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One of the important questions the researcher must answer assessing data quality while preparing information for a 
data mining procedure is whether missing observations in the dataset are missing at random, and whether some form 

of imputation is needed. If all (or almost all) observations of a variable are missing, they cannot be classified as miss-

ing at random. Therefore, most known methods of imputation of missing values cannot be applied to this variable. 
This paper studies a particular way for creating imputations in datasets containing completely (or almost completely) 

missing variables. As it is shown in the paper, if no external data are available, the maximum entropy distribution is 

the only reasonable probability distribution for producing proper imputation in case of such variables. Two examples 

of real-life epidemiological studies demonstrate this approach. 
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1. INTRODUCTION 
 

Before any data mining algorithm can be applied, 

a target set must be first cleaned from the observa-

tions with missing data. However, such cleaning 

may threaten the very goal of extracting patterns 

from data if the missing values create a biased 

sample. Improper handling of missing values will 

distort the patterns uncovering because, until 

proven otherwise, the researcher must assume that 

data with missing values differ in analytically im-

portant ways from data where values are present. 

That is, removing missing values is not so much 

the problem of reduced sample size as it is the 

possibility that the remaining dataset is biased. 

In order to choose a proper strategy of dealing 

with missing values, it is important to understand 

why the data are missing. 

 

Missing completely at random (MCAR) exists 

when missing values are randomly distributed 

across all observation 𝑖        𝑁 in the dataset 

(here, the terminology is after [17] [22]). In the 

case of MCAR, probability of not observing a 

value 𝑥𝑖 of variable 𝑋 is unrelated to the value 𝑥𝑖 or 

to the value of any other variables in the dataset 

(i.e. the probability is random). 

 

Missing at random (MAR) is a condition, which 

exists when missing values are not randomly dis-

tributed across all observations but are randomly 

distributed within one or more subsamples. In the 

case of MAR, missingness of 𝑥𝑖 does not depend 

on the value 𝑥𝑖 after controlling for another vari-

able (i.e. within subsamples, missingness is ran-

dom). 

 

Missing not at random (MNAR) (or not missing 

at random (NMAR)) is a situation when missing 

values 𝑥𝑖 are distributed randomly neither across 

all observations in the dataset, nor within one or 

more subsamples. In the case of MNAR, missing-

ness of 𝑥𝑖 is not random but has an order in it (it is 

so-called non-ignorable missingness [10]). 

 

Among different types of missingness encounter-

ing in data, MNAR is not unusual especially in 

the form of completely or almost completely 

missing variables. 

 

A variable 𝑋 is completely missing if values 𝑥𝑖 of 

𝑋 are missing for all observations  𝑖        𝑁 in 
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the dataset. Since all values 𝑥𝑖 are missing, they 

obviously cannot be classed as missing at random 

(that is why this is the case of MNAR – missing-

ness of 𝑥𝑖 has the order). If, for example, the da-

taset contains an additive variable 𝐴  𝑋  𝑊 

combining values 𝑥𝑖 and 𝑤𝑖, then completely miss-

ing values 𝑥𝑖 will cause the biased mean for 𝐴. 

 

Let values 𝑥𝑖 of a variable 𝑋 be observed for O 

observations and missing for the rest 𝑁  𝑂 obser-

vations in the dataset. We will call the variable 𝑋 

as almost completely missing if 𝑂  𝑁 and miss-

ing values 𝑥𝑖 happen in one or more continuous 

sequences of observations 𝑖, that is, if values 𝑥𝑖 are 

completely missing within one or more subsam-

ples. Again, here the missing values 𝑥𝑖 cannot be 

classified as missing at random, and therefore this 

is the case of MNAR too. Clearly, in this case, the 

mean for the non-missing values 𝑥𝑖 will not be an 

unbiased estimate of the mean 𝑋 that we would 

have obtained with complete data. 

 

So, when we have a completely missing or almost 

completely missing variable, we have a problem. 

In this case, the only way to obtain an unbiased 

estimate of parameters is to model missingness. In 

other words, we would need to write a model that 

imputes missing values, that is, fills in missing 

observations with plausible values. That model 

could then be incorporated into a more complex 

model for estimating missing values. However, to 

write such model is not a trivial task to do. That is 

because the common methods of imputations of 

missing values such as regression substitution 

[15] or maximum likelihood estimation (MLE) 

[18] [26] will not work in the case of completely 

(or almost completely) missing variables. 

 

For instance, regression substitution predicts what 

missing values 𝑥𝑖 of a variable 𝑋 should be based 

on values 𝑧𝑖, 𝑤𝑖, …, 𝑣𝑖 of other variables 𝑍 𝑊   𝑉 

in the dataset that are not missing 𝑥    𝑧  
  𝑤     𝑣    . But if the variable 𝑋 is com-

pletely missing, then such analysis cannot be per-

formed since the regression equation will be unde-

termined, and there will be no data to recover co-

efficients  
𝑧
  

𝑤
    

𝑣
. If the variable 𝑋 is almost 

completely missing, then in general we cannot 

exclude the possibility that either there will be not 

enough data to estimate unique values for coeffi-

cients  
𝑧
  

𝑤
    

𝑣
, or the regression equation 

will have no solution or many solutions. 

