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Abstract. One relevant problem in data quality is the presence of miss-
ing data. In cases where missing data are abundant, effective ways to deal
with these absences could improve the performance of machine learning
algorithms. Missing data can be treated using imputation. Imputation
methods replace the missing data by values estimated from the avail-
able data. This paper presents CORAI, an imputation algorithm which
is an adaption of CO-TRAINING, a multi-view semi-supervised learning
algorithm. The comparison of CORAI with other imputation methods
found in the literature in three data sets from UCI with different levels
of missingness inserted into up to three attributes, shows that CORAI
tends to perform well in data sets at greater percentages of missingness
and number of attributes with missing values.

1 Introduction

Machine learning (ML) algorithms usually take a set of cases as input (also
known as examples or instances) to generate a model. These cases are gener-
ally represented by a vector, where each vector position represents the value
of an attribute (feature) of a given case. However, in many applications of ML
algorithms in real world data sets, some attribute values might be missing. For
example, patient data may contain unknown information due to tests which were
not taken, patients’ refusal to answer certain questions, and so on.

In cases where missing data are abundant, effective ways to deal with these
absences could improve the performance of ML algorithms. One of the most
common approaches of dealing with missing values is imputation [I]. The main
idea of imputation methods is that, based on the values present in the data set,
missing values can be guessed and replaced by some plausible values. One ad-
vantage of this approach is that the missing data treatment is independent of the
learning algorithm used, enabling the user to select the most suitable imputation
method for each situation before the application of the learning algorithm.

A closely related research topic that has emerged as exciting research in ML
over the last years is Semi-Supervised Learning (SSL) [2]. To generate models,
SSL aims to use both labeled (i.e., cases where the values of the class attribute,
that is a special attribute we are interested in predicting based on the others
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attributes, are known in advance when generating the model) and unlabeled
data (i.e., cases where the values of the class attribute are not known when
generating the model). To accomplish this task, some SSL algorithms attempt
to infer the label of the unlabeled cases based on few labeled cases. Therefore,
in a broad sense, these SSL algorithms might be seen as “imputation methods
for the class attribute”, which is the view considered in this work.

In this work we propose an algorithm named CORAI (CO-TRAINING Ranking
Aggregation Imputation), which is an adaptation of the SSL algorithm Co-
TRAINING, that can be used to deal with missing data. The comparison of CORAI
with other imputation methods found in the literature in three data sets from
UCT with different levels of missingness inserted into up to three attributes,
assessed in terms of imputation error rate, shows that CORAI tends to perform
well in data sets at greater percentages of missingness and number of attributes
with missing values.

The outline of this paper is as follows: Section 2 presents related work. Sec-
tion[3 describes CORAL Section H] presents the experimental results and Section Bl
concludes this paper.

2 Related Work

According to the dependencies among the values of the attributes and the miss-
ingness, missing values can be divided into three groups [I]: (1) missing com-
pletely at random (MICAR) is the highest level of randomness and occurs where
missingness of attribute values is independent of the values (observed or not);
(2) missing at random (MAR) occurs when the probability of a case having
a missing value may depend on the known values, but not on the value of the
missing data itself; (3) not missing at random (NMAR) occurs when the prob-
ability of a case having a missing value for an attribute could depend on the
value of that attribute.

A straightforward way to deal with missing values is to completely discard the
cases and/or the attributes where missing values occur. Removing the cases is the
most standard approach although, in case the missing values are concentrated
into a few attributes, it may be interesting to remove them instead of removing
the cases. Case and attribute removal with missing data should be applied only if
missing data are MCAR, as not MCAR missing data have non-random elements,
which can make the results biased.

Another approach is to fill in the missing data by guessing their values [3].
This method, known as imputation, can be carried out in a rather arbitrary way
by imputing the same value to all missing attribute values. Imputation can also
be done based on the data distribution inferred from known values, such as the
“cold-deck/hot-deck” approach [4], or by constructing a predictive model based
on the other attributes. An important argument in favor of this latter approach
is that attributes usually have correlations among themselves. Therefore, these
correlations could be used to create a predictive model for attributes with missing
data. An important drawback of this approach is that the model estimated values
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are usually more well-behaved than the true values would be. In other words,
since the missing values are predicted from a set of attributes, the predicted
values are likely to be more consistent with this set of attributes than the true
(not known) values are. A second drawback is the requirement for correlation
among the attributes. If there are no relationships among other attributes in
the data set and the attribute with missing data, then the model will not be
appropriate for estimating missing values.

