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Abstract

The paper addresses the issue of performance
optimisation of a MIMO fuzzy controller for a gas
turbine aero-engine. The proposed method attempts
to improve the performance of the controller by
looking at the accuracy of the input-output mapping
of the control parameters. A multiobjective genetic
programming approach is utilized to search for
suitable input-output structures, able to satisfy the
rigorous performance criteria imposed on military
engines and simultaneously to ensure the accuracy of
the output surfaces. The effectiveness of the
approach is verified by performing statistical tests of
significance on the design data. In an effort to reduce
the computational burden associated with controller
design via optimisation, a response surface method is
also considered.
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1. Introduction

The bottleneck of military gas turbine engine (GTE)
optimisation 1is the satisfaction of strict and
conflicting performance and constraints
requirements. The task is more problematical when
one attempts to enhance the performance of already a
priori optimised engines. The cross-coupled control
parameters and the highly non-linear behaviour of the
plant further complicate the optimisation problem.
Moreover, the use of nonlinear thermodynamic
models to evaluate various performance criteria
becomes increasingly expensive as the number of
control parameters rises. Consequently, the overall
optimisation of a GTE may be a ditficult and costly
process.

Previous work [1] dealt with the design and
implementation of a muitivariable fuzzy controller,
as a feasible and promising alternative to the existing
digital PI controllers. It was shown that the
performance of the feedback system could be
drastically affected by the choice of fuzzy mapping
parameters. Following the conclusions arisen form
this earlier work, the proposed technique investigates
the relationship between the accuracy of fuzzy
emulation of the original mapping, and the system
performance.
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Bearing in mind that the system behaviour is strongly
influenced by the correctness of Sugeno
approximation, the main problem reduces at finding
the most suitable functions, which models the
original relationship between the control variables.
Mathematically speaking, the analytical solution of a
“best” multivariate function approximation is not
straightforward. The alternative presented herein is
that of a stochastic search, via evolutionary
algorithms. A genetic programming approach
appears to be the appropriate tool for search and
optimisation, particularly due to its ability to
manipulate structures, rather then simply parameters.
In order to accommodate multiple objectives, the
optimisation is treated in a Pareto-optimal fashion. A
special consideration is place upon the development
of response surface models for the performance
evaluation in the multiobjective genetic programming
(MOGP) problem. Rather than evaluating the set of
objective functions for every potential solution at
each iteration of the optimisation, approximations of
these functions — response surfaces — are used to
reduce the time complexity. This allows greater
exploration of the fuzzy controller space within a
given period of time and therefore allows more
candidate solutions to be considered. The most
satisfactory solutions may then be assessed against a
full non-linear model of the engine and their
performance determined.

2. Multivariable Fuzzy Control

Recently, the application of multivariable fuzzy
control, modelling and identification techniques has
received considerable attention in the literature
[2,3,4,5]. This interest is justified by the necessity to
control more realistic scenarios, where the non-
linearity, multivariability and system uncertainty
handling is mandatory. Efforts have been made to
address and solve different aspects of fuzzy control
as the system stability [6], robustness [7] or the
complexity of the control algorithm in terms of
inference procedures [8]. However, some basic
elements of MIMO fuzzy control seem to be
overlooked. Little attention has been paid to the
effects on the system response of the order, or the



optimality of the regression coefficients in the
consequent part of the Takagi-Sugeno rules.

Typically, the Takagi-Sugeno system expresses the
outputs y; as linear combinations of the inputs x;, e.g.:

Rule i: IF x; is A;; AND x, is A;, THEN

Yi=ag +apx +ann

)

Y2 =dagr + anxy + anx;

where A; is the linguistic label associated with a
membership function. With this formulation, a non-
linear system can be represented as a piece-wise
linearised system, around specific operating points.
However, for highly dimensional non-linear systems
this kind of linear approximation may be
inappropriate. Even ensuring a very dense
distribution of the membership functions over the
input parameter space may not be sufficient to
accurately approximate the original system.
Furthermore, by partitioning the input parameter
space into more regions, the complexity of the fuzzy
rule-base and of the inference algorithm will
increase. With an augmented rule-base to be handled,
and a larger number of partitions of the space, the
prospect of successfully optimising the fuzzy
controller parameters lessens. Opting for a smaller
number of membership functions, and consequently a
reduced size of rule-base, can diminish the risk of not
finding the optimal control configuration. In return,
one can act on the degree of the polynomial
describing the outputs of the system. For instance,
second-order polynomials may be enough to capture
the non-linearity of the system in certain operating
regimes and this is demonstrated in earlier work.
The investigation could be carried on with the
identification of the relevant terms in an output
function expression. This procedure will be presented
in section 6. The goal of this identification is to
eliminate the terms that could negatively affect the
quality of the fitting of the data to the output surface.
On the other hand, in this manner the functions are
determined so that the parsimony principle is
satisfied — a minimal number of terms are used,
explicitly, the significant ones.