 

As to the MLE method, it assumes missing values 

𝑥𝑖 are MAR, which does not hold true when the 

variable 𝑋 is completely missing or almost com-

pletely missing [18]. 

 

Given that the common methods of filling in 

missing observations will not work, we may try to 

simulate missing values. That is to say, we would 

try to replace every missing value 𝑥𝑖 by one or 

more simulated versions of it. Then we would an-

alyze the simulated complete dataset (or datasets) 

by standards methods, and if we have more than 

one imputation we would combine the results to 

produce estimates and confidence intervals that 

would incorporate missing data uncertainty. The 

main problem here is how to simulate missing 

values, to be exact, how to draw from the proba-

bility distribution in order to produce proper im-

putation. 

 

As a matter of fact, most existing commercially 

available software procedures that can run simu-

lated imputation (PROC MI and PROC MIANALYZE 

in SAS [14], mi impute and mi estimate in Stata [4] 

[5], or NORM and PAN in S-PLUS [23] [24] – just 

to mention a few) assume that the missing data are 

MAR. But what is more important, they all gener-

ate imputed values on the basis of existing data – 

just as regression substitution or MLE algorithm 

does – and then add an error component drawn 

randomly (to introduce the necessary level of un-

certainty into the imputed value: this is known as 

“random imputation”) (see, for example, [13] [16] 

[25]). However, as we said before, this will not 

work in the case of completely or almost com-

pletely missing variables, for there will be no data 

or not enough data to impute values. 

 

This paper studies a particular way for creating 

imputations in datasets with completely or almost 

completely missing variables.  
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2. ENTROPY OF THE OBSERVATION 

 

Assume that 𝑥   is the arbitrary value imputed for 

the missing observation 𝑥  of the variable 𝑋, and 

  (𝑥𝑖  𝑥𝑖 ) is the probability that 𝑥  would be 

equal to 𝑥   if 𝑥  was not missing. Similarly, 

  (𝑥𝑖  𝑥𝑖 ) is the probability that 𝑥  would be 

equal to 𝑥𝑖  if 𝑥𝑖 was not missing, and so on, thus 

∑   (𝑥  𝑥  )
  
      . If the variable 𝑋 is con-

tinuous, than the last constraint should be 

∫  (𝑥 ) 𝑥   . Of course, proceeding from our 

background knowledge about the variable 𝑋 and 

its plausible relationship with other variables in 

the dataset, we can also put some additional con-

straints on the probabilities   (𝑥𝑖𝑘) or on the prob-

ability density function  (𝑥 ). 

 

Let us define the entropy of the observation 𝑥𝑖 as 

 (𝑥 )   ∑   (𝑥  )       (𝑥  )

 

   

     (1) 

(here   (𝑥𝑖𝑘)      (𝑥𝑖𝑘)    whenever   (𝑥𝑖𝑘)  

 ), or as 

 (𝑥 )   ∫  (𝑥 )      (𝑥 )  𝑥     (2) 

when 𝑋 is continuous (again, here 

 (𝑥 )     (𝑥 )    whenever  (𝑥 )   ). 

If the variable 𝑋 had no missing values at all, the 

observation 𝑥𝑖 would be known to be equal to its 

only possible value, say, 𝑥 𝑚. In that case, the en-

tropy of the observation 𝑥𝑖 would be equal to zero: 

 (𝑥 )     (𝑥 𝑚)⏟    
   

     (𝑥 𝑚)

 ∑   (𝑥  )⏟    
   

     (𝑥  )

 

  𝑚

      

(3) 

If the variable 𝑋 had missing at random values, 

the observation 𝑥  – if missing – would be known 

(from regression substitution, for example) to be 

situated within the confidence interval, say, from 

𝑥 𝑙 to 𝑥 𝑢. For the sake of simplicity, let us assume 

that the probabilities   (𝑥𝑖𝑘) are zero outside the 

interval ,𝑥 𝑙 𝑥 𝑢- in which they are equal to each 

other and to   (𝑥  )  ,  (𝑢  𝑙)-  . Then, the 

entropy of the observation 𝑥𝑖 would be: 

 (𝑥 )   ∑  (𝑥  )

𝑢

  𝑙

     (𝑥  )

    ,  (𝑢  𝑙)-      

(4) 

As it can be readily seen, the less is the difference 

(𝑢  𝑙) (which determines the interval ,𝑥𝑖𝑙 𝑥𝑖𝑢- 

containing all plausible values for 𝑥𝑖), the nearer 

to zero is the entropy of the observation 𝑥𝑖. 