As already mentioned, some SSL algorithms can be viewed as a way of “guess-
ing the class” of a set of unlabeled cases. SSL algorithms have recently attracted
considerable attention from the ML community, and numerous SSL approaches
have been proposed (see [5] for an up-to-date review on the subject). In this
paper, we are interested in investigating whether SSL approaches might be used
to deal with the missing data problem. To the best of our knowledge, the only
algorithm that is used to handle both missing data and SSL problems is Expec-
tation Maximization [6]. In this paper, however, we are interested in a special
family of SSL that can take advantage of alternative predictive patterns in the
training data, such as multi-view SSL algorithms [7/8/9]. Our research hypothesis
is that, by exploiting these alternative predictive patterns, missing data can be
imputed in a better way than other methods.

3 Proposed Method

Let X = A; x...x Aps be the instance space over the set of attributes { Ay, ..., Apr},
andlet y € Y = {y1, ..., yz} be the class attribute. Assume that instances (x,y),
where x € X and y € Y, are drawn from an unknown underlying distribution
D. The supervised learning problem is to find A : X — Y from a training set of
labeled examples L = {(x;,4;) : | = 1,...,n} that are drawn from D. In semi-
supervised learning, we also have unlabeled data U = {x, : u =n+1,..., N} in
the training set that are drawn from D without their corresponding class y,,. In
our problem, some examples may have attributes with missing values and those
attributes are denoted as A}, where dom(A}) = dom(A;)U{“?”} and “?” denotes
a missing value. An instance space which contains A} is represented as X*. The
imputation method to deal with missing values is to find A* : (X*,Y) — X which
can be used to map all A} back to A;.

Numerous approaches can be used to construct h*. Among them are predictive
models, which can be used to induce relationships between the available attribute
values and the missing ones. In this paper, we propose to adapt SSL algorithms to
deal with missing data by imputation by considering each attribute A} that has
missing values as the class attribute into a SSL algorithnﬂ Therefore, examples
which do not have missing values in A} are treated as “labeled” attributes and
examples with missing values are treated as “unlabelled.”

Numerous SSL algorithms have been proposed in recent years. In this work, we
have selected CO-TRAINING [7], a well known SSL algorithm, which was the first

1 As we are dealing with missing value imputation as a semi-supervised classification
problem, in this work we restrict the domain of Aj to be qualitative.
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Algorithm 1. CORAI

Input: L,U

Output: L

Build U’ ;

U=U-U,

while stop criteria do not met do
Induce hy from L;
Induce h2 from L;

Ry =Mh(U);

Ry =ha(U') ;

R = bestExamples(Ry, R5);
L=LUR;

if Uy = () then return(L) else
Randomly select examples from U to replenish U’;
end
end
return(L1);

to introduce the notion of multi-view learning in this area. Multi-view learning
is applied in domains which can naturally be described using different views. For
instance, in web-page classification, one view might be the text appearing on the
page itself and a second view might be the words appearing on hyperlinks point-
ing to this page from other pages on the web. CO-TRAINING assumes compatible
views (examples in each view have the same class label) and each different view
has to be in itself sufficient for classification. Although it is not always possible
to find different views on data sets which meet these assumptions, we can only
use one view and different learning algorithms to compose the views. This is an
idea proposed in [§] which extends CO-TRAINING for problems restricted to one
view data sets.

The main differences between CORAI and CO-TRAINING are the use of a dif-
ferent strategy to select the best examples to be labeled on each iteration and
the use of two learning algorithms rather than two views. Our method can be
described as follows: initially, a small pool of examples U’ withdrawn from U are
created, and the main loop of Algorithm [ starts. First, the set of labeled exam-
ples L are used to induce two classifiers h; and hy using two different learning
algorithms (in our case NAIVE BAYES and C4.5). Next, the subset of unlabeled
examples U’ is labeled using h; and inserted into R}, and U’ is used again but
now it is labeled using hs and inserted into R5. Both sets of labeled examples
are given to the function best Examples which is responsible for ranking good
examples according to some criterion and inserting them into L. After that, the
process is repeated until a stop criteria is met.

