
Dynamic Methods for Missing Value Estimation for
DNA Sequences

Fen Qin
Shippensburg University

1871 Old Main Drive
Shippensburg, PA 17257
Email: fq0205@ship.edu

Jeonghwa Lee
Shippensburg University

1871 Old Main Drive
Shippensburg, PA 17257

Email: jlee@ship.edu

Abstract—Many gene expressions in the DNA microarray and
gene sequences have missing values in the datasets. It is critical
to estimate these missing values accurately, because most of
the existing algorithms for gene expression analysis require the
complete DNA dataset as an input, which affects the performance
of gene classifications. This paper introduces dynamic local least
squares imputation (DLLSimpute), which selects local matrices
dynamically and consequently uses more gene information each
time to recover the missing values. Numerical results show
that the DLLSimpute recovers missing values more accurately
than the k-nearest neighboring imputation (KNNimpute) and
the local least squares imputation (LLSimpute) regardless of the
completeness of the datasets.

I. INTRODUCTION

DNA data analysis algorithms have been developed to deal
with missing values. These algorithms include the singular
value decomposition imputation (SVDimpute) [1], weighted
K-nearest neighbors imputation (KNNimpute) [2], least square
imputation (LSimpute) [3] and local least squares imputation
(LLSimpute) [4]. Microarray data were used for testing these
methods.

These existing methods work well for datasets that include
at least one complete gene in them, but they suffer from two
main drawbacks. The first drawback is that they cannot use
the information from genes which contain missing values,
because the existence of these missing values impedes the
usage of other observed values in said gene. In other words, if
the datasets have a missing value at each row, these methods
will fail to recover. This is a limitation of the performance of
imputation. The other drawback is that these methods must use
a fixed number of neighboring genes. Recently, the sequential
local least squares imputation (SLLSimpute) [5] has been pre-
sented; it solved the previous two problems, estimated missing
values sequentially and partially utilized these estimated values
compared with other imputation methods. In the SLLSimpute,
once the local matrix is selected, it is used to recover all
the missing values. An improved KNNimpute method was
discussed in [8].

This paper introduces dynamic local least squares imputa-
tion (DLLSimpute). Instead of using a fixed local matrix, the
DLLSimpute uses the largest available local matrix, which
solves the aforementioned issues. The DLLSimpute method
was tested with the H1N1 Segment 4 Hemagglutinin (HA)

gene sequences from the National Institutes of Health (NIH)
pubMed [6]. Numerical results are compared with those of the
KNNimpute and the LLSimpute.

The DLLSimpute method works by selecting the gene with
the largest missing values in it as the target gene. Then one of
the missing values in this gene sequence is recovered. After
recovering a missing value, all the genes are sorted to select
the next target gene. Note that the DLLSimpute dynamically
selects the target gene and the size of the local matrices. This
procedure is repeated until there are no missing values left
in the DNA dataset. In the following section, the imputation
process is described in detail.

II. DYNAMIC LOCAL LEAST SQUARES IMPUTES

A. Dynamic search for the largest local matrix

G ∈ Rm×n denotes a gene expression data matrix with m
genes and n experiments. Assume m >> n. In the matrix G,
a row gTi ∈ Rl×n represents expressions of the i-th gene in n
experiments:

gT1 = (gi0,1, · · · , gi0,,j , · · · , gi0,n) i0 ∈ {1, 2, · · · ,m} (1)

Next, the gene expression matrix is sorted with respect to
the number of missing values in each gene. The gene in the
first row of the expression matrix is then selected as the target
gene, and the first missing value of this gene is chosen to
determine the largest local matrix.

The details are in the following algorithm.

B. Algorithm of the DLLSimpute

Input: A matrix which contains the DNA sequence.
Output: A matrix which contains the DNA sequence

without any missing values.
Step 1: Sort each row by the number of missing values.
Step 2: Find the first missing position in the first row.
Step 3: Starting from the missing value position (i,j), the

column j is scanned. Increasing i, if the position
(i,j) is a missing value, remove the whole row.