 

In contrast, if the variable 𝑋 is completely (almost 

completely) missing, then the observation 𝑥𝑖 is 

totally unknown. Suppose we have no background 

knowledge about the variable 𝑋, so that the only 

limitation on the probabilities   (𝑥𝑖𝑘) is the con-

straint ∑   (𝑥  )
  
      . Then, all values 𝑥𝑖𝑘 we 

might impute instead of missing 𝑥𝑖 would be 

equally plausible, which means that all the proba-

bilities   (𝑥𝑖𝑘) would be the same   (𝑥𝑖𝑘)  𝑀  . 

In that case, the entropy of the observation 𝑥𝑖 

would be equal to its maximum value: 

 (𝑥 )   ∑   (𝑥  )      (𝑥  )

 

   

    𝑀      

(5) 

Hence, if we merely added additional limitations 

on the probabilities   (𝑥𝑖𝑘), we would find the 

entropy  (𝑥 ) equal to its maximum value allowed 

by those limitations, i.e. by our background 

knowledge about the variable 𝑋: 

   ,  (𝑢  𝑙)-   (𝑥 )     𝑀      (6) 

Now, imagine for a moment that in order to pro-

duce imputations, we choose a probability distri-

bution    (𝑥𝑖𝑘) whose entropy   (𝑥 ) is lower than 

the entropy  (𝑥 ) allowed by all the constraints we 

could derive from the background knowledge 
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about the variable 𝑋. Evidently, this would mean 

either making up values of the variable 𝑋, or fill-

ing in them by using data otherwise external to 

the analyzed dataset (as, for example, guessing 

ethnicity completely missing in the study dataset 

based on the population census data associated 

with the patient’s address). Then again, to choose 

a probability distribution     (𝑥𝑖𝑘) with the entro-

py    (𝑥 ) higher than the entropy  (𝑥 ) allowed by 

the constraints would mean to ignore those con-

straints. 

 

Thus, if no external data are available, the maxi-

mum entropy distribution is the only reasonable 

probability distribution for producing proper im-

putation in case of completely or almost com-

pletely missing variables. 

 

3. VARIANCE ESTIMATE 

 

Assume that in the study dataset the dependent 

(analyzed) variable 𝑌 is completely observed 

whereas the independent (analyzing) variable 𝑋 

might be affected by missing at random values. 

Given the event 𝑋  𝑥 , the mean 𝑌 takes the fol-

lowing form (in matrix notation) 𝐸(𝐘|𝐗)  𝑓(𝐗), 

where 𝐘  *𝑦 +   
  and 𝐗  *𝑥 +   

  are vectors of 

observations of the variables 𝑌 and 𝑋, respectively 

(in both vectors the subscript i indexes a particular 

observation). 

 

If the variable 𝑋 is completely missing, the ex-

pression 𝐸(𝐘|𝐗)  𝑓(𝐗) has no sense since the 

components 𝑥  of the covariate vector 𝐗 do not 

exist. Therefore, in that case, instead of each ob-

servation 𝑥  we may try to use its plausible ex-

pected value 𝐸(𝑥 ): 

𝑥    𝐸(𝑥 )  ∑ 𝑥    (𝑥  )

 

   

     (7) 

or – if 𝑋 is a continuous variable – 

𝑥    𝐸(𝑥 )  ∫ 𝑥  (𝑥 ) 𝑥 

 

  

     (8) 

where   (𝑥𝑖𝑘) (or  (𝑥 )) is the probability distribu-

tion (density function) with maximum entropy 

defining all plausible values for the observation 𝑥𝑖. 

The problem is, however, that due to the lack of 

relevant background knowledge about the variable 

𝑋, the constraints we may derive from that 

knowledge would be only approximate, i.e. falling 

within some non-zero intervals. Therefore, to ac-

count for this uncertainty in the constraints, it 

might be better to use the imputed sample means 

⌌𝑥 ⌍(𝑚) for the observations 𝑥  

𝑥   ⌌𝑥 ⌍(𝑚)  
 

𝑚
∑ 𝑥  

𝑚

   

      (9) 

where each ⌌𝑥 ⌍(𝑚) is calculated on the set of 𝑚 

imputed values 𝑥𝑖𝑘 identically distributed with dis-

tribution function  (𝑥𝑖) 

 (𝑥 )  ∑   (𝑥  𝑥  )

        

 ∑ p(𝑥  )

        

      

(10) 

or – if 𝑋 is a continuous variable – 

 (𝑥 )  ∫  (𝑥) 𝑥

  

  

      (11) 

where p(𝑥𝑖𝑘) (or  (𝑥)) is the probability distribu-

tion (density function) that maximizes the entropy 

of the observation 𝑥𝑖 with respect to the approxi-

mate constraints prescribed.  

