
A Boosting Approach
to Multiple Instance Learning

Peter Auer and Ronald Ortner

University of Leoben, Franz-Josef-Strasse 18,
8700 Leoben, Austria

{auer,rortner}@unileoben.ac.at

Abstract. In this paper we present a boosting approach to multiple
instance learning. As weak hypotheses we use balls (with respect to vari-
ous metrics) centered at instances of positive bags. For the ∞-norm these
hypotheses can be modified into hyper-rectangles by a greedy algorithm.
Our approach includes a stopping criterion for the algorithm based on
estimates for the generalization error. These estimates can also be used
to choose a preferable metric and data normalization. Compared to other
approaches our algorithm delivers improved or at least competitive re-
sults on several multiple instance benchmark data sets.

1 Introduction

Originally arising from a problem in biochemistry [6] multiple instance learning
recently got a lot of attraction (see e.g. [1], [9], [24], [22]). Generally, in a multiple
instance learning problem one has to classify sets (so-called bags) of instances,
where each set is classified positively if it contains at least one instance with a
certain property. The difficulty for learning this property is that it is unknown
which of the instances is responsible for a positive classification of a bag.

Our motivation to investigate a boosting approach for multiple instance
learning comes from object recognition in computer vision. For that we want
to learn descriptions of object categories in images from labeled images, where
the label indicates whether a relevant object is present in the image or not.
Position and pose of the objects in the image are not known. Learning of such
object categories by a boosting approach has been demonstrated in [16, 10]. In
these experiments local feature vectors in R

n were extracted from the training
images, so that each image can be represented by its features. For a a positively
classified image it is assumed that this is due to the presence of particular fea-
tures. According to the training examples weak hypotheses for AdaBoost [7, 20]
are calculated that indicate if certain features are present in an image or not.
This is done by comparing features with a similarity measure. More precisely, the
weak hypotheses were chosen as balls around feature vector templates, such that
an image is classified positively if it contains a feature vector sufficiently close
to that template. Thereby, the templates are chosen from the feature vectors of
the training images.

J.-F. Boulicaut et al. (Eds.): ECML 2004, LNAI 3201, pp. 63–74, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

64 Peter Auer and Ronald Ortner

From a more abstract view this learning problem can be seen as multiple
instance problem: Many objects – not only relevant ones – may be present in
an image, and a feature may come from a relevant or irrelevant object. An
image is classified positively if at least one relevant object is present. In fact, in
this situation we have a generalized multiple instance problem since a relevant
object may be described not necessarily by a single feature but by a combination
of features: An image will be classified positively if a certain combination or
number of relevant features can be extracted from it. Which of the feature vectors
are relevant is initially unknown and has to be learned, what poses a typical
(generalized) multiple instance problem.

In this paper we consider this boosting approach to multiple instance learning
with balls as weak hypotheses in greater detail, and apply it to some of the
multiple instance benchmark problems. We find this approach very competitive
and it outperforms several other approaches to multiple instance learning.

Section 2 gives the formal details of the multiple instance setting, an overview
of different approaches and a short introduction to AdaBoost, the boosting al-
gorithm we apply. In Section 3 we describe in greater detail how we obtain our
weak hypotheses, displaying how to calculate optimal balls, and also showing
how suitable hyper-rectangles can be calculated by a greedy algorithm. In Sec-
tion 4 we explain which experiments were conducted and how our algorithm
performed compared to other approaches.

2 Multiple Instance Learning with Boosting

2.1 Multiple Instance Learning

Formally, the multiple instance learning problem we deal with is defined as
follows. Let the instance space X be a set and B a finite collection of finite
subsets of X . The elements of B are called bags. An unknown target func-
tion y : B → {+1,−1} indicates whether a bag in B is classified as positive
or negative. Actually, y is supposed to be an extension of a labeling function
y : X → {+1,−1} such that a bag B ∈ B is classified positively iff it contains a
positive element, that is, y(B) = +1 ⇐⇒ ∃x ∈ B : y(x) = +1. The aim is to
learn y from the training examples given in B.