3. Response Surface Methodology And Tests Of
Significance

The response surface methodology (RSM) is the
practice of associating regression models with the
objective functions in an optimisation problem
[9.10]. This approach attempts the reduction of the
computational burden required for the evaluation of
the responses affected by several variables. The
method is also known to filter out the noise existent
in the parameter space due to the calculated
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responses. In RSM, statistical and mathematical
techniques are applied to a set of experimental data in
order to produce polynomial approximations of the
calculated responses of interest.

The model fitting is based upon a collection of design
experiments, or data points, equally distributed
through the parameter space. The fitting of the
polynomial surface to the data yields estimation in
unknown coefficients. This estimate is often
calculated as the solution of a set of least squares
equations for the candidate design points.

For »n observations, the model equations are
expressed in a matrix notation as:

yv=Xf+e, (2)
where y € R is the predicted response, Xe R"™

is the observation matrix for k regressors and

Be RM™ is the regression vector and €€ R™ is the
error.
With these considerations, the estimate of the
regression coefficients in a least squares sense is:
B=(xx)y'xxy 3)
The adequacy of the fit (or, conversely, the lack of
fit) of the predicted response model is tested by using
an Analysis-of-Variance (ANOVA) table. This table
is an indicator of the partitioning of the residual sum
of square error and pure error, which helps determine
the structure of the polynomial model.
In the proposed model, various hypotheses on the
parameters can be tested, on the form:
H0:C~ﬁp=m 4)
where C includes the coefficients in certain linear
combinations of f3, so that the elements of C- 3, are

linearly independent. For example, if the coefficients
By are (fy, B, 5,) and the hypotheses to be tested

is B, =0, then C will be a vector and m will be a
scalar in the form:

C=1[01 0], m=[0]. (5)
For more details the reader is directed to Searle, [11].
The cost associated with the design optimisation of
large, complex control strategies frequently remains
high. One aim of the RSM is to alleviate the
computational expense and structural requirements of
repeatedly calculating objective functions and
therefore to speed up the design and optimisation
process. The problem of dimensionality also needs to
be considered when formulating a response surface
problem. A larger number of variables or a higher
polynomial order can jeopardise the simplicity
concept.
In the following sections it is shown how RSM can
be embedded in MOGP formulation to help alleviate
the burden of evaluating many objective functions at
each iteration of the algorithm. For the gas turbine
engine example considered here, a full nonlinear
simulation of 10 seconds takes of the order of a few



minutes of CPU time on a Sparc Ultra. In contrast,
using response surface models, with order 3 or 4,
only requires tens of seconds of CPU time.

4. MOGP Optimisation

In general terms, evolutionary algorithms replicate
the Darwinian process of natural evolution by
progressively improving populations of potential
solutions according to the philosophy of “survival of
the fittest”. Perhaps the most renowned
representatives of evolutionary algorithms are the
genetic algorithms (GAs), proposed by Holland in
1975.

Genetic programming (GP) [12] represents a branch
of evolutionary computation, more specifically a
subclass of genetic algorithms. The most prominent
feature that differentiates GP from GA is the type of
genotype (individuals), which they handle. Whilst a
GA uses a binary or real-valued encoding of the
individuals, computer programmes represent the
GP’s genotype. The genetic operators manipulated by
GA or GP approaches are virtually the same.
However, they are different in the way they act and
in the results they produce - dependent on the
individual’s type.

For the traditional GA, the selection, the crossover
and the mutation preserve the individual’s structure
(length, content). Since the main entity of the GP is a
program, the outcome of genetic operators acting on
a population of individuals is new programs,
structurally different from the parental population.
The GP operates with a terminal set, comprising
variables, and a function set, consisting in
mathematical or logical operators.

The Pareto-optimality scheme is frequently employed
to solve multiobjective optimisation problems. The
Pareto-optimal philosophy demonstrated to be a very
realistic and versatile approach for tackling
multiobjective optimisation problems. It clearly
indicates to outperform traditional non-linear
programming methods, including epsilon-constraint,
weighted sum or goal attainment. Additionally,
Pareto-optimal approaches are able to handle
multimodality and discontinuities in the function
space, a deficiency in other non-linear programming
techniques.