 

In general, the replacement for an arbitrary func-

tion of the observation 𝑥𝑖, 𝑓(𝑥 ), would be the fol-

lowing imputed point estimator ⌌𝑓(𝑥 )⌍(𝑚): 

𝑓(𝑥 )    ⌌𝑓(𝑥 )⌍(𝑚)  
 

𝑚
∑ 𝑓(𝑥  )

𝑚

   

      (12) 
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The uncertainty in 𝑓(𝑥 ) can be then calculated 

using the formula for the variance of 𝑓(𝑥 ) over 

the set of the 𝑚 imputed values 𝑥𝑖𝑘: 

 a ,𝑓(𝑥 )-(𝑚)  
 

𝑚   
∑[𝑓(𝑥  )

𝑚

   

 ⌌𝑓(𝑥 )⌍(𝑚)]
 
      

(13) 

Consequently, the average of the uncertainty 

 a ,𝑓(𝑥 )-(𝑚) over the distribution of the  𝑁 ob-

servations 𝑥𝑖 would be 

⌌ a ,𝑓(𝑥)-(𝑚)⌍( )

 
 

𝑁
∑  a ,𝑓(𝑥 )-(𝑚)

 

   

      (14) 

On the other hand, the average of the estimator 

⌌𝑓(𝑥 )⌍(𝑚) along with its variance over the obser-

vations 𝑥𝑖 would be  

⌌⌌𝑓(𝑥)⌍(𝑚)⌍( )  
 

𝑁
∑⌌𝑓(𝑥 )⌍(𝑚)

 

   

      (15) 

and 

 a [𝑓(𝑥)(𝑚)]( )

 
 

𝑁   
∑{⌌𝑓(𝑥 )⌍(𝑚)

 

   

 ⌌⌌𝑓(𝑥)⌍(𝑚)⌍( )}
 
      

(16) 

respectively. Therefore, the combined variance 

estimate  a ,𝑓(𝑥)- for the arbitrary function 𝑓(𝑥) 

would be 

 a ,𝑓(𝑥)-   a [𝑓(𝑥)(𝑚)]( )

  ⌌ a ,𝑓(𝑥)-(𝑚)⌍( )     
(17) 

 

Theoretical example #1. 

 

Consider, for example, the simplest case of the 

function 𝑓(𝑥)  𝑥. Assume that the imputed val-

ues 𝑥𝑖𝑘, replacing values 𝑥𝑖 of the completely miss-

ing variable 𝑋, are obtained from the continuous 

uniform distribution (maximum entropy distribu-

tion): 

 (𝑥  )  {
 (𝑎  𝑏   )

   𝑎  𝑥   𝑏 

  𝑥   𝑎   o   𝑥   𝑏 
 

   (𝑘      𝑚)      

(18) 

where the maximum boundary 𝑏  can be written 

down through the interval ,𝑎  𝑏 - length,  𝑏 : 

𝑏  𝑎   𝑏 . According to (12), (13) and (15), 

we have 

⌌𝑥 ⌍(𝑚)  
 

𝑚
∑ 𝑥  

𝑚

   

 𝑥 ̅  ⏟
𝑚  

𝑎  
 

 
 𝑏      

(19) 

   (𝑥 )(𝑚)  
 

𝑚   
∑(𝑥   𝑥 ̅)

 

𝑚

   

  ⏟
𝑚  

 

  
 𝑏 

      
(20) 

⌌   (𝑥)(𝑚)⌍( )  
 

𝑁
∑

 

  
 𝑏 

 

 

   

 
 

  
  𝑏 ̅̅ ̅̅ ̅      

(21) 

As 

⌌⌌𝑥⌍(𝑚)⌍( )  
 

𝑁
∑𝑥 ̅

 

   

 𝑎̅  
 

 
 𝑏̅̅̅̅      (22) 

and 

   [𝑥(𝑚)]( )
 

 

𝑁   
∑[(𝑎  

 

 
 𝑏 )

 

   

  (𝑎̅  
 

 
 𝑏̅̅̅̅ )]

 

   
  

 

 
   

      

(23) 

where  𝑎
  𝑎 ̅  𝑎̅

  and   𝑏
   𝑏

 ̅̅ ̅̅̅   𝑏̅̅ ̅ 
, we 

finally get 
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   (𝑥)    
  

 

 
   

   
 

  
  𝑏 ̅̅ ̅̅ ̅     (24) 

The last expression can be simplified if we as-

sume that all the intervals ,𝑎𝑖 𝑏𝑖- are of the same 

length  𝑏; in that case, we will have 

 a (𝑥)    
 (  

  𝑏 

     
 )     (25) 

 

Although the variance estimate (17) is logically 

straightforward, we can introduce another vari-

ance estimate – the symmetric inversion of (17) 

with respect to the 𝑚 and 𝑁 sets: 

 a ,𝑓(𝑥)-   a [𝑓(𝑥)( )](𝑚)

  ⌌ a ,𝑓(𝑥)-( )⌍(𝑚)     
(26) 

where  a [𝑓(𝑥)( )](𝑚)
 represents so-called the 

between-imputation variability   (he e the te ms’ 

names follow [1] [9]) 

  
 

𝑚   
∑{⌌𝑓(𝑥 )⌍( )

𝑚

   

 ⌌⌌𝑓(𝑥)⌍( )⌍(𝑚)}
 
     

(27) 

and ⌌ a ,𝑓(𝑥)-( )⌍(𝑚) represents the within-

imputation variability   

  
 

𝑚
∑  a ,𝑓(𝑥𝑘)-(𝑁)

𝑚

𝑘  

     (28) 

 

Let us observe how  a ,𝑓(𝑥)-  is related to 

 a ,𝑓(𝑥)-. 

