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Abstract 
 

In supervised learning, missing values usually 

appear in the training set. The missing values in a 

dataset may generate bias, affecting the quality of the 

supervised learning process or the performance of 

classification algorithms. These imply that a reliable 

method for dealing with missing values is necessary. In 

this paper, we analyze the difference between iterative 

imputation of missing values and single imputation in 

real-world applications. We propose an EM-style 

iterative imputation method, in which each missing 

attribute-value is iteratively filled using a predictor 

constructed from the known values and predicted 

values of the missing attribute-values from the previous 

iterations. Meanwhile, we demonstrate that it is 

reasonable to consider the imputation ordering for 

patching up multiple missing attribute values, and 

therefore introduce a method for imputation ordering. 

We experimentally show that our approach 

significantly outperforms some standard machine 

learning methods for handling missing values in 

classification tasks. 

Index Terms — Artificial intelligence; Missing data 

imputation; Data processing. 

 

1. Introduction 
 

     Many real world databases are incomplete as some 

instances may have missing attribute-values. Attribute 

values can be missing for various reasons. It may be due 

to a malfunction of equipment, absence of a measuring 

unit and precision, conversion between non-compatible 

entities, or erroneous human imputation. Besides, data 

might be missing because not enough information has 

been collected from their original sources. This presents a 

problem in data analysis as many machine-learning 

algorithms are based on the assumption that the data are 

complete. With this incompleteness, analysts interested in 

using the data for parameter estimation or statistical 

inference are handicapped because most common data 

analytic packages analyze only complete cases. These 

imply that a reliable method for dealing with missing 

values is necessary. 

Missing values are an unavoidable problem in dealing 

with most of the real world data sources, and various 

methods for dealing with such data have been developed, 

particularly in the context of missing data in sample 

surveys. Imputation is a popular strategy in comparison 

with other methods, such as deleting the instances 

containing missing values. Missing data imputation is a 

procedure that replaces the missing values in a dataset by 

some plausible values. One advantage of this approach is 

that the missing data treatment is independent of the 

learning algorithm used. This allows users to select the 

most suitable imputation method for their applications. 

Commonly used imputation methods for missing response 

values include parametric and non-parametric regression 

imputations. 

Many missing data analysis techniques are of single-

imputation, such as decision tree imputation, non-

parametric imputation method, parametric imputation 

method, and so on. Recently, much research on missing 

data analysis has focused on multi-imputation techniques 

[1-5] or iterative imputation methods [3,6] for addressing 

the issues in single-imputation.  

In this paper, we show that it is necessary to iteratively 

impute multiple missing values rather than single 

imputation in real-world applications. We propose an EM-

style iterative imputation method, in which each missing 

attribute-value is iteratively filled using a predictor 

constructed from the known values and predicted values 

of the missing attribute-values from the previous iterations. 

On the other hand, we demonstrate that it is reasonable to 

consider the imputation ordering for patching up multiple 

missing attribute values and propose a method for 

imputation ordering. We experimentally show that our 
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approach significantly outperforms some standard 

machine learning methods for handling missing values in 

classification tasks. 

The rest of this paper is organized as follows. Section 2 

briefly reviews related work on missing attribute value 

imputation and imputation ordering. In Section 3, we 

design a principle of imputation ordering to predict 

missing attribute values. Section 4 describes our 

experiments on UCI datasets. We conclude this paper in 

Section 5. 

 

2. Related work 
 

Currently, there are two mainstream directions for dealing 

with the missing value completion (imputation) problem. 

One is based on machine learning, including auto 

associative neural networks, decision tree imputation, and 

so on. Another is based on statistics, including linear 

regression, multiple imputation, parametric imputation, 

and non-parametric imputation. 

With single-imputation techniques, missing values in a 

variable are filled in by a plausible estimate such as the 

mean or median for that variable on other participants. 

Better estimates may be obtained by a regression model 

on expected values, or a hot deck procedure. However, 

single-imputation cannot provide valid standard errors and 

confidence intervals, since it ignores the uncertainty 

implicit in the fact that the imputed values are not the 

actual values. On the other hand, imputing a single value 

does not capture the sample variability of the imputed 

value, or the uncertainty associated with the model used 

for imputation.  

The main idea of multiple-imputation [3] is to fill in 

missing values by drawing from the posterior predictive 

distribution of the missing data given the observed data. 