Of course, the considered problem setting is the simplest one can think about.
We have already mentioned the possibility of more complex situations when de-
scribing applications to vision in the introduction. Thus in a generalized multiple
instance setting a bag B is classified positively if e.g. at least a certain number
of positive instances are contained in B. Another generalized multiple instance
problem is introduced in [19].

Several approaches have been tried to offer solutions to multiple instance
learning. Axis-parallel rectangles as hypotheses were used in [3] and [6]. Whereas
[3] uses a single rectangle, which works quite well under some assumptions on
the distribution of the data, in [6] the authors try to grow axis-parallel rectangles
containing at least one instance from each positive bag and no instance from a
negative bag. Scott et al. [19] adapt and improve an approach of Goldman et al.

A Boosting Approach to Multiple Instance Learning 65

[8] to learn d-dimensional patterns. The latter uses as hypotheses weighted com-
binations of hyper-rectangles over a discretized feature space, where the weights
are learned with Winnow [12]. Scott’s modification of the original algorithm
allows learning in a generalized multiple instance setting as well. A different ap-
proach has been tried in [22]. The k nearest neighbors of a new bag (with respect
to a certain distance measure) are taken and a majority vote decides, which la-
bel the new bag is assigned. Different variants of the k nearest neighbor concept
are considered. The EM-DD algorithm of [24] combines the expected maximiza-
tion (EM) algorithm with the diverse density (DD) algorithm [13, 14]. The DD
algorithm tries to find a single instance that is responsible for the positive clas-
sification of a bag. More exactly, the key idea is to identify an instance to which
many positive bags have close distances and to which instances of negative bags
are far away. The diverse density is a measure that captures this concept and
corresponds to the likelihood of the corresponding hypothesis, i.e., a high diverse
density indicates a good candidate for a “true” hypothesis. Combining this with
the idea of the EM algorithm yields the EM-DD algorithm. There are further
approaches using neural networks [17], decision trees [18] and kernel methods [9].

2.2 A Boosting Approach

As already mentioned, our approach is to apply a boosting framework, which
means given a set of hypotheses H we use a suitable subset H′ ⊆ H of weak
hypotheses that are combined to give a final hypothesis hf . The AdaBoost [7,
20] algorithm we are going to use, calculates hf by assigning weights wB to
the training examples B ∈ B and calculates weak hypotheses h ∈ H which
correctly classify a majority (in respect to their weights) of the training examples.
According to the error of such an h a weight αh is calculated for the weak
hypothesis. Furthermore, the weights wB are recalculated such that more weight
is put on the bags that were misclassified. The process of finding a suitable weak
hypothesis h ∈ H and (re)calculating the weights wB and αh is repeated and
the final hypothesis hf is then obtained as weighted majority vote of the weak
hypotheses, that is,

hf (B) := sgn(
∑

h∈H′
αhh(B)),

where H′ ⊆ H is the set of used weak hypotheses.
Obviously, the weights of the bags can be normalized to sum up to 1 so that

we obtain a distribution w = (wB1 , . . . , wB|B|) over B. Then given a distribution
w = (wB1 , . . . , wB|B|) one can judge the quality of a weak hypothesis via its
distribution accuracy, which is defined as

D(h, w) :=
∑

B∈B:
h(B)=y(B)

wB.

We demand from each weak hypothesis used by AdaBoost that its distribution
accuracy is > 1

2 + ε for some ε > 0. In this case it can be guarantueed that

66 Peter Auer and Ronald Ortner

AdaBoost’s final hypothesis approximates the target function y with arbitrary
high accuracy (cf. [7]).

In this paper we consider the instance space X = R
n and our weak hypotheses

are balls of arbitrary center and radius with respect to some metric. Actually,
our class H is a bit more restricted. Let h(x, r) denote the open ball with center
x and radius r. Then we choose H to be the set of all balls h(x, r) whose center
is contained in a bag B ∈ B with y(B) = +1. Furthermore, H shall contain the
empty hypothesis. In Section 3 we describe how we determine for each center
x the optimal radius r with respect to the current distribution accuracy. The
prediction of a ball h ∈ H on a bag B is given by

h(B) :=

{
+1 if h ∩ B �= ∅
−1 otherwise.