We also modify the best Examples function as proposed in the CO-TRAINING
method. Originally, this function first filters examples which disagrees with their
classification, i.e, hq(x) # ho(x). However, attributes with missing values may
assume many different values, and when examples are filtered, hi(z) # hao(x)
for almost all examples. This occurs because it is less likely that classifiers agree
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with their classification in multi-class problems rather than binary problems. To
deal with this problem, we proposed the use of ranking aggregation to select the
best examples.

From now on, assume that the missing value problem has been mapped to
a semi-supervised learning problem by swapping the class attribute with an
attribute A}. Thus, the reader should be aware that Y is actually referring
to A7.

First, we need to define classification in terms of scoring classifiers. Scoring
classifiers maps s : X — RIY! assigning a numerical score s(x) to each instance
x € X for each class. NATVE BAYES actually computes a sort of scoring classifier
where the classification is given by the class with the largest score. Decision trees
can also be adapted to output scores by counting the distribution of examples
for each possible classification in their leaves.

A rank aggregation combines the output of scoring classifiers on the same set
of examples in order to obtain a “better” ordering. In this paper, rank aggrega-
tion uses two scoring classifiers obtained from two sets of examples R} and R}
scored by hy and ha, respectively (Algorithm []). Let y;1, be the scores given by
hi and ys, be the scores given by hg for the class y, (z = 1...Z). The method
which implements best examples orders examples according to scores for each
class and compute rpos;, which is the rank position of an instance with regards
to y. on R}. For instance, to compute rposi1, initially the instances according to
y11 are ordered and then the rank position from this ordering is stored in rposi.
This is done for all classes y11, ..., y1z to obtain rposii,...,rposiz. In the same
way, the method uses R) to compute rposs,. Finally, the rank position obtained
from R} and R} is given by rpos, = rposi, + rposs, for each class y,, and the
selected instances are the ones with low rpos,. Taking the instances with low
rpos, means that these examples have a good (low) rank position on average,
which is similar to selecting the examples with high confidence in a ranking per-
spective. In our implementation, we preserve the class distribution observed in
the initial labeled data by selecting the number of examples proportional to this
distribution.

4 Experimental Analysis

4.1 Experimental Setup

The experiments were carried out using three data sets from UCI Machine Learn-
ing Repository [I0]. Originally, all data sets had no missing values and missing
data were artificially implanted into the data sets. The artificial insertion of
missing data allows a more controlled experimental setup. First of all, we can
control the pattern of missing data. In this work, missing data were inserted in
the MCAR pattern. Secondly, as the values replaced by missing data are known,
imputation errors can be measured. Finally, this experimental setup allows the
missing data to be inserted using different rates and attributes.

Table [l summarizes the data sets used in this study. It shows, for each data
set, the number of examples (#Examples), number of attributes (#Attributes),
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Table 1. Data sets summary description

Data set # Examples #Attributes #Classes Majority

(quanti., quali.) error

CMC 1473 9 (2,7) 3 57.29%

German 1000 20 (7,13) 2 30.00%
Heart 270 13 (7,6) 2 44.44%

together with the number of quantitative and qualitative attributes, number of
classes (#Classes), and the majority class error.

Ten-fold cross-validation was used to partition the data sets into training and
test sets. Finally, missing values were inserted into the training sets. Missing
values were inserted in 20%, 40%, 60% and 80% of the total number of examples
of the data set. In addition, missing values were inserted in one, two or three
attributes. In order to choose in which attributes to implant missing data, we
conducted some experiments to select attributes that are relevant to predict
the class attribute. Observe that it is important to insert missing values into
relevant attributes, otherwise the analysis might be hindered by dealing with
non-representative attributes which will not be incorporated into the classifier by
a learning algorithm such as a decision tree. Since finding the most representative
attributes of a data set is not a trivial task, three feature subset algorithms,
available in Weka software [L1] were used: Chi-squared ranking filter; Gain ratio
feature evaluator and ReliefF ranking filter. All three feature selection algorithms
generate a ranking of the most representative attributes. For each data set the
three rankings were composed into an average ranking, and the three top ranked
qualitative attributes were chosen. Table 2] shows the selected attributes for each
data set, as well as the number of values (#Values) of each attribute.