The procedure is independently repeated M times, so it 

cannot efficiently utilize all the observed values including 

the observed ones whose instances contain missing values. 

The EM algorithm [6] repeatedly alternates between two 

steps, the E step and the M step. All the two steps depend 

on parametric models, and the later imputation will relate 

to the result of the former. If the model is mis-specified 

(in fact, in real-world applications, it is usually impossible 

for us to know the distribution of the real dataset), the 

estimations of the parametric method may be highly 

biased and optimal control factor settings may be 

miscalculated. So it is unreasonable to use a parametric 

model to deal with the problem and the non-parametric 

method can provide a better alteration. In this paper, we 

employ a non-parametric method (the kNN algorithm) to 

impute missing values. 

Obviously, multiple imputation including MI and EM 

algorithm is computationally more expensive compared to 

single imputation procedures, especially for the EM 

algorithm, as the user cannot predict the number of 

iterations for convergence. [7] presented an iterative non-

parametric algorithm which is similar to the EM algorithm, 

and an interesting feature of the algorithm is that the E and 

M steps collapse into a single step because the data being 

filled in are the modal-updating and the filled-in values 

and update the model at the same time. The algorithm can 

utilize essentially all observed values including the 

observed ones whose instances contain missing values. [7] 

also demonstrated experimentally that the speed of 

convergence is faster than the EM algorithm. But they 

cannot pay attention to the imputation order during the 

process of imputing multiple missing values.  

In fact, it is very important for us to consider the 

imputation order during the process of imputing multiple 

missing values. [8-10] argued that it can be efficient to 

improve the prediction accuracy and decrease the 

classification error rate if we can apply an appropriate 

imputation order during imputing. [10] dramatically 

improved the efficiency of imputation with an ordering 

process of an exhaustive search. However, it is extremely 

expensive in time complexity if the dataset contains too 

many attributes. For example, when there are n attributes, 

there are n! different possible orderings. [8] presented a 

method to impute multiple missing values, which uses a 

lexicographic ordering and an iterative imputation method 

to impute the missing values. There are at least two 

disadvantages: firstly, the discretization of the continuous 

values will lose useful information. Second, it is not 

substantial for the algorithm to consider the significance 

between the attribute and class label by mutual 

information. However, in practice, the ratio of missing 

values in comparison to the observed values in one 

instance or in one column in the dataset will have an 

impact for the performance of imputation especially for 

iterative imputation methods. As these methods use 

imputation results from the previous iterations to impute 

the missing values in the current iteration, it will have a 

significant impact for us to impute missing values with 

these methods if the previous results contain a serious bias. 

 In this paper, we present a novel imputation ordering 

strategy which makes a trade-off between the impact of 

the missing rate in one instance and the impact of the 

relation between the attribute and the class label in an 

EM-like iterative imputation method, but it is different 

from the MI and EM algorithms. In the first iteration 

imputation, we use the mean (or mode) values of all the 

observed attribute values to fill in the missing values in 

order to make the best use of all the information. From the 

second iteration of the imputation process, iterative 

imputation is based on the results of the previous 

imputation, then we present a principle of imputation 

ordering, which is employed a harmonic mean allowing 

users to specify their own desired trade-off in terms of the 

impact of the missing value ratio and the impact of the 
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relation between the attribute and class label, to impute 

missing values in order. This procedure is stopped when 

the average change of imputed values is approximately 

stabilized, or satisfies a given requirement by the user. 

The non-parametric imputation [11] is utilized in this 

algorithm because we cannot exactly know the model of 

data, because we have usually not priori knowledge about 

the data. 

 

3. Our Algorithm 
 

In this section, we first demonstrate that we need to 

iteratively impute multiple missing values in order to 

make the best use of the observed values in Section 3.1, 

and then explain in detail in Section 3.2 an imputation 

ordering for multiple missing values with respect to the 

impact of the ratio of missing values in one attribute and 

the relation between the conditional attributes and class 

label. 