 

Theoretical example #2. 

 

For that purpose, let us again consider the previ-

ous case of the simplest function, 𝑓(𝑥)  𝑥. As-

suming now that 

 (𝑥 ̅̅ ̅)  {
 (𝑎  𝑏)   𝑎  𝑥 ̅̅ ̅  𝑏

  𝑥 ̅̅ ̅  𝑎  o   𝑥 ̅̅ ̅  𝑏
   

 (𝑘      𝑚)      

(29) 

where 𝑥𝑘̅  
 

𝑁
∑ 𝑥𝑘𝑖

𝑁
𝑖   and 𝑏  𝑎   𝑏, we immedi-

ately obtain these results 

⌌⌌𝑥⌍(𝑁)⌍(𝑚)  
 

𝑚
∑ 𝑥𝑘̅

𝑚

𝑘  

 𝑥̅  ⏟
𝑚  

𝑎  
 

 
 𝑏     (30) 

  
 

𝑚   
∑(𝑥𝑘̅   𝑥̅) 

𝑚

𝑘  

 ⏟
𝑚  

 

  
  𝑏

      (31) 

On the other hand, comparing 𝑥𝑘̅ and (30), we in-

fer that if 𝑎  𝑚  ∑ 𝑎   and  𝑏  𝑚  ∑  𝑏𝑘𝑘 , 

then 
 

𝑁
∑ 𝑥𝑘𝑖

𝑁
𝑖   𝑎𝑘  

 

 
 𝑏𝑘, which gives us this 

 a (𝑥𝑘)(𝑁)  
 

𝑁   
∑[𝑥𝑘𝑖

𝑁

𝑖  

 (𝑎𝑘  
 

 
 𝑏𝑘)]

 

  𝑎𝑘

  
 

 
  𝑏𝑘

      

(32) 

and afterward, this 

  
 

𝑚
∑( 𝑎𝑘

  
 

 
  𝑏𝑘

 )

𝑚

𝑘  

  𝑎
 ̅̅ ̅̅  

 

 
  𝑏

 ̅̅ ̅̅ ̅      

(33) 

Finally we get the expression symmetrical to (24) 

 a (𝑥)   𝑎
 ̅̅ ̅̅  

 

 
  𝑏

 ̅̅ ̅̅ ̅   
 

  
  𝑏

       (34) 

 

As it can be seen from the last two examples, the 

variance estimate  a ,𝑓(𝑥)- posits that in a study 

dataset each observation of a completely (almost 

completely) missing variable contains not one but 

multiple imputed plausible versions of the missing 

value. In contrast, the variance estimate 

 a ,𝑓(𝑥)-  implies that every observation of the 

missing variable holds only one imputed value but 

the study dataset has not one but multiple versions 

so that each version of the dataset contains a dif-

ferent copy of the imputed value. Clearly, the var-

iance estimate  a ,𝑓(𝑥)-  is computationally 

more preferable because that estimation suggests 
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using full, complete data sets on which to perform 

analyses, and these analyses can be performed by 

nearly any method or software package available. 

 

4. MULTIPLE-IMPUTATION STATISTICS 

 

In our practical examples, we use the multiple-

imputation inference based on the variance esti-

mate  a ,𝑓(𝑥)- . Here is a brief account of the 

statistics we employ in those examples. 

 

The variance estimate  a ,𝑓(𝑥)-  in the form of 

(26) entails a big number of imputations 𝑚, 

which, of course, might be not practically achiev-

able. So, we use the adjusted formula of the esti-

mate  a ,𝑓(𝑥)-  allowing for a small 𝑚 [20] [21] 

 a ,𝑓(𝑥)- 
     (  

 

𝑚
)      (35) 

Suppose that the imputed point estimator 

⌌𝑓(𝑥𝑘)⌍(𝑁)  
 

𝑁
∑ 𝑓(𝑥𝑖𝑘)

𝑁

𝑖  

 𝑓(𝑥𝑘)    (𝑘      𝑚)      

(36) 

has the expected value 𝐸,𝑓(𝑥 )-  𝜖, and its aver-

age over the 𝑚 complete data sets is 

⌌𝑓(𝑥𝑘)⌍(𝑚)  
 

𝑚
∑ 𝑓(𝑥𝑘)

𝑚

𝑘  

 𝑓(𝑥)̅̅ ̅̅ ̅      (37 

Then the ratio 

𝑡  
𝜖  𝑓(𝑥)̅̅ ̅̅ ̅̅

√ a ,𝑓(𝑥)- 
 
      

(38) 

will be app oximately dist ibuted as a Student’s t-

distribution with 𝑣𝑚 degrees of freedom 

𝑣𝑚  (𝑚   ) (  
 

 
)

 

      (39) 

where   is so-called the relative increase in vari-

ance due to nonresponse [21] 

  
.  