Step 4: Separate the rest of the matrix into left and right
matrices, selecting the largest matrix between these
two.

Step 5: Repeat Step 1 to Step 4 until there are no missing
values in the matrix.

2010 International Conference on Computational and Information Sciences

978-0-7695-4270-6/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCIS.2010.327

1322

2010 International Conference on Computational and Information Sciences

978-0-7695-4270-6/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCIS.2010.327

1322

2010 International Conference on Computational and Information Sciences

978-0-7695-4270-6/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCIS.2010.115

442

2010 International Conference on Computational and Information Sciences

978-0-7695-4270-6/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCIS.2010.115

442

2010 International Conference on Computational and Information Sciences

978-0-7695-4270-6/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCIS.2010.115

442

C. Recover the first missing value by using the singular value
decomposition (SVD)

Local least squares methods solve the following equation

min
x

∥∥ATx− w∥∥
2
. (2)

Solving Eq. (2) is equivalent to solving the following
equation

min
x

∥∥ATx− w∥∥2
2
. (3)

By the definition of the inner product, we have

min
x

∥∥ATx− w∥∥2
2

= min
x

(ATx− w)T (ATx− w). (4)

The Eq. (4) is the same as

∂

∂xj

n−1∑
i=1

(ATx− w)2i = 2
n−1∑
j=1

(ATx− w)Tj A
T
j = 0,

j = 1, 2, · · · , k, (5)

where (ATx− w)i is the i-th component of the column vector.
The Eq. (5) comes down to the critical point of

∥∥ATx− w∥∥2
2
,

where
n−1∑
j=1

Aj(A
Tx− w)j = 0, j = 1, 2, · · · , k (6)

and a vector form
A1(ATx− w)1
A2(ATx− w)2

· · ·
An(ATx− w)n

 = A(ATx− w) = 0. (7)

The above are as follows
gT1
gTs1

...
gTsk




α w1 w2 · · · wn−1
b1 A1,1 A1,2 · · · A1,n−1
...

...
... · · ·

...
bk Ak,1 Ak,2 · · · Ak,n−1


, gTsi =

(
bi Ai,1 Ai,2 · · · Ai,n−1

)
,

where
gT1 =

(
α w1 w2 · · · wn−1

)
, b1

...
bk

 =

 gs1(1)
...

gsk(1)

 ,

A =

 A1,1 A1,2 · · · A1,n−1
...

... · · ·
...

Ak,1 Ak,2 · · · Ak,n−1

 ,

where gT1 is a gene with a missing value (depicted as α in the
first location of gT1) and gTsi , i = 1, 2, · · · , k are the k-nearest
neighbor gene vectors for gT1 . Solutions of Eq. (7) involve the

generalized inverse. Specifically, if the matrix A is reversible,
we have

AATx = Aw (8)

and the solution

x = (AAT)
−1
Aw = (AT)

†
w, (9)

where (AT)
†

= (AAT)
−1
A, (AT)† is the pseudoinverse of

AT . Then, the missing value α can be solved as follows,

α =

n−1∑
i=1

xibi = bT (AT)
†
w. (10)

D. Improvement of the SVD methods

The result obtained by the previous methods to calculate
the pseudoinverse of the matrix A ∈ Rm×n,

A† = V

[
Σ−1rA 0

0 0

]
UT = VrAΣ−1rAU

T
rA (11)

does not satisfy the 4 Moore Penrose equations [7] :

AA†A = A,
A†AA† = A†,

(AA†)
T

= (AA†),

(A†A)
T

= (A†A).

As a result, if the size of the local matrix is increased, the
number of computational errors is also increased−that is, the
SVD results become less accurate. There are five different
ways to test the accuracy of the pseudoinverse:

||AA†A−A||∞, ||A†AA† −A†||∞,
||(AA†)T −AA†||∞, ||(A†A)

T −A†A||∞,
||Ax− b||∞.

In this paper, the Hilbert matrix

A = H200∗200 = (
1

i+ j + 1
)
200∗200

is used to do the experiments. Table 1 shows the errors of five
different test cases.