3.1  Making the best use of the observed values 

Most imputation methods try to impute missing values 

using those instances whose attribute values are all 

observed. For example, non-parametric imputation 

methods, such as the kernel approach, impute the missing 

values through utilizing those instances that don’t have 

any missing values as the reference instances during the 

training process. These methods may possibly ignore two 

facts. First, they are normally for datasets that contain 

missing values. For example, in Table 1, we analyze 6 

datasets from UCI [13] as follows, and there are very 

small percentages of missing values in these datasets.  The 

percentage of missing values in Water-Treatment, 

Hepatitis, Bridge, Echocardiogram, Soybean and House-

Voting is only 2.95%, 5.67%, 5.56%, 7.69%, 6.63% and 

4.13% respectively, but the percentage of instances with 

missing values reaches 26.56%, 48.38%, 35.18%, 53.79%, 

13.36% and 46.68% respectively. The OI/NC (which 

denotes the mean of the observed instances for each class) 

is only 29, 40, 11, 30, 14 and 100 respectively and the 

number of OI/NC must be beyond 30 for a non-parametric 

imputation method in a large sample in statistics. In 

practice, most industrial databases have a more serious 

problem with missing values. Take [12] as an example. Of 

the 4383 records in this database, none of the records are 

complete and only 33 out of the 82 variables have more 

than 50% values. Second, an incomplete instance may 

already contain enough information for model 

construction, even though it still contains missing values. 

For example, in practice, the values of all instances with 

the same class label may be missing on a particular value 

because of a especial reason, such as, the value of 

attribute ‘age’ is usually left empty in questionnaires 

because women might not want their real ages to be 

known. In Table 2, the values on the 5th attribute are 

missing and their class label is ‘1’, but we can assume that 

the missing values are known. On the other hand, it is 

unreasonable for us to find the nearest neighbor among 

the instances without missing values (such as instances d 

and e) because their class label is ‘0’, while the class label 

is ‘1’ for instance a (or b or c).  

So it is reasonable for us to impute missing values with 

instances that have observed values including those 

instances which contain some missing values based on the 

above analysis. However, we cannot calculate the relation 

between the instances whose values are all observed and 

the instances with missing values because existing 

methods try to deal with all the instances without missing 

values. Caruana in [7] designed an iterative imputation 

method to resolve this problem, and in this paper, we 

construct iterative imputation methods to utilize all 

observed values. 

The notations for different columns in Table 1 are as 

follows.  M/O stands for the ratio of the number of 

missing attributes to the number of all attributes in a 

dataset; M/A stands for the ratio of the number of missing 

instances to the number of all instances in the dataset; 

M/AM stands for the ratio of the number of missing 

instance to the number of instances with missing instances; 

Multi denotes the maximal number of missing values in an 

instance; NC denotes the number of classes; and MR 

denotes the missing rate of the dataset. 

 

Table 1: Examples in UCI Datasets 
 M/O M/A M/AM Multi NC MR 

Water 31/38 26.56% 115/140 15 13 2.95%

Hepatitis 15/20 48.38% 37/75 14 2 5.67%

Bridge 9/13 35.18% 21/38 6 6 5.56%

Echocar 12/13 53.79% 39/71 9 2 7.69%

Soybean 34/35 13.36% 41/41 30 19 6.63%

House 15/16 46.68% 86/203 16 2 4.13%

 
Table 2.  ‘-’denotes an observed value and ‘?’denotes a 

missing value in a database 

 C1 C2 C3 C4 C5 D 

a ? - ? ? ? 1 

b - ? - - ? 1

c ? - - - ? 1 

d - - - - - 0 

e - - - - - 0 

3.2 Imputation Order 

In this paper, we employ a non-parametric method [11] 

which is based on an instance imputation method to 

impute multiple missing values. In most cases, existing 

algorithms are applied without special attention to the 
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given order of missing values. However, [9] argued that it 

is necessary to design an imputation ordering when there 

are multiple missing values in one instance. For example, 

in Table 2, there are two missing values in instance b, and 

we must choose one of them to impute at first. So we must 

adopt a criterion for imputation ordering. Usually, there 

are many factors that have an impact on the imputation 

order, such as the relation between the attribute and the 

class label, the missing percentage in a row/column, and 

so on. There are many methods for imputation ordering, 

such as [8-10]. In this paper, we present a new and 

efficient imputation ordering method to deal with multiple 

missing values. 

Based on the principle of choosing the most informative 

attributes to impute the missing values and the fact that an 

imputation algorithm is actually an instance-based 

learning algorithm, we consider the impact of the missing 

rate in each instance and the impact of the mutual 

information (MI) between each attribute and the class 

label to decide the current imputable missing value 

(CIMV for short). The more observed information 

available, we believe, the lower missing rate an attribute is. 