 
𝑚
/ 

 
      (40) 

With a large value of 𝑚 or a small value of  , the 

degrees of freedom 𝑣𝑚 will be large. However, if 

𝑣𝑚 is much larger than the complete dataset de-

grees of freedom 𝑣𝑁, it is inappropriate. Therefore, 

instead of (39) we use the formula for adjusted 

degrees of freedom 𝑣𝑚
  [2] [3] [19] 

𝑣𝑚
  (

 

𝑣𝑚

 
 

𝑣𝑁̂

)      (41) 

where 

𝑣𝑁̂   
𝑣𝑁   

𝑣𝑁   
 𝑣𝑁 [  

.  
 
𝑚
/ 

 a ,𝑓(𝑥)- 
 ]      (42) 

As we said, due to uncertainty in the constraints, 

we replace the plausible expected value 𝐸,𝑓(𝑥 )- 

of the estimator 𝑓(𝑥 ) with its imputed sample 

mean 𝑓(𝑥)̅̅ ̅̅ ̅. To evaluate suitability of such re-

placement we use the ratio   

  
 

.  
 
𝑚
/
      

(43) 

which gives the relative efficiency of using the 

finite 𝑚 rather than an infinite number, in units of 

the variance estimate a ,𝑓(𝑥)- 
 , and where the 

statistic   is called the rate of missing information 

[2] [21] 

  
  

 
(𝑣𝑚   )

   
      

(44) 

In spite of being well-known in multiple imputa-

tion, the statistics   and   acquire a rather differ-

ent meaning when a variable is missing complete-

ly (almost completely). Take for instance the the-

oretical example #2 that we have just considered 

above. In that case, the statistics   and   take the 

forms (if  𝑏𝑘   𝑏 for all 𝑘) 

  ⏟
𝑚  

 

 
  

 𝑏
 

   𝑎
 ̅̅ ̅̅        (45) 
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And 

  ⏟
𝑚  

 
 𝑏

 

 𝑏
     𝑎

 ̅̅ ̅̅        (46) 

 

 Obviously, these expressions, (45) and (46), can-

not be categorized as the increase in variance due 

to nonresponse (missingness) or the rate of miss-

ing information because now both values  𝑏
 
 and 

 𝑎
 ̅̅ ̅̅  a e hypothetical outcomes of a “what-if” dis-

tribution of the completely missing variable 𝑥. In-

stead – if we take into consideration that 

the parameter 𝑎 may be obtained from 

some non-probabilistic (deterministic) 

model, and the length  𝑏 determines the 

entropy of 𝑥 distribution,  𝑏  𝑒𝐻( ), – 

the statistics   and   can be called as the 

increase in variance due to uncertainty 

and the rate of uncertainty, respectively. 

 

EXAMPLE 1. OBESITY IN YOUTH 

 

Consider a real epidemiological study whose ob-

jective was the extraction of information about the 

 elationship between subjects’ ages and thei  lev-

els of physiologically active bloodstream sub-

stances (such as triglyceride and hemoglobin) in 

overweight and obese young persons
1
. In the 

study dataset, which is a collection of records of 

91 teenagers – 60 girls and 31 boys, by some 

cause a pe son’s age has been  egiste ed in whole 

years without the fractional part (by the way, this 

is the practice adopted in many epidemiological 

studies). Let 𝑎    ep esent a pe son’s age value fo  

the 𝑖th
 observation: 𝑎  ⌊𝑎 ⌋  *𝑎 +, where ⌊𝑎 ⌋ is 

the floor function: ⌊𝑎 ⌋     *𝑛   |𝑛  𝑎 + (𝑛 

is the integer,   is the set of integers), and *𝑎 + is 

the fractional part of 𝑎 . It follows then that in fact 

the study dataset contains one more variable 

whose values are completely missing – the varia-

ble *𝑎+. As a result, the study dataset is biased: for 

                                                
1
 The data for the example are by courtesy of Ms. Anat Altschuler, who 

collected and used them in her undergraduate thesis. 

example, the mean age computed from the study 

dataset ⌊𝑎⌋̅̅ ̅̅  is not an unbiased estimate of the 

mean age ⌊𝑎⌋̅̅ ̅̅  *𝑎+̅̅ ̅̅  that we would compute if we 

got complete data with non-missing *𝑎+. 
 

We use Pearson’s p oduct-moment correlation 

coefficient and the Spea man’s  ank co  elation 

coefficient to study the relationship between sub-

jects’ ages and thei  levels of t iglyce ide and he-

moglobin. The Table 1 contains the observed cor-

relation coefficients: 

Table 1. Correlation between age and bloodstream substances 

Since the 95% confidence intervals include zero 

in both substances and both sexes, it is likely that 

the corresponding population correlations 𝜌 are 

not significantly different from zero, at the 95% 

level of confidence. However, it is also likely that 

that those results are biased because of the com-

pletely missing fractional pa t of the subject’s age, 

the variable*𝑎 +. The only way to sort out this 

doubt is to impute *𝑎 +. 