MATLAB TEST

Test cases pinv(A) inv(A) V inv(D)UT

||AA†A−A||∞ 0.7171e-5 5.8272 0.7171e-5
||A†AA† −A†||∞ 0.7594e9 4.1592e20 0.7594e9
||(AA†)T −AA†||∞ 0.4702e-3 122.75 0.4702e-3
||(A†A)

T −A†A||∞ 0.9385e-3 3.1764e13 0.9385e-3
||Ax− b||∞ 0.1675e-3 59128 0.1675e-3

Table 1

As shown in Table 1, the pinv(A) does not satisfy
A†AA† = A† and inv(A) does not satisfy the 4 Moore
Penrose equations. Algorithms from articles [9], [10] are
used to reduce computational errors. Since U and V are
orthogonal matrices, they do not lead to an error, which means
that the computational errors are coming from Σ−1rA . Usually,
the matrix ΣrA is dependent on the accuracy of the system

13231323443443443

executing its implementation. If the singular values σi < eps
(eps is the error bound), the system will set it to zero, then
Eq. (11) will contain computation errors.

Suppose the singular values of the matrix A are σ1 ≥ σ2 ≥
· · · ≥ σrA , then

Σ−1rA = dial(
1

σ1
,

1

σ2
, · · · , 1

σrA
, 0, · · · , 0). (13)

Since the cumulative error is εi, i = 1, 2, · · · , rA, the singular
values of the matrix A will become to σi+εi, i = 1, 2, · · · , rA,
then

Σ−1rA = dial(
1

σ1 + ε1
,

1

σ2 + ε2
, · · · , 1

σrA + εrA
, 0, · · · , 0),

(14)
where the maximum computing error is

ε
(
Σ−1rA

)
= dial

(|ε1|
σ1|σ1+ε1| ,

|ε1|
σ2|σ2+ε2| ,

· · · , |ε1|
σrA
|σrA

+εrA |
, 0, · · · , 0

)
. (15)

If σi + εi is close to zero, the error is significantly magnified,
and, therefore, it should be set to zero.. The Eq. (15) becomes
as follows,

Σ−1rA (α) = dial(
1

σ1 + ε1
,

1

σ2 + ε2
, · · · , 1

σk + εk
, 0, · · · , 0),

σi + εi ≤ epsα, i = k + 1, · · · , rA. (16)

Experiment results using Eq. (16) are shown in Table 2.
When α=0.70, the errors of the new algorithm are much
smaller than those presented in Table 1. In particular, the
error of ||A†AA† − A†||∞ is nearly one million times
smaller. When α=0.60, the pseudoinverse of Hilbert matrix
A = H200∗200 does satisfy the 4 Moore Penrose equations,
yet the solution of linear equations of α=0.60 is worse than
α=0.70. This is due to the removal of more singular values
which are close to zero. Therefore, α cannot be too small.
thus α=0.70 is used in this research.

Test cases α = 0.60 α = 0.65 α = 0.70

||AA†A−A||∞ 0.1373e-8 0.9632e-8 0.2709e-7
||A†AA† −A†||∞ 0.3996 16.243 693.64
||(AA†)T −AA†||∞ 0.4908e-8 0.2071e-6 0.1047e-5
||(A†A)

T −A†A||∞ 0.3974e-7 0.6524e-7 0.1032e-5
||Ax− b||∞ 0.4041e-4 0.1477e-4 0.5965e-5

Table 2

III. NUMERICAL RESULTS

The normalized root mean squared error (NRMSE) is used
to measure accuracy.

NRMSE =

√
mean[(γestimated − γknown)]

2

std[γknown]
,

where γestimated are the estimated vectors for missing
values, and γknown are the known values. The mean and the
standard deviation are calculated over missing values in the
whole dataset. If [γestimated − γknown]

2 is not equal to zero,

it is set to one. This technique makes the NRMSE a little small,
but it does not affect the result. We present the test results of
the DLLSimpute, KNNimpute and LLSimpute in Table 3 and
Figure 1.