We also consider that an attribute is more important when 

its MI is larger. Given a dataset with missing values, we 

first calculate the percentage of the number of missing 

values in an instance, and take the inverse of this value as 

the impact weight for the instance (denoted as Ri: the 

impact weight of the i
th

 instance), then we compute the 

mutual information between each attribute and the class 

label with all observed instances and regard mutual 

information as Wi (Wi: the mutual information between the 

i
th

 attribute and the class label). At last, we integrate Ri 

and Wi as significance (denoted as Sign(i,j): the 

significance of the missing value which is located in the i
th

 

instance and on the j
th

 attribute). We use the F-measure 

which is commonly used and was firstly introduced in 

information retrieval and natural language processing 

communities to express Sign(i,j).  The F-measure requires 

us to specify a desired trade-off between Ri and Wi 

through a variable Sign(i,j). That is to say, using the F-

measure allows users to specify their own desired trade-

off in terms of Ri and Wi. In fact, the F-measure is a 

harmonic mean of Ri and Wi. Mathematically, Sign(i,j) is 

defined as 

1 1 1
S ign(i,j) ( )

2
j i

W R
= +            (1) 

where i is an instance and j is an attributes in a given 

dataset. 

Assuming Ri has a weight of (0 , )α ∈ + ∞ , Wi has a 

weight of 1, and α is decided by the user, then the 

weighted harmonic mean of Ri and Wi is 

( 1)
( , )

i j

i j

R W
Sign i j

R W

α

α

+

=

+

          (2) 

where i is an instance and j is an attributes in the dataset. 

With Eq. 2, we can rank all missing values by the 

Sign(i,j) values (in ascending order), and select the 

missing value with the least Sign(i,j) values to impute. In 

our method, the missing value with a larger Wi  and a 

smaller Ri  always has a priority to be selected as CIMV. 

In fact, we usually select the missing value which is the 

only missing value in an instance to be imputed at first. 

This will result in less bias. At the same time, we will 

select the missing value with a smaller Ri to impute when 

multiple missing values have the same Sign(i,j) value. Our 

experiments demonstrate that the results will get better if 

we can select an appropriate α  value in different datasets. 

During the first iteration the missing values have not yet 

been patched up. Previous efforts, for instance, kernel 

methods and decision trees, only regard the instances 

without missing values as examples of the training set. 

This will waste all the information of the observed values 

whose instances contain missing values as well, and it is 

unreasonable to impute missing values by utilizing all the 

observed instances in real-world applications. In this 

paper, we apply the first imputation strategy to make the 

best use of all the information of observed values, and we 

don’t stop iteratively imputing the missing values using 

the known values and predicted values of the missing 

attribute-values from the previous iterations until the 

algorithm converges. We compute the mean when an 

attribute with missing values is continuous, and compute 

the mode if the attribute is discrete or symbolic, from the 

instances whose values are all observed. I.e. we use the 

mean (or mode) as the initial filled-in value for each 

missing value. Using the attribute mean (or mode) to 

replace missing values is a popular imputation method in 

machine learning and statistics. [14] argued that to 

calculate the mean (or mode) only from observed values is 

valid if and only if the dataset is chosen from a population 

with a normal distribution, and it is, however, usually 

impossible in real world applications to assume this 

normal distribution because we cannot know in advance 

the real distribution of a dataset. So performing iterative 

imputation for missing values is reasonable based on the 

previous imputation. Our algorithm is presented in Figure 

1 as follows. 

 
Initialization:  //Get a complete dataset after the first 

imputation 

For each missing value in the given dataset 

labeling : literation=1, impute=0 

Calculate Sign(i,j) 

Fill with the mean (for a continuous attribute) or 

mode (for a nominal attribute). 

Sort all Sign(i,j)  

Rank CIMV(i) in ascending order 

B�C



 

Repeat the following two steps until convergence (k 

iterations). 

For i=1 to (Number of missing values) 

    Impute CIMV(i) utilizing all the dataset based on the 

kNN algorithm 

    literation ++;  

    impute=1; 

 

Output: 

Results with filled-in values for all missing values. 

 
Figure 1: Pseudo-code of the proposed algorithm  

 

4. Experimental Study 

This section describes our experiments on some UCI 

datasets [13] which are conducted to demonstrate the 

performance of our algorithm. In Section 4.1, we present 

the convergence of the filled-in values, and the prediction 

accuracy for continuous missing values are shown in 

Section 4.2. We demonstrate classification errors in 

Section 4.3. 