 

The sole constraint, which we can put on the 

probability density function  (*𝑎 +) determining 

the distribution of plausible values for *𝑎𝑖+, stems 

directly from the nature of this variable: 

 (*𝑎 +)       if *𝑎 +  ,   )      (47) 

and this is all we can possibly know about the 

missing variable *𝑎 +. Among all continuous dis-

tributions, subject to the constraint (47), only one 

– the uniform distribution 𝑈(     )  

Sex Substance 
Correla-

tion 
r 

Sample 

size 
p-value 

95% confidence 

interval 

G
ir

ls
 

Triglyceride 
Pearson 0.27 

30 
0.145 -0.10 0.58 

Spearman 0.31 0.098 -0.06 0.60 

Hemoglobin 
Pearson 0.06 

31 
0.769 -0.31 0.40 

Spearman 0.03 0.856 -0.32 0.38 

B
o

y
s 

Triglyceride 
Pearson -0.06 

18 
0.828 -0.51 0.42 

Spearman -0.10 0.707 -0.54 0.39 

Hemoglobin 
Pearson 0.39 

17 
0.127 -0.12 0.73 

Spearman 0.28 0.273 -0.23 0.67 
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𝑈(     )  {
  fo  𝑥  ,      -

  othe wise
       (48) 

 (where   is an infinitesimal) – has the maximum 

entropy [11] [12]. For that reason, we use this dis-

tribution (choosing for   the value     ) to fill in 

the variable *𝑎 + with plausible val-

ues. Generating 𝑚      values for 

each observation 𝑖 of *𝑎 + and calcu-

lating correlation coefficients 𝑟 on 

each of the 100 imputed complete 

datasets and then combining the re-

sults, we get the following table: 

Table 2. Correlation between imputed age and bloodstream sub-
stances (* - Efficiency of the correlation estimate based on 100 

imputations is not less than 0.99) 

The results presented in this table concur with the 

conclusion we have already made – that likely 

there is no connection between the study subjects’ 

ages and their levels of triglyceride and hemoglo-

bin. 

 

EXAMPLE 2. HEART FAILURE 

EVENTS AND WEATHER  

 

Let us consider a real observational study analyz-

ing whether variations in day-to-day temperature 

𝑇 can predict daily frequency of heart failure 

events (such as congestive unspecified heart fail-

ure, left ventricle failure, and death from heart 

failure) on the example of the population living in 

the Northern District, Israel [6]. Despite the fact, 

that the study dataset (which comprises tempera-

ture and numbers of heart failure events registered 

every day over the period from January 1, 2000 to 

October 3, 2006 – overall 2468 observations) has 

no missing values for heart failure frequency, 

temperature reading was available only from May 

10, 2004 to December 31, 2005 (601 observa-

tions). 

Table 3. Summary statistics 

Even within this interval the var-

iable 𝑇 has 21 missing observa-

tions (presumably MAR-type), 

but outside the interval, 𝑇 is 

completely missing. As it fol-

lows from the table 3 presenting 

summary statistics of the study 

dataset (where N stands for the 

number of non-missing observa-

tions; Variance is for the varia-

ble variance)  𝑇 is missing in 

1,888 observations (i.e. the vari-

able 𝑇 is classed as almost com-

pletely missing). Therefore, any conventional 

analysis while ignoring the information about the 

heart failure events in these 1,888 observations 

will lose power and – more importantly – be po-

tentially biased. The actual results of the Poisson 

regression of the number of daily occurrences of 

each heart failure event analyzed on the non-

missing observations of 𝑇 demonstrate this: 