As mentioned before, missing values were inserted in 20%, 40%, 60% and
80% of the total number of examples for one (the attribute selected in first
place), two (the attributes selected in first and second places) and the three
selected attributes (the attributes in first, second and third places). Inserting
missing values into more than one attribute is performed independently for each
attribute. For instance, 20% of the missing values inserted into two attributes
means that, for each attribute, two independent sets with 20% of examples each
were sampled. In other words, the first set’s values were altered to missing for

Table 2. Selected attributes for data set

Data set Selected Attributes
(Position) Name #Values
1st (1) wife education
CMC 2nd (2) husband education
3th (7) standard of living
1st (0) status
German 2nd (2) credit history
3th (5) savings account
1st (12) thal
Heart 2nd (2) chest pain
3th (8) angina

[CIFERS I IO NF N



Missing Value Imputation 223

the first attribute, similarly, the second set’s values were altered to missing for
the second attribute. As the two sets are independently sampled, some examples
may have missing values in one, two or none of the selected attributes. A similar
procedure was performed when missing data was inserted into three attributes.

Our experimental analysis involves the following methods to deal with missing
data: CoRAlI, the proposed method; 9NNI [3], an imputation method based on k-
nearest neighbor; and mode imputation, an imputation method that substitutes
all the missing data by the attributes’ most frequent value. In order to deal
with missing values in multiple attributes, CORALI is executed independently for
each attribute. In each execution, one different attribute with missing data is
considered as class, and all other attributes are left in the data set to build the
classification model.

4.2 Experimental Results

The main purpose of our experimental analysis is to evaluate the imputation
error of the proposed method compared with other methods in the literature.
As stated before, missing data were artificially implanted and this procedure
allows us to compare the imputed values with the true values. Imputation error
rate was calculated for each possible attribute value.

In order to analyze whether there is a difference among the methods, we
ran the Friedman testd. Due to lack of space, only results of these tests are re-
ported herdd. Friedman test was ran with four different null-hypotheses: (1) that
the performance of all methods are comparable considering all results; (2) that
the performance of all methods are comparable for each percentage of missing
data; (3) that the performance of all methods are comparable for each amount
of attributes with missing data; (4) that the performance of all methods are
comparable for each percentage of missing data and amount of attributes with
missing data. When the null-hypothesis is rejected by the Friedman test, at 95%
of confidence level, we can proceed with a post-hoc test to detect which differ-
ences among the methods are significant. We ran the Bonferroni-Dunn multi-
ple comparison with a control test, using CORAI as a control. Therefore, the
Bonferroni-Dunn test points-out whether there is a significant difference among
CoRAI and the other methods involved in the experimental evaluation.

Figure [I] shows the results of the Bonferroni-Dunn test with our first null-
hypothesis: that the performance of all methods are comparable considering all
results. This test does not make any distinction among percentage of missing
data or amount of attributes with missing data. As seen in Figure [I CORAI
performs best, followed by 9NNI and MODE. The Bonferroni-Dunn test points
out that CORAI outperforms MODE, but there is no significant difference between
CoRrAl and YNNI

2 The Friedman test is the nonparametric equivalent of the repeated-measures
ANOVA. See [12] for a thorough discussion regarding statistical tests in machine
learning research.

3 All tabulated results can be found in http://www.icmc.usp.br/~gbatista/corai/
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1 2 3
CoRrA1 — [ Mode
9NNI

Fig. 1. Results of the Bonferroni-Dunn test on all imputation errors. The thick line
marks the interval of one critical difference, at 95% confidence level.

The second null-hypothesis is that all methods perform comparably for each
percentage of missing data. The objective is to analyze whether some methods
perform better than others when the percentage of missing values varies, or in a
critical situation, when the percentage of missing values is high. Figure [2] shows
the results of the Bonferroni-Dunn test with our second null-hypothesis. CORAI
frequently outperforms the other methods.