4.1  Convergence of the imputed values 

Each iteration of the EM algorithm is guaranteed to be 

non-decreasing in maximum likelihood [15], thus EM 

converges to a local maximum in likelihood. In our 

algorithm, the first iteration, which uses the mean (or 

mode) as the initial filled-in value of for each missing 

value with complete instances of the same class label, 

obviously converges. But in the process of other iterations, 

we are not able to provide a similar analysis for a non-

parametric method, and the reason is that there are few 

theoretical results regarding the validity of kNN in the 

literature, because it is difficult to build a mathematical 

proof. In this section we empirically show the 

convergence of the kNN method when applied to the UCI 

datasets. 

An imputation method has converged if the “mean 

change in filled-in values” drops to zero. [7] argued that 

the “mean change in filled-in values” does not drop all the 

way to zero and only trends to a value which trends fast 

and stably to zero in non-parametric models  (such as kNN 

and kernel methods). 
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Fig. 1 The average change in filled-in 

values for dataset chocardiogram 
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Fig.2: The average change in filled-in values 

for dataset Water-Treatment 
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Fig. 3: The average change in filled-in values for 

dataset Hepatitis Diagnosis 
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In Figures 1 to 4, we present the average change in filled-

in values for datasets “Echocardiogram”, “Water-

Treatment”, “the Hepatitis Diagnosis Problem”, and 

“Soybean” for successive iterations. Attribute values were 

normalized with variance 1.0 and the optimal k is selected 

with different k values in the kNN algorithm. 

4.2  Experimental Evaluation on Prediction Accuracy 

The prediction accuracy is evaluated on the Iris dataset, 

which contains 150 instances (50 in each of the three 

classes), 4 numerical attributes and no missing values in 

the dataset in order to demonstrate the approach’s 

effectiveness. 

In the experiments, each instance was preprocessed to 

be normalized with variance 1.0 and each attribute took 

values between zero and one. Furthermore, we iteratively 

impute the missing values at different times with different 

algorithms in order to make sure that all algorithms can 

converge, and only the results of the optimal k are 

presented in Table 3 corresponding to the best 

performance due to space constraints. We inject missing 

values at random on different attributes and the missing 

rate is fixed to 1%, 5%, 10%, 20% and 30% respectively. 

10-fold cross-validation is adopted in each experiment, 

and the accuracy of prediction is measured using the Root 

Mean Square Error (RMSE), as follows: 

2

1

1
( )

m

i i

i

RMSE e e
m

=

= −� �     .              (3) 

where ei is the original attribute value;
i

e�  is the estimated 

attribute value, and m is the total number of predictions. 

The more RMSE is, the less the prediction accuracy is. 

Also, our proposed approach is evaluated on the Pima 

dataset, which contains 768 instances with 8 numerical 

attributes (500 instances for class ‘0’ and 268 for class ‘1’) 

and there are no missing values in the dataset. Each 

instance was preprocessed to be normalized with variance 

1.0 and each attribute takes a value between zero and one. 

Furthermore, we iteratively impute the missing values at 

different times with different algorithms in order to make 

sure that all algorithms can converge, and only the results 

of the optimal k are presented in Table 4 corresponding to 

the best performance due to space constraints. The 

missing values are injected at random on different 

attributes and the missing rate is fixed to 1%, 5%, 10%, 

20% and 30% respectively. 

    We can make the following observations based on 

Tables 3 and 4: 

1. The algorithms with imputation ordering can 

significantly outperform the algorithm without 

imputation ordering. The performance of all 

different α values is better than the lexicographic 

algorithm with regard to the prediction accuracy. 

2. Exhaustive search is the optimal algorithm and all 

the values are the best, but the time complexity is 

exponential. For example, there are 8 attributes in 

dataset Pima, and therefore there are 8!= 40320 

different orders for this algorithm. At the same time, 

the results of our algorithm are not the best, but we 

can get the imputation values which are not 

significantly different from the best values when we 

can select an optimal α value. For example, in 

Table 3, the imputation values of the exhaustive 

search algorithm are 0.000125, 0.00043, 0.000821, 

0.00152 and 0.01881 respectively in different 

missing rates, and the best values of our algorithm 

are 0.000128, 0.000523, 0.000891, 0.001709 and 

0.01879 respectively. 

3. The prediction accuracy is higher when the value of 

α is less than 1 in different missing rates in the Iris 

dataset. However, the situation is inversed in Table 

4. In our experiments, we have found that most of 

the mutual information between an attribute and the 

class label is less than 1 in the Iris dataset and most 

of the values are larger than 1 in dataset Pima. So 

perhaps the weight of the missing rate increases in 

Iris and decrease in Pima. 

Table 3: Experimental results on the Iris dataset for four 

algorithms (the missing rate is  5%, 10%, 20% and 30% 

respectively, and  the algorithms include our algorithm with 5 

different α values, lexicographic /alphabetic, and no ordering 

imputation) 

 
5% 10% 20% 30% 

Order(0.8)
0.0009 0.0010 0.0020 0.0256 

Order(1) 
0.0006 0.0011 0.0026 0.0325 

Order(1.5)
0.0005 0.0014 0.0031 0.0986 

Alphabetic
0.004 0.0082 0.0120 0.2015 

Un-order 
0.5424 0.7533 1.0254 1.9563 
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Fig.4: The average change in filled-in 

values for dataset Soybean 
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Table 4: Experimental resulst on the Iris dataset for four 

algorithms  

 5% 10% 20% 30% 

Order(0.8) 0.8581 1.3785 1.5795 1.85656

Order(1) 0.7666 1.2660 1.4182 1.44388

Order(1.5) 0.7125 1.2035 1.3268 1.35611

Alphabetic 3.6235 5.2351 9.2155 15.3707

Un-order 9.1046 11.017 26.672 39.1283

4.3  Evaluation on Classification Error Rate 

Six UCI datasets (i.e., Echocardiogram, Water-Treatment, 

the Hepatitis Diagnosis Problem, Soybean, House-Voting 

and  Bridge) are applied to compare the performances of 

five algorithms.  

Table 5 shows that the classification error rates of the 

three algorithms are similar to the results of convergence 

as shown before. Based on the results of Table 5 and the 

mutual information between each conditional attribute and 

the class label, we can make a conclusion that the best 

α value is less than 1 in the datasets of Bridge, 

Echocardiogram and Soybean, and the best α value in the 

datasets of Hepatitis, House and Water-Treatment is 

larger than 1. 

Table 5: The Classification Error Rates of three 

imputation methods in different six datasets 

(“ O_(0.8)”represents order(0.8), “Alph” is Alphabetic, 

and “Un_O”is unorder) 

 O_(0.8) O_(1) O_(1.5) Alph Un-O 

Bridge 0.1731 0.1703 0.1602 0.1806 0.2305

Hepatitis 0.1703 0.1852 0.2350 0.2517 0.2758

House 0.2015 0.2103 0.2196 0.2352 0.2864

Echocar 0.2127 0.2074 0.2145 0.2258 0.2985

Water 0.2197 0.2859 0.2946 0.2625 0.3033

Soybean 0.2869 0.2510 0.2567 0.2800 0.3050

 

5. Conclusions 

In supervised learning, missing attribute values can 

usually appear in the training set. These missing values 

may generate bias, affecting the quality of the supervised 

learning process or the performance of classification 

algorithms. Existing imputation algorithms are usually 

based on single imputation, which cannot provide valid 

standard errors and confidence intervals since they ignore 

the uncertainty implicit in the fact that the imputed values 

are not the actual values.  

This paper has proposed a strategy for imputation 

ordering with iterative imputation for multiple missing 

values. At first, we advocated that it is reasonable to 

impute missing values with all observed values in a 

dataset in practice, and it is it is essential for the user to 

iteratively impute multiple missing values in order to 

make the best use of all the observed values including that 

observed ones whose instances contain missing values. 

Then the paper presented a strategy of imputation 

ordering which combines and trades-off the impact of the 

missing rate and the impact of mutual information 

between the conditional attributes and class label. At last, 

our empirical results demonstrated that the proposed 

method is better than the lexicographic ordering 

imputation method and no ordering imputation order, in 

terms of the number of iterations for convergence, 

prediction accuracy and classification error rate. The 

paper also showed experimentally that different α values 

have an impact on the performance of the algorithm. Our 

future work will include an analytical study on the impacts 

of different α values. 
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