The following proposition shows that among these balls there is always a
weak hypothesis with distribution accuracy larger than 1

2 + ε for some fixed ε.

Proposition 1 For each weight distribution w = (wB1 , . . . , wB|B|) there is a
ball h = h(x, r) in H such that D(h, w) > 1

2 + 1
4k+2 , where k is the number of

positive bags in B.

Proof. Set γ := 1
4k+2 and let W− and W+ be the sum of the weights of the

negative and the positive bags, respectively. If W− > 1
2 + γ then it is obviously

sufficient to choose the empty hypothesis from H. If W+ > 1
2 + γ we choose an

arbitrary x and a sufficiently large radius r so that X ⊂ h(x, r).
Thus let us assume that 1

2 − γ < W−, W+ ≤ 1
2 + γ. Clearly, there must

be a positive bag B with weight > 1
k (1

2 − γ). Then for a suitable x ∈ B with
y(x) = +1 and a sufficiently small radius so that h(x, r) ∩ X = {x} we have

D(h(x, r), w) > W− +
1
k

(
1
2
− γ

)
>

1
2
− γ +

1
k

(
1
2
− γ

)
=

1
2

+ γ

by some little calculation. �
Remark 1. Obviously a weak hypothesis as in the second part of the proof is of
little use since it learns a single instance by heart. To achieve reasonable gener-
alization accuracy we need to find weak hypotheses which classify a significant
number of training examples correctly.

Remark 2. Complementing Proposition 1 we would like to remind the reader of
the following hardness result due to Auer, Long, and Srinivasan [4]. Consider the
multiple-instance problem where each bag contains r instances ∈ R

n and a bag is
classified positively if it contains an instance from an unknown hyper-rectangle.
If for this problem there is a polynomial algorithm for learning from arbitrary
distributions, then there is a polynomial algorithm for learning r-term DNF
formulas over n variables as well. However, whether such an algorithm exists is
one of the important unsolved problems of learning theory (see e.g. [11]). This
result indicates that even in this rather simple setting multiple instance learning
is a hard problem that probably cannot be solved efficiently in full generality.

A Boosting Approach to Multiple Instance Learning 67

3 The Algorithm

In this section we explain how to obtain a suitable set of balls, which will serve
as weak hypotheses for AdaBoost.

3.1 Calculating the Optimal Ball

We compute for each x in a positive bag B ∈ B a ball with center x, such that
its radius is optimal with respect to the current distribution w. More exactly,
the optimal radius r0 is defined as

r0 = max{r′ > 0 |D(h(x, r′), w) = max
r

D(h(x, r), w)}. (1)

Note that we did not make any assumptions concerning the used metric so far.
In our experiments we used the metric induced by the 2-norm and the ∞-norm,
respectively. In the latter case, our balls are axis-parallel hypercubes.

Computing the optimal radius for each instance is time consuming. To speed
up the computation the bags B ∈ B can be sorted by their distance to x, which
is given by

d(x, B) = min
x0∈B

d(x0, x)

for the chosen metric d. This procedure uses O(mn + |B| log |B|) operations per
instance x, where n is the dimension of the instance space X and m is the total
number of instances in bags of B, i.e., m = |⋃B∈B B|. Taking into account the
number of instances in positive bags introduces an additional factor of at most
m into the overall complexity, so that the overall time complexity for computing
the optimal ball is O(�(mn + |B| log |B|)), where � = |⋃B∈B:y(B)=+1 B|.

However, since AdaBoost computes a lot of iterations, one may compute the
distance from each instance in a positive bag to each bag B ∈ B once and keep
the corresponding distance matrix in memory. Thus the time complexity for one
boosting iteration decreases to O(�|B| log |B|), which is much cheaper. Indeed,
one may reduce this even to O(�|B|) by saving for each instance x the order of
the bags with increasing distance to x.