1 2 3 1 2 3
CoORAI N L Mode CoRAI I L Mode
9NNI 9NNI

(a) 20% of missing values (b) 40% of missing values
1 7 $ 1 ? ?
ORAI Q ; ode ORAI Q ; ode
SNNI 4 Mod QCNNI g Mod
(c) 60% of missing values (d) 80% of missing values

Fig. 2. Results of the Bonferroni-Dunn test considering the percentage of missing values.
The thick line marks the interval of one critical difference, at 95% confidence level.

Our third null-hypothesis is that all methods perform comparably for different
amounts of attributes with missing data. The objective is to analyze whether
some methods perform better than others when the number of attributes with
missing values increases. Figure Blshows the results of the Bonferroni-Dunn test.
CORAI obtained the lowest imputation error followed by 9NNI and MODE. Fur-
thermore, CORAI outperformed all other methods, at 95% confidence level, when
missing values were present in two or three attributes. When missing values were
implanted in only one attribute CORAI performs better than MODE, but do not
outperform 9NNI.

Table Bl shows the results of the Friedman and Bonferroni-Dunn tests for the
fourth hypothesis. With this hypothesis we analyze whether all methods perform
comparably given different combinations of percentage of missing data and num-
ber of attributes with missing data. In this table, column “%Missing” represents
the percentage of missing data inserted into the attributes; “#Attributes” stands
for the number of attributes with missing values; columns “CORAI”, “ONNI” and
“MODE” show the results of the Friedman test for the respective method; and
finally, column “CD” presents the critical different produced by the Bonferroni-
Dunn test. In addition, results obtained by CORAI that outperform 9NNI and
MODE at 95% confidence level are colored with dark gray, and results of CORAI
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1 2 3 1 2 3
JORAI — (I ode RAI - L ode
s —— | Hed s — | Hed

(a) 1 attribute with missing values (b) 2 attributes with missing values

1 2 3
CORAI J— [ Mode
9NNI

(c) 3 attributes with missing values

Fig. 3. Results of the Bonferroni-Dunn test considering the number of attributes with
missing values. The thick line marks the interval of one critical difference, at 95%
confidence level.

Table 3. Results of the Friedman and Bonferroni-Dunn tests considering the amount
of missing data and number of attributes with missing values. The thick line marks the
interval of one critical difference.

%Missing #Attributes Imputation Methods CD
Coral 9NNI  Mode

#At=1 1.727 1.864 2.409 0.96

m20 F#At=2 1.625 1.958 2.417 0.65
#At=3 1.571 1.986 2.443 0.54

#At=1 1.545 2.045 2.409 0.96

m40 F#At=2 1.625 1.917 2.458 0.65
F#At=3 1.571 2.000 2.429 0.54

#At=1 1.636 1.955 2.409 0.96

m60 F#HAt=2 1.583 1.938 2.479 0.65
F#At=3 1.571 1.957 2.471 0.54

#At=1 1.545 2.045 2.409 0.96

m80 FHAt=2 1.542 2.000 2.458 0.65
#At=3 1.486 2.086 2.429 0.54

that outperform MODE only are colored with light gray. As can be observed,
CORAI always perform better than the other imputation methods.

As a final analysis we ran the C4.5 and NATVE BAYES learning algorithms on
the imputed data sets and measured the misclassification error on the test sets.
Due to the lack of space, these results are not reported here. We also ran the
Friedman test in order to verify whether there is a significant difference among
the classifiers. Following the Friedman test there was no significant difference at
95% confidence level.

5 Conclusion

This paper presented CORAI, an algorithm for missing values imputation in-
spired in the multi-view SSL algorithm Co-TRAINING. Imputation using CORAI
was compared with MODE and YNNI, two imputation methods found in the
literature, with four percentage of missingness (20%, 40%, 60% and 80%) arti-
ficially introduced in one, two and three attributes in three data sets from UCI
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machine learning repository. Results in these three data set show that CORAI
tends to perform better at greater percentages of missingness and number of
attributes with missing values.

One limitation of CORALI is that it only handles qualitative attributes. We plan
to extend CORALI to quantitative attribute as a future work. Another important
research direction is to evaluate how CORAI performs in patterns of missingness
other than MCAR.
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