% KNNimpute LLSimpute DLLSimpute
1 0.1721 0.0820 0.1058
2 0.1346 0.0750 0.1019

NRSME 5 0.0942 0.0509 0.0758
10 0.0841 0.0413 0.0773
20 0.0756 0.0393 0.0674

Table 3

Figure 1

Table 3 and Figure 1 show the results for various per-
centages (1%, 2%, 5%, 10% and 20%) of missing entries.
Although the LLSimpute shows better performance, the KN-
Nimpute and LLSimpute methods failed to recover the miss-
ing values when at least one missing value was present in
each gene. That is, at least one row should be complete.
The DLLSimpute recovers the missing values regardless of
completeness. Experiment results are shown in Table 4 and
Figure 2.

1% 2% 5% 10% 20%
DLLSimpute 0.1124 0.1020 0.0719 0.0768 0.0686

Table 4

Figure 2

13241324444444444

Table 4 and Figure 2 show that the DLLSimpute is not re-
stricted by the position of the missing values. The DLLsimpute
recovers all the missing values for the DNA sequences, which
have a missing value in each row.

IV. CONCLUSION

Based on the experimental results, the DLLSimpute is a
robust and accurate algorithm for recovering missing values.
It is also a valuable imputation method when DNA gene se-
quences possess high missing rates. Although the LLSimpute
grants better performance than the DLLSimpute when DNA
sequences have complete rows, the DLLSimpute outperforms
the LLSimpute approach when all the genes contain missing
values. Depending on the structure of the incomplete datasets,
the analysis presented here strongly suggests that the DLL-
Simpute is the ideal solution for data recovery.

ACKNOWLEDGMENT

This research is supported in part by the Miklausen-Likar
grant from the Shippensburg University Foundation. We ap-
preciate Dr. Dohoon Kim at Harvard Medical School for
providing the insight of the dataset.

REFERENCES

[1] T. Hastie, R. Tibshirani, G. Sherlock, M. Eisen, P. Brown and D. Botstein,
Imputing missing data for gene expression arrays, Technical Report,
Division of Biostatistics, Stanford University, 1999.

[2] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshi-
rani, D. Botstein and R.B. Altman, Missing value estimation methods for
DNA microarrays, Bioinformatics 17 (6) (2001) 520–525.

[3] T. H. BZ, B. Dysvik and I. Jonassen, LSimpute: accurate estimation of
missing values in microarray data with least squares methods, Nucleic
Acids Res. 32 (3) (2004) e34.

[4] H. Kim, G. H. Golub and H. Park, Missing value estimation for DNA
microarray gene expression data: local least squares imputation, Bioin-
formatics 21 (2) (2005) 187–198.

[5] X. Zhang, X. Song, H. Wang and H. Zhang, Sequential local least squares
imputation estimating missing value of microarray data, Computers in
Biology and Medicine 38 (2008) 1112–1120.

[6] PubMed, U.S. National Library of Medicine, National Institutes of Health,
http://www.ncbi.nlm.nih.gov/pubmed

[7] A. Albert, Regression and the Moore-Penrose pseudoinverse, Acdemic
Press, INC, New York, 1972.

[8] Q. Cai, Q. Wu, H. Dong and H. Liu, The research of missing value
estimation of gene sequence based on improved KNN, Computer Science
& Education, ICCSE ’09, 4th International Conference, 2009.

[9] Z. Drma and K. Veseli, New Fast and Accurate Jacobi SVD Algorithm
I, SIAM Journal on Matrix Analysis and Applications, 29 (4) (2008)
1322-1342.

[10] Z. Drma and K. Veseli, New Fast and Accurate Jacobi SVD Algorithm
II, SIAM Journal on Matrix Analysis and Applications, 29 (4) (2008)
1343-1362.

[11] William H. Press , Saul A. Teukolsky, William T. Vetterling and
Brian P. Flannery, Numerical Recipes: The Art of Scientific Computing,
Cambirdge University Press, 2007.

13251325445445445