3.2 Extension of the Optimal Hypercube

When using the metric induced by the ∞-norm we can extend the optimal
hypercube computed according to the previous section. Since the radius of this
||·||∞-ball was chosen to be optimal with respect to the distribution accuracy, the
latter surely decreases when the radius is increased. Thus each hypercube h(x, r)
has a bad instance x′ on its boundary that is contained in some negative bag B′.
Note that B′ should be classified negatively according to h(x, r) as well, because
otherwise the inclusion of x′ wouldn’t make any difference to the prediction of
B′. Obviously, the bad instance prevents our hypercube from growing, at least
in some directions. However, we may grow the hypercube – which now turns

68 Peter Auer and Ronald Ortner

into a hyper-rectangle – evenly in all other directions that are not blocked by x′.
That way, one determines analogously to (1) above the optimal “radius” for all
unblocked directions. Again, some directions are blocked by a bad instance and
are accordingly fixed. This process is repeated until each direction is either fixed
or the corresponding boundary is set to infinity, because there are no instances
left in the respective direction. More formally, the algorithm can be described
as follows:

1. Initially the hyper-rectangle R = ×n
i=1(ai, bi) we consider is the optimal

hypercube h(x, r0). The set F contains the directions which are already
fixed, where each direction is represented by the index of the coordinate
and a sign indicating whether the positive or the negative direction of the
respective coordinate is fixed. Initially, F := ∅.

2. Determine the bad instance x′, that is, the instance on the boundary of R
that is contained in some bag B′ for which y(B′) = −1 and B′ ∩ R = ∅. If
there is more than one instance with that property, choose an arbitrary one.

3. Update F according to the directions blocked by the bad instance x′, that is,

(i, +) ∈ F ⇐⇒ x′
i = bi,

(i,−) ∈ F ⇐⇒ x′
i = ai.

4. Determine analogously to (1) the optimal “radius” r with respect to distri-
bution accuracy for all directions that are not fixed yet.

5. Update R as follows:

ai :=

{
ai if (i,−) ∈ F

xi − r otherwise,
and bi :=

{
bi if (i, +) ∈ F

xi + r otherwise.

6. Repeat steps 2–5 until each direction is fixed or r was set to infinity.

Obviously, the computation of hyper-rectangles as described above requires
multiple passes over the instances and is therefore quite expensive. However, if
one sorts the instances within the bags by their distance to the center of the
initial optimal hypercube, one can increment the pointers and one pass over all
the instances is sufficient. This improvement decreases the running time for the
computation of the hyper-rectangle from a hypercube to O((� + n)|B| log |B|),
where n is the dimension of the instance space X and � =

∑
B∈B:y(B)=+1 |B| is

the number of positive instances.

4 Experiments

4.1 The Data Sets
The musk data set [6, 5] originates from the already mentioned problem in
biochemistry. One observes different conformations of a molecule and wants to
know if a “musk-like” conformation exists for this molecule. For each molecule
one is given the set of stable conformations, which constitute a bag as in the def-
inition of the multiple instance problem. A bag is labeled positive, if it contains
a musk-like conformation.

The data sets musk1 and musk2 consist of 92 and 102 bags which contain a
total of 476 and 6598 instances, respectively, each of which is 168-dimensional.

A Boosting Approach to Multiple Instance Learning 69

The robot data set [19] consists of 12 learning problems which are constructed
from a basis of 28 bags divided into four categories A,B,C, and D of equal
size. Each bag consists of (in average about 34) 2-dimensional instances which
represent a 360◦ light intensity measurement of a robot at a certain position in
space. The seven bags in each of the groups A,B,C, and D consist of ‘similar’
positions.

The learning task is to learn concepts which separate each of the four groups
from any two of the others. We label the corresponding learning problems by
‘AposBCneg’,‘AposBDneg’ etc. corresponding to the choice of groups.

The protein data set [23] consists of 20 positive bags paired with 8 different
sets of 20 resp. 28 different negative bags. The data itself is 8-dimensional and
consists of 7 characteristics of a protein sequence and information about the po-
sition of the window on the whole protein sequence in the remaining coordinate.

4.2 A Stopping Criterion for AdaBoost

For our tests we used the following stopping criterion for the number of boost-
ing iterations. By a leave-one-out cross-validation on the training examples1 we
calculated estimates for the generalization error when AdaBoost is run