nomial of the augmenied system with the one of the desired
(obtained using the desired performance characteristics) the

coefficients of the pole-placement controller for each of the

local models are easily obtained.

3.2 Fuzzy Inference System

A Takagi-Sugeno (T-S) fuzzy controller [17] is used to de-
termine the natural frequency and damping ratios required
for any given Mach and incidence angle in order to generate
a system with a given performance characteristic. The sys-
tem has two inputs, Mach and incidence, and generates two
outputs, natural frequency and damping.

The Takagi-Sugeno (T-8) fuzzy controller is composed of r
rules that can be represented as:

Ti=12,..
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Plant rule i: If ¢; is MJ- and e; is I,
Then 6(0,,|. =y,

’r7

Where M; and J, are individual membership functions of
the two inputs and @, is the required natural frequency for
the rule,

The T-3 fuzzy model infers o, (1) as the output of the fuzzy
model, given all the rules, as follows, where v, is the total
degree of membership for rule i.

T ovi[éw,
(l)n,. = zr—l rvl[ (0,;!] (4)
i=1 ¥

The second output for the damping ratio is calculated in a
similar manner.

3.3 Tracking control design

This controller would result only to a desired transient of
all local models by placing the poles of all the local sys-
tems within a specified area. However since our aim is
good tracking for the missile we should include to the de-
sign specification except peak overshoot and settling time,
zero steady-state error. This can be achieved with an inte-
gral term in the forward path.

The new augmented model would contain for this system
one more state variable to account for this integral term.
This new state variable is defined as:

1 i
x,.=./ edt= | (y—r}dt {5
‘o fy
Therefore,
=y, ~7] (6}
The state space now is described by:
f _ Alp) © x
. - - 0 X;
¥ \
B 0
SR o
The compensated system therefore becomes:
. [ A(p)—BK(p) —BK, ] ¥
. - -C 0
% x;
1
+| -0 1t
I



The characteristic polynomial of the compensated system
is then equated with the desired polynomial at each step to
adapt the controller gains.

4 Evolutionary Algorithm

4.1 Introduction

Evolutionary Algorithms are optimisation procedures
which operate over a number of cycles (generations) and
are designed to mimic the natural selection process through
evolution and survivai of the fittest [12]. A population of
M independent individuals is maintained by the algorithm,
each individual representing a potential solution to the prob-
lem. Each individual has one chromosome. This is the ge-
netic description of the solution and may be broken into n
sections called gernes. Each gene represents a single pa-
rameter in the problem, therefore a problem that has eight
unknowns for example, would require a chromosome with
eight genes to describe it.

The three simple operations found in nature, natural selec-
tion, mating and mutation are used to generate new chro-
mosomes and therefore new potential solutions. In this pa-
per, an evolutionary strategy was.used where new chromo-
somes were generated by a.combination of mating (other-
wise known as crossover) and applying Gaussian noise to
each gene in each chromosome, with a standard deviation
that evolved along with each.gene. Each chromosome is
evaluated at every generation-using an objective function
that is able to distinguish good solutions from bad ones and
to score their performance. With each new generation, some
of the old individuals die to make room for the new, im-
proved offspring. Despite being very simple to code, requir-
ing no directional or derivative information from the objec-
tive function and being capable of handling large numbers
of parameters simultaneously, evolutionary algorithms can
achieve excellent results. )

4.2 Algorithm structure

The evolutionary strategy begins by generating an initial
population of 50 chromosomes at random with the standard
deviations of the matations all set initially as one eighth of
the total range of each gene. The initial population is eval-
vated and objective values generated (see section 4.3) and
then sorted (section4.4}. Crossover and mutation are then
applied to the chromosomes to generate another 50 chromo-
somes. These new chromosomes are then evaluated and the
best 50 from ail 100 chromosomes are chosen for the next
generation. The process is repeated for 100 generations.

The crossover operation takes each chromosome in turn
(chromosome a), and for each ¢hooses a second chromo-
some at random (with replacement) to cross with (chromo-
some b). A new chromosome (c¢) is generated 70% of the
.time using (%), and for the remaining 30% of the time, a
copy of chromosome a is made. In (9), a,, b, & ¢, are gene
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k of chromosomes a, » & ¢ and U, is a uniform random
number in the range [0,1] chosen anew for each gene and
each chromosome a. '

¢, =4, + (b, —a,)(1.5U ~0.25) (]

The evolutionary strategy updates the standard deviation of
the mutation and the value of each gene for every gene in
each new chromosome, using (10). In (10}, ¢’ (x) is the
standard deviation of gene £ of chromosome x, @', {x) is the
value of gene k of chromosome x, N(0,1) is a random num-
ber with zero mean and unity variance Gaussian distribution
and is chosen once per chromosome, N,(0,1) is a random
number with zero mean and unity variance Gaussian dis-
tribution and is chosen afresh for every gene, and n is the
number of genes in each chromosome.