Table 4. Poisson regression models on the observed temperature 

 (where Coef. β is the regression coefficient, Ro-

bust Std. Err. stands for the robust estimate of the 

standard error for β). As we can see, all the 95% 

confidence intervals include zero, therefore, it is 

likely that there is no connection between the 

heart failure events and temperature. However, we 

cannot rid ourselves of a strong suspicion that this 

Variables N Mean Variance Min Value Max Value 

Unspecified heart failure  2468 0.723 0.888 0 6 

Left ventricle failure 2468 0.139 0.163 0 3 

Death from heart failure 2468 0.297 0.307 0 4 

Daily temperature 𝑇 580 22.759 45.770 6.4 33.9 

Sex Substance 
Correla-

tion 
Overall r 

C
o

m
p

le
te

-

d
at

a 
o

b
-

se
rv

a
ti

o
n
 

Overall 

p-value 

Overall 95% 

confidence 

interval 

Imputation 

statistics* 

R  

G
ir

ls
 

Triglycer-

ide 

Pearson 0.27 
30 

0.149 -0.12 0.59 0.030 0.093 

Spearman 0.30 0.104 -0.09 0.61 0.034 0.096 

Hemoglo-

bin 

Pearson 0.05 
31 

0.773 -0.33 0.42 0.026 0.088 

Spearman 0.03 0.858 -0.35 0.41 0.047 0.107 

B
o

y
s 

Triglycer-

ide 

Pearson -0.06 
18 

0.825 -0.55 0.46 0.034 0.136 

Spearman -0.09 0.720 -0.59 0.45 0.110 0.201 

Hemoglo-

bin 

Pearson 0.38 
17 

0.135 -0.18 0.75 0.038 0.145 

Spearman 0.26 0.307 -0.31 0.70 0.082 0.183 

Analyzed Variable N Coef. β 
Robust 

Std. Err. 
p-value 

95% confidence 

interval 

Unspecified heart failure  580 -0.0138 0.0073 0.060 -0.0282 0.0006 

Left ventricle failure 580 -0.0389 0.0282 0.167 -0.0942 0.0163 

Death from heart failure 580 -0.0148 0.0102 0.146 -0.0348 0.0052 
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conclusion is wrong because of the biased study 

dataset. 

 

Is it possible to preserve the information about the 

heart failure events in those 1,888 observations in 

the analysis? The answer is yes, and the solution 

is to impute missing values of the variable 𝑇. To 

do this, let us first inspect what we know about 

the variable 𝑇.  

 

It is known that the daily temperature 𝑇 can be 

viewed as a cyclostationary process [7]. This 

means, that, even if values 𝑇𝑖 of different days 

𝑖  ,      - are statistically different, tempera-

ture of the days, which are divided by some regu-

lar intervals, will have identical statistics. Thus, 

we can describe the random process composed of 

daily temperatures as the set of interleaved sta-

tionary processes, each of each takes on a new 

value once for a certain period (a year, for exam-

ple).  

Mathematically, a cyclostationary process 𝑇𝑖 can 

be expressed in an additive form [8]: 𝑇  𝑇 ̃  𝒯 , 

where 𝑇 ̃ is the deterministic cyclic process with 

period 𝜏 which can be represented by a Fourier 

series 

𝑇 ̃  ∑ [𝑎𝑛    (
 𝜋

𝜏
𝑛𝑖)  𝑏𝑛    (

 𝜋

𝜏
𝑛𝑖)]

𝐿

𝑛  

 𝑎       

(49) 

 whilst 𝒯  is the stochastic process described by 

some probability distribu-

tion with zero mean 𝒯 ̅ and 

non-zero variance 𝒯 
 ̅̅ ̅̅ . 

Fortunately for us, the de-

terministic function 𝑇 ̃ can 

be estimated with the non-

missing measurements of 

the daily temperature 𝑇  presented in the study 

dataset. In fact, fitting the model of 𝑇 ̃ 

𝑇 ̃  ∑(𝑎𝑛    𝜔y𝑛𝑖  𝑏𝑛    𝜔y𝑛𝑖)

 

𝑛  

 𝑎      (𝜔y  
 𝜋

     
)      

(50) 

on the observed values of 𝑇  using linear regres-

sion, we get the result: 

𝑇 ̃
̂                   𝜔y 𝑖

          𝜔y 𝑖

          𝜔y𝑖

          𝜔y𝑖 

(51) 

With regard to the stochastic process 𝒯𝑖, all we 

know about its distribution is its mean 𝒯𝑖̅    and 

variance 𝒯𝑖
 ̅̅ ̅̅  which can be estimated by computing 

statistics of the residual 𝑇𝑖  𝑇𝑖̂̃: 

Table 7. Summary statistics of the stochastic component of daily 

temperature 

Among all distributions with the given mean and 

variance, only the normal distribution has the 

maximum entropy [12] [27] [28]. Therefore, it 

reasonable to assume that the distribution of the 

stochastic process 𝒯𝑖 is normal: 

 (𝒯𝑖)   (
𝒯𝑖   

√     
)      (52) 

For each of the 1,888 observations with missing 

𝑇 , we calculate one value of the estimated deter-

ministic process 𝑇 ̃
̂  and create 𝑚      imputa-

tions for the stochastic process 𝒯 ; thus, we get: 

Table 8. Poisson regression models on the imputed daily tempera-
ture. 

Based on these results, we conclude that it looks 

as if a connection between daily temperature 𝑇 

Analyzed 

variable 

Com-

plete-

data N 

Overall 

Coef. β 

Overall 

Robust 

Std. Err. 

Overall 

p-value 

Overall 

95% confidence 

interval 

Imputation 

statistics* 

R  

Unspecified heart 

failure 
2468 -0.0242 0.0038 0.000 -0.0316 -0.0167 0.0886 0.0823 

Left ventricle failure 2468 -0.0368 0.0091 0.000 -0.0546 -0.0190 0.1433 0.1265 

Death from heart 

failure 
2468 -0.0167 0.0056 0.003 -0.0277 -0.0058 0.0928 0.0859 

Variable N Mean Variance Min Value Max Value 

Residual 𝑇  𝑇̂̃ 580 0.0000 7.928 -7.0201 8.8515 
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and rate of heart failure events does exist but we 

just failed to find it in the first place, owing to 

missing 𝑇 measurements. 
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