In most cases there will not be one ideal ‘optimal’
solution, rather a set of Pareto-optimal solutions for
which an improvement in one of the design
objectives will lead to a degradation in one or more
of the remaining objectives. Such solutions are also
known as non-inferior or non-dominated solutions to
the multiobjective optimisation problem. The
integration of the Pareto-optimal scheme into the GP
structure was already achieved and presented in the
literature [13]. Similar to the multiobjective genetic

algorithms  approaches, goals and priorities
information may also be embedded into the GP
structure, in order to distinguish the solutions
corresponding to certain demands. [14].

For this study, the MOGP is deemed the ideal
environment for a simultaneous consideration of
multiple objectives modelling several objective
functions. The resulting trade-off solutions should be
able to satisfy the system requirements and
simultaneously to generate minimal polynomial
structures that minimize the residuals.

5. Multivariable Fuzzy Control

The design example considered here is that of the
Rolls-Royce Spey gas turbine engine. The Spey
engine is a twin-spool turbofan, used in both military
and civil aviation. The control philosophy is mainly
concerned with thrust regulation. However, other
parameters also play an active role in the control. In
general, these secondary control parameters are
normally regarded as safeguards, which ensure surge
free control and prevention of stall. Additionally,
mechanical and thermodynamic constraints tighten
the control requirements to guarantee proper
functionality of the engine components {15].
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Figure 1: Spey engine SIMULINK model.

The configuration of a typical dry-engine controller
comprises a collection of digital PI controllers, which
infer thrust and compressor surge margin from
measurable parameters, Fig. 1. These control
parameters are not directly measurable. The outputs
from the controller that regulate the engine thrust and
the thermodynamic stability limits are the fuel flow
demand, the nozzle area angle and the-inlet guide
vane angle. The goal of this study is to develop a
multivariable fuzzy counterpart of the original
controller block for the dry engine.

The fuzzy controller amalgamates all the individual
inputs from the original PI controllers. The outputs of
this multivariable structure may be linear or non-
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linear functions of the input variables (1). The MIMO
fuzzy controller thus has 4 inputs and 3 outputs, as
described in table 1:

Controller inputs

1. High press. spool speed demand  (NHdem)

2. High press. spool speed measured (NHmeas)
3. Low press. spool speed measured (NL)
4. Bypass duct Mach no. (DPUPO)
Controller outputs

1. Fuel flow demand (WFdem)
2. Nozzle area (NA)
3. Inlet guide vane angle (IGV)

Table 1: Parameters of the MIMO fuzzy controller.

The fuzzy controller should at least be capable of
replicating the behaviour of the original system with
PI controllers. To determine the rule-base structure,
including the parameters of the consequent part, the
signals generated by the original controller are used
for parameter identification. Providing that the
number of membership functions are predetermined,
a pseudo-inverse or least square approach may be
used to compute the coefficients of the polynomials
of egn. (2).

However, the previous study illustrated that a linear
output function is not sufficient to ensure a good
functionality of the system. The principal reasons
invoked there was the lack of fit of the predicted
response resulted from the fuzzy controller. With
strong interactions between input parameters and
outputs exhibiting highly non-linear behaviour, a first
order polynomial is simply not enough to guarantee
reliable closed-loop system response. The study also
indicated that increasing the number of partition the
input spaces not only does not yield better results, but
also has the drawback of higher associated
computational costs. The proposed solution to the
multivariable control problem consisted of using
second-order polynomials to model the output
functions. With that implementation, the performance
proved to outperform the original Rolls-Royce
controller.

The question emerged from these findings is whether
or not a better mapping of the input-output fuzzy
parameter would lead to increased performance of
the closed-loop system. The designer is faced now
with one more aspect to be considered. Hence, the
accuracy of the mapping can be quantified and
included in the evolutionary algorithm as an
objective to be minimised. "Secondly, the procedure
preserves all the facilities of the MOGA approach,
which attempts the controller tuning for maximum
performance. ‘

In terms of mathematics, the simplest way to control
the accuracy of the fitness whilst preserving the low-
order of the polynomial is to vary the tolerance level
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associated with the solution of the system of
equations described in (2). However, the approach
does not allow a great improvement in the fitness
error. Another alternative, which has not been
considered in this study, is to employ multivariate
function expansions in an attempt to find the best
least squares approximations to WFdem, NA
and.IGV (independently).

6. Enhancing The Controller
Performance With MOGP

The proposed approach seeks to improve the
precision of the mapping by employing a MOGP to
search for potential solutions to the problem. The
choice of MOGP over a simple single-objective GP
is justified by the need to achieve at least three
objectives: the minimization of the residuals, of the
number of terms and of the polynomial degree. These
objectives will ensure a good fitting of data to the

output surfaces and will also guarantee a
parsimonious structure. Moreover, there is the
opportunity to perform, simultaneously, the

“ordinary” controller tuning routine, realised with
MOGA the maximization of the engine
performance. On the other hand, the evaluation of
system performance is assessed automatically, for
each newly emerged polynomial structure.

As already mentioned in previous sections, a concern
associated with optimisation problems is to reduce
the simulation time and the computational
complexity. One way to achieve this target is to use
response surfaces to model the objective functions
related to the engine performance. Instead of running
an engine simulation to evaluate the objective
functions, statistical approximations of these
objectives are calculated. Previous work indicated
that the approach is highly effective [16,17].

The response models of the selected outputs of the
engine are constructed by considering the three
outputs

from the MIMO fuzzy controller (assuming constant
operating conditions). For example, thrust will be the
non-linear function:

thrust = f (WFdem, NA, IGV) (6)
A set of 250 points equally distributed over the input
parameter space was used to build the response
models of the outputs to be employed in the MOGA-
based optimisation. A further 750 points were then
used to validate these models. In this problem,
polynomials of order 4 were chosen to model the
objective functions. The computation of the average
value of residuals for each of the response surface
models indicates a good fit of the polynomials to the
data, as shown in Table 2.



Output Mean (residuals)
Thrust 2.77e-11
Surge margin 3 76e-10
Turbine temp. 4.83¢-09

Table 2: Performance values for response surfaces.

A set of non-dominated solutions was evolved from a
MOGP with 100 individuals, which ran for 500
generations. In Fig. 4, the MOGA GUI shows one of
these solutions and the corresponding objective
function goals. Clearly, this solution meets all of the
design goals.
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Figure 4: Preference articulation and performance.
For the solution shown in fig.4 the significant terms
are indicated by 1, in the associated second-order
model:
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For the solution displayed in Fig. 4, the performance
of the non-linear system is verified directly on the
full thermodynamic SIMULINK model of the engine.
The indicators of the GTE behaviour that are the
most relevant from a control point of view, and
simultaneously exhibit the strongest conflict, thrust,

step change of 55-100% of the high-pressure spool-
speed. The dashed line indicates the system with
MOGP-MIMO fuzzy control, the dotted one
indicates the MOGA-MIMO controller, and the
continuous line denotes the original controller. Here,
the MOGP-developed fuzzy controller has
outperformed both the original and the MOGA-
emerged controller, in all of the indicators. Although
is improvement of system performance is marginal,
the approach is able to challenge and outperform a
priori drastically optimised structures. A more
obvious picture is offered by the numerical values of
the control parameters for each of the cases under
consideration (table 3). Table 3 compares the best-
case performance in each of these measures for all
three controllers.

The system response with P! controliers and MIMO fuzzy controliers
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Figure 5: Performance of fine-tuned MIMO
controllers versus original PI control.

Performance MOGA- | MOGP-
measure MIMO | MIMO |DERA-PI
Thrust@steady
state [kN] 56.177 56.380 | 55.997
Minimum surge
margin [%] 6.767 7.059 6.602
Maximum turbine
temp. [°C] 1573.152 | 1570.740 | 1651.693

Table 3: PI and fuzzy controller performance.

surge margin and turbine blade temperature, are -

shown in Fig. 5. These outputs are in response to a
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7. Conclusions

This paper has demonstrated an approach to enhance
the performance of a multivariable non-linear
Takagi-Sugeno fuzzy controller for a gas turbine
engine. As the engine controller has to satisfy many
competing design objectives, a multiobjective
optimiser has been employed to fine-tune the most
promising fuzzy controller structures. The core of
this work was to look at most feasible spaces of
potential solution, by directing the attention towards
the models offering best fit. For this purpose, the
significant terms in the polynomial structure were
found and the solutions verified on the non-linear
engines. The solutions yielded by MOGP could also
be compared with the results of test of significance.
However, the MOGP, and simulation of the engine
itself, are computationally demanding and
satisfactory solutions could not normally be expected
within a reasonable time if applied directly. To
address this problem, it has been shown that response
surface models offer an attractive mechanism for
reducing the time complexity of the initial
optimisation. The most suitable structures may then
be tested on the actual model of the engine.
Furthermore, the system with the significant terms
has been shown to attain very good performance for
the design objectives considered here, outperforming
both the original and the MOGA-optimised
controllers.
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