o' (x) = ox)exp(rN(©0,1)+ 1 N{0,1))
o' (x) = o)+ (xNJ0,1)
o 1
T =
. 0 2
o - L
1 m
(10)
4.3 Chromosome structure and objectives
4.3.1 Chromosome: The chromosome structure

needs to represent both the membership functions for
the two inputs, and the output values for every possible
rule. Four membership functions are used for each of
the two inputs. The member functions are triangular and
overlapping to always give a unity sum as shown in figure 2

Aa

=0

AblAc

€ max

Figure 2: Membership function structure

For the two inputs, the input ranges are ey = 0.6 to ey =
6 for the Mach number, and ¢, = 0° to e, = 30° for the
incidence. Three genes are used for each input to describe
the relative positions of the peaks of the member functions
as shown in figure 2. This process gives a total of 6 genes
to represent the membership functions. Each of the 6 genes
must lie in the range (0,1].



The outp\it value for each the rule is simply a pair of con-
stants, one for each of the two outputs. Therefore with four
input member functions on each input, there are 16 possible
rules, giving a total of 32 genes to represent the output func-
tions. The 16 gene values for the natural frequency output
must lie in the range [15 50] and the 16 gene values for the
damping ratio output must lie in the range [0.6 0.99]. Thus
the chromosome length is a total of 38 genes.

4.3.2 Objectives: The performance is tested by gen-
erating the step response of the system for 100 uniformly
spaced points in the natural frequency/ damping ratio do-
main. The rise time, overshoot and final error is recorded
at each point. Two objectives are then generated that sum-
marise the performance of the chromosome.

The first objective is a combination of the rise time and the
error. The objective is to maximise the worst of: the lengest
rise time; and ten times the absolute error of the step re-
sponse after 0.3 seconds.

The second objective is to minimise the worst overshoot of
the response. In this paper, the two objectives are intended
to give a flat response from the plant. By making the ob-
jectives dependent on the state of Mach and incidence, any
required non-linear response pattern could be generated.

4.4 Non-dominated Ranking

With multiple objectives, a Pareto-optimal set of results [12]
may be formed where no single solution is better than any
other in all objectives. These solutions are said to be non-
dominated as no solution can be chosen in preference to
the others based on the all objectives alone. There exists a
single Pareto-optimal set of solutions to the problem. At any
intermediate stage of optimisation, a set of non-dominated
results will have been identified. This set may or may not
be the Pareto optimal set.

A non-dominated ranking method [12] is used in the evolu-
tionary algorithm to generate and maintain a non-dominated
set of results. Conventional evolutionary algorithms often
use a ranking method where the calculated objective values
are sorted and assigned a rank that is dependent only upon
their position in the list, rather than their objective value,
The ranking operation helps to prevent premature conver-
gence of the evolutionary algorithm.

The non-dominated ranking system operates by first iden-
tifying the non-dominated solutions in the population and
assigning them a rank of one. A dummy value (1 in this
implementation) is assigned to these solutions and a shar-
ing process is applied. With the sharing, the dummy values
of the individuals’ are reduced if they have near neighbours
(in the objective space). The sharing process ensures that
a spread of solutions is obtained across the non-dominated
front. The minimum value assigned to the level-one solu-
tions is identified and then reduced slightly (by 1%) and
used as a dummy value for the next level of processing. The
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level-one individuals are removed from the population and
the identification-sharing process repeated on the remaining
set, using the reduced dummy value for the sharing opera-
tion. The ranking process is continued until all of the indi-
viduals have been accounted for. The resulting objectives
are intended to be used with a maximisation strategy.

5 Experimental Results

Figure 3 shows a typical non-dominated surface after 100
generations. Both of the objectives cannot be minimised si-
multaneously, so the lower leading edge of the points indi-
cates the set of best possible solutions (marked with crosses
in circles).

All of the solutions on the non-deminated front are valid so-
Iutions to the problem and it is down to the system designer
to choose a single solution for use in the control system.

Figure 3: Non-dominated optimisation surface

Figures 4 and 5 show the surfaces generated by the fuzzy
inference systems for both the natural frequency @, and the
damping ratio & for the solution that minimises the error in
the rise time and final value. As only 100 generations were
used, the surfaces shown are unlikely to be part of the true
Pareto set, however they are likely to be quite close. With
more generations, the surfaces will become smoother as the
membership functions are refined further.

6 Conclusions

This paper has shown that a fuzzy pole-placement controller
can be designed for complex non-linear systems to produce
given performance over a range of plant conditions. The use
of evolutionary algorithms to optimise the fuzzy inference
system removes the requirement of expert knowledge to de-
sign the fuzzy landscape as the multiobjective algorithm is
capable of discovering a range of solutions with little de-
signer intervention.

The multiobjective formulation allows many potential solu-



Figure 5: Control surface for 8

tions to be generated simultaneously. The designer can then
choose a candidate solution whilst:being informed of what
other solutions to the problem may exist.
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