
RBF Neural Networks, Multiobjective

Optimization and Time Series Forecasting

J. González, I. Rojas, H. Pomares and J. Ortega

Department of Computer Architecture and Computer Technology
University of Granada
Campus de Fuen tenueva
E. 18071 Granada (Spain)

Abstract. This paper presents the problem of optimizing a radial ba-
sis function neural netw ork from training examples as a multiobjective
problem and proposes an evolutionary algorithm to solv e it properly.
This algorithm incorporates some heuristicsin the m utation operators
to better guide the search tow ards good solutions. An application to the
Mackey-Glass chaotic time series is presented. The prediction accuracy
of the proposed method is compared with that of other approaches in
terms of the root mean squared error.

1 Introduction

The automatic optimization of a Radial Basis Function Neural Netw ork (RBFNN)
from training data [10, 11] is a problem in which tw o clearly competing objectives
must be satis�ed. The model's prediction error must be minimized in order to
achieve a well �tted model, while the number of Radial Basis Functions (RBFs)
should be as low as possible to obtain a reliable interpolator. The problem here
is how to minimize both objectives simultaneously. Improving one of them will
probably cause a w orsebehavior in the remaining one. This kind of problems
is kno wnas Multi-Objective Problems (MOPs), and their solutions are usu-
ally sub-optimal for each objective in particular, but �acceptable� taking all the
objectives in to account, where �acceptable� is totally subjective and problem
dependent.

The algorithms proposed in the literature to construct RBFNNs from exam-
ples try to �nd a unique model with a compromise betw een its complexity and
its prediction error. This is not an adequate approach. In MOPs there are usu-
ally more than one alternative optimal solutions (having di�erent compromises
betw een their multiple objectives) that should be considered equivalen t. Thus,
conventional optimization techniques have great di�culty to be adapted to solve
MOPs because they weren't designed to deal with more than one solution simul-
taneously. Nevertheless, Evolutionary Algorithms (EAs) maintain a population
of potential solutions for the problem, thus making easier their adaption to solve
MOPs [2]. In particular, the �tness of the individuals must be adapted to com-
prise all the objectives to be satis�ed and some new mutation operators must
be designed to alter the structure of RBFNNs.

J. Mira and A. Prieto (Eds.): IWANN 2001, LNCS 2084, pp. 498-505, 2001.
 Springer-Verlag Berlin Heidelberg 2001



2 Multiobjective evolution

The great di�erence between single objective and multiple objective problems is
that the set of solutions is not completely ordered for MOPs. For two objective
vectors, the following relations can be de�ned:

f(�1) = f(�2)() fi(�1) = fi(�2) 8i 2 1; 2; :::; nobj

f(�1) � f(�2)() fi(�1) � fi(�2) 8i 2 1; 2; :::; nobj (1)

f(�1) < f(�2)() (f(�1) � f(�2)) ^ (f(�1) 6= f(�2))

where nobj is the number of competing objectives. Taking into account the above
relations the Pareto-dominance criterion can be de�ned as:

�1 � �2 (�1 dominates �2) () f(�1) < f(�2)

�1 � �2 (�1 weakly dominates �2)() f(�1) � f(�2) (2)

�1 � �2 (�1 is indi�erent to �2) () f(�1) 6� f(�2) ^ f(�2) 6� f(�1)

A Pareto-optimum solution is de�ned as an individual that cannot be domi-
nated by any one in the solution set:

6 9�i 2 D : �i � �j (3)

A good multiobjective algorithm should �nd as many Pareto-optimum solu-
tions as possible, to provide the �nal user the possibility of choosing the right
solution following his own criteria.

There are several ways of adapting EAs to solve MOPs. In this paper is
used the approach proposed in [2], which estimates an scalar dummy �tness for
each individual in the current population based in its rank. The rank of each
individual is de�ned as:

rank(�tj) = 1 + domt
j (4)

where domt
j represents the number of individuals dominating �tj in the current

population. Once that each individual is assigned a rank, a dummy �tness is
obtained for all the individuals by interpolating between the maximum and min-
imum rank in the population. This simple modi�cation allows a generic EA [8]
to solve a MOP transparently, that is, without changing any other of its com-
ponents.

Multi-Objective Evolutionary Algorithms (MOEAs) are a robust optimiza-
tion technique that have been successfully applied to several optimization prob-
lems. Its strength is based on their simplicity and easy implementation. However,
MOEAs are a generic optimization technique whose results can be improved if
some expert knowledge about the problem to be solved is incorporated in them.
These changes produce algorithms that hybridizes the robustness and strength
of EAs and the expertness of some heuristics for the problem. This adapted

499RBF Neural Networks, Multiobjective Optimization and Time Series Forecasting



MOEAs obtain better results than the generic ones because they can guide the
search towards solutions that the expert knowledge expects to be superior. The
easiest way of incorporating this expert knowledge of the problem in an EA is to
construct some mutation operators speci�c for the problem to be solved. These
operators di�er from the original ones in the sense that they do not apply blind
changes to the individuals they a�ect. They try to improve the mutated individ-
ual by analyzing and altering it using some heuristics. A complete description
of the MOEA used in this paper can be found in [3], here we will focus only en
the expert mutation operators designed for this problem and on how they can
guide the search towards better solutions.

3 Proposed mutation operators

The purpose of the MOEA described in this paper is to search for RBFNNs with
di�erent compromises of complexity and prediction error, so that the �nal user
can choose among diverse possibilities the model that better solve his require-
ments. Thus, some mutation operators have to be designed to alter the structure
of the net, adding or deleting RBFs until good nets are obtained. These mutation
operators incorporate some heuristics to alter the RBFNNs �cleverly�, detecting
the RBFs that less contribute to the net output and eliminating them, or, on
the other hand, estimating the input regions that increase the prediction error
and adding there more RBFs to obtain a better model.

3.1 RBF Splitting

This mutation operator is based in a splitting mechanism for RBFs proposed in
[6], but with some modi�cations because the original mechanism was oriented to
classi�cation problems and the proposed algorithm will be used to forecasting
time series. The basic functioning of this operator is as follows:

� detect that RBF producing the highest error increment in the prediction
error, and

� split it into two RBFs to obtain a net that covers better the input space.

The prediction error is caused by some RBFs that become highly activated
by some input vectors and produce an output value di�erent of the expected
one. The RBFs that are not activated by an input vector don't contribute to
the prediction error for that input vector. Thus, the prediction error can be
proportionally divided between all the RBFs that are activated by an input
example as:

ej =

nX

k=1

�j(x
k)

mP
i=1

�i(xk)

��F(xk)� yk
��; j = 1; :::;m (5)

500 J. Gonzalez et al.



where n is the number of input examples, m is the number of RBFs in the net,
�j is the j-th RBF, F(xk) is the prediction of the net for the input vector xk,
and yk is its expected prediction. A high value of ej shows that the j-th RBF
is not su�cient to learn the input examples that activate it, thus the bigger ej ,
the higher probability of division for �j . So, each RBF �h is assigned a division
probability inversely proportional to ej and a basis function is randomly selected
according to these probabilities.

Once one RBF �j has been selected, the 2-means algorithm is run with the
input examples that are closer to the center of �j than to any other RBF center,
obtaining two new positions for two new RBFs, �j1 and �j2, that will substitute
�j in the a�ected net. The radii for �j1 and �j2 are calculated using the CIV
heuristic [6] and the optimum weights for all the weights of the new net are
obtained using the Cholesky method [9].

3.2 OLS based pruning

Orthogonal Least Squares (OLS) [1] is one of the most widely used method to
prune the less relevant RBFs of a net. Basically, this method calculates a vector
of error reduction ratios err where each one of its components [err]j gives an
idea of the output variance explained by its associated RBF �j . The lower [err]j ,
the less relevant is �j in the RBFNN output. OLS allows this mutation operator
to assign a prune probability to each RBF based in its associated error reduction
ratio. Less important RBFs will have more likelihood to be deleted, while more
relevant RBFs will be more deletion-protected.

Once that an RBF is selected and deleted, the weights of the remaining basis
functions are optimally recalculated using the Cholesky method.

3.3 SVD based pruning

Another good heuristic to prune RBFs is the Singular Value Decomposition
(SVD) of the activation matrix P of the RBFNN [5]. This orthogonal transfor-
mation provides a vector � of Singular Values (SVs), each one of them concerning
one of the RBFs in the net. These SVs reveal the degree of linear independence
of the columns of P . Columns with a low (nearly null) singular value are almost
linearly dependent and may cause a singular activation matrix. Thus, if these
columns are identi�ed and deleted, the system will become simpler and more
robust.

With the aforementioned idea in mind, this mutation operator assigns a
pruning probability to each RBF inversely proportional to its SV and deletes a
basis function randomly selected, having less relevant RBFs more likelihood to
be pruned than those more important ones. After the deletion, the weights of
the remaining RBFs are optimally obtained using the Cholesky method.

501RBF Neural Networks, Multiobjective Optimization and Time Series Forecasting



4 Results

The algorithm presented above have been tested with the time series generated
by the Mackey-Glass time-delay di�erential equation [7]:

ds(t)

dt
= � �

s(t� �)

1 + s10(t� �)
� �s(t) (6)

Following previous studies [12], the parameters have been �xed to � = 0:2,
� = 0:1, obtaining a chaotic time series without a clearly de�ned period; it will
not converge or diverge, and it is very sensitive to initial conditions.

As in [4], to obtain the time series value at integer points, we applied the
fourth-order Runge-Kutta method to �nd the numerical solution for the above
equation. The values s(0) = 1:2, � = 17, and s(t) = 0 for t < 0 are assumed.
This data set can be found in the �le mgdata.dat belonging to the Fuzzy Logic
Toolbox of Matlab 5.

Following the conventional settings for predicting these time series, we will
predict the value s(t+6) from the current value s(t) and the past values s(t�6),
s(t � 12), and s(t � 18), thus, the training vectors for the model will have the
following format:

[s(t� 18); s(t� 12); s(t� 6); s(t); s(t+ 6)] (7)

The �rst 500 input vectors have been used to train the model and the next 500
vectors have been used to test the RBFNNs obtained. The proposed algorithm
has been run 5 times with a population of 25 individual during 1000 genera-
tions, and the best solutions found have been applied the Levenberg-Marquard
minimization algorithm to �ne-tune their parameters. Table 1 shows minimum,
mean and standard deviation of the best RMSEs obtained in �ve di�erent runs
of the algorithm using a population of 25 individuals.

Table 2 shows the best solutions found by other approaches. The comparison
of these results with those obtained by the proposed algorithm (see table 1)

Num. Training RMSE Test RMSE

RBFs Min. Mean St. Dev. Min. Mean St. Dev.

8 0.0065 0.0099 0.0034 0.0057 0.0095 0.0035

9 0.0061 0.0085 0.0024 0.0061 0.0085 0.0025

10 0.0055 0.0071 0.0018 0.0054 0.0070 0.0017

11 0.0055 0.0070 0.0019 0.0056 0.0086 0.0043

12 0.0061 0.0069 0.0014 0.0060 0.0061 0.0002

13 0.0057 0.0062 0.0010 0.0056 0.0063 0.0011

14 0.0037 0.0042 0.0008 0.0039 0.0043 0.0007

Table 1. Minimum, mean and standard deviation of the training and test errors for

all the di�erent RBFNN structures.

502 J. Gonzalez et al.



7 8 9 10 11 12 13 14 15
2

4

6

8

10

12

14
x 10

−3

NUMBER OF RBFs

T
R

A
IN

IN
G

 R
M

S
E

7 8 9 10 11 12 13 14 15
2

4

6

8

10

12

14
x 10

−3

NUMBER OF RBFs

T
E

S
T

 R
M

S
E

(a) (b)

Fig. 1. Mean and standard deviation of the RMSE in �ve runs of the algorithm.

0 100 200 300 400 500 600 700 800 900 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 100 200 300 400 500 600 700 800 900 1000
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

(a) (b)

Fig. 2. (a) Original time series (solid line) and predicted values (dashed line) for train-
ing and test data. (b) Training and test residuals.

reveals that the use of expert mutation operators enhances signi�cantly the
search results. All minimum performance indices are superior to those obtained
by other approaches, while the standard deviation from the mean RMSE are
small enough to conclude the robustness of our approach. As an example, �gure
2 shows the original series (solid line), and the predicted values (dashed line) for
the training and test data (a), and the training and error residuals (b) for the
best RBFNN of 10 basis functions found.

5 Conclusions

Identifying the adequate structure for a RBFNN created from training data is
not an easy problem. There exist several optimal solutions depending on the cho-
sen compromise between the prediction error and the complexity of the model.

503RBF Neural Networks, Multiobjective Optimization and Time Series Forecasting



Approach Test RMSE

Linear Predictive Method 0.55

Auto Regressive Model 0.19

T-Norm: Prod. 0.0907
L-X. Wang

T-Norm: Min. 0.0904

Cascade Correlation ANN 0.06

6
th-order Polynomial 0.04

D. Kim & C. Kim 5 MFs/var. 0.0492
(Genetic Algorithm 7 MFs/var. 0.0423
+ Fuzzy System) 9 MFs/var. 0.0379

Retropropagation ANN 0.02

ANFIS (ANN + Fuzzy Logic) 0.007

Table 2. RMSE of other approaches

MOEAs are able to �nd a su�cient number of Pareto-optimal solutions, pro-

viding the �nal user a wide variety of possibilities, in order he can choose the

solution that better satis�es his requirements.

MOEAs can also be specialized by means of expert mutation operators that

improve the search results. These expert mutation operators can incorporate

some heuristics for the problem, such as OLS and SVD for the pruning mech-

anism, or an error sharing scheme to identify RBFs producing bigger errors, to

perform �clever changes� when altering an individual. Particularly, the proposed

algorithm has found very good RBFNNs for the prediction of the Mackey-Glass

time series.

Acknowledgement

This work has been partially supported by the CICYT Spanish projects TAP97-

1166 and TIC2000-1348.

References

1. S. Chen, C. F. N. Cowan, and P. M. Grant. Orthogonal least squares learning
algorithm for radial basis function networks. IEEE Trans. Neural Networks, 2:302�
309, 1991.

2. C. M. Fonseca and P. J. Fleming. Genetic algorithms for multiobjective optimiza-
tion: Formulation, discussion and generalization. In S. Forrest, editor, Proceedings
of the Fifth International Conference on Genetic Algorithms, pages 416�423. Mor-
gan Kaufmann, 1993.

3. J. González, I. Rojas, H. Pomares, M. Salmerón, and A. Prieto. Evolutive identi�-
cation of fuzzy systems for time series prediction. In A. Ollero, S. Sánchez, B. Arrue,
and I. Baturone, editors, Actas del X Congreso Español sobre Tecnologías y Lógica

Difusa, ESTYLF 2000, pages 403�409, Sevilla, Spain, Sept. 2000.

504 J. Gonzalez et al.



4. J. S. R. Jang. An�s: Adaptive network-based fuzzy inference system. IEEE Trans.

Syst., Man, Cybern., 23:665�685, May 1993.
5. P. P. Kanjilal and D. N. Banerjee. On the application of orthogonal transformation

for the design and analysis of feed-forward networks. IEEE Trans. Neural Networks,
6(5):1061�1070, 1995.

6. N. B. Karayiannis and G. W. Mi. Growing radial basis neural networks: Merg-
ing supervised and unsupervised learning with network growth techniques. IEEE
Trans. Neural Networks, 8(6):1492�1506, Nov. 1997.

7. M. C. Mackey and L. Glass. Oscillation and chaos in physiological control systems.
Science, 197(4300):287�289, 1977.

8. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, 3rd edition, 1996.

9. H. Pomares, I. Rojas, J. Ortega, J. González, and A. Prieto. A systematic approach
to a self-generating fuzzy rule-table for function approximation. IEEE Trans. Syst.,

Man, Cyber. Part B, 30(3):431�447, June 2000.
10. I. Rojas, J. González, A. Cañas, A. F. Díaz, F. J. Rojas, and M. Rodriguez. Short-

term prediction of chaotic time series by using rbf network with regression weights.
Int. Journal of Neural Systems, 10(5):353�364, 2000.

11. I. Rojas, H. Pomares, J. González, J. L. Bernier, E. Ros, F. J. Pelayo, and A. Prieto.
Analysis of the functional block involved in the design of radial basis function
networks. Neural Processing Letters, 12(1):1�17, Aug. 2000.

12. B. A. Whitehead and T. D. Choate. Cooperative-competitive genetic evolution of
radial basis function centers and widths for time series prediction. IEEE Trans.

Neural Networks, 7(4):869�880, July 1996.

505RBF Neural Networks, Multiobjective Optimization and Time Series Forecasting


	1 Introduction
	2 Multiobjective Evolution
	3 Proposed Mutation Operators
	3.1 RBF Splitting
	3.2 OLS Based Pruning
	3.3 SVD Based Pruning

	4 Results
	5 Conclusions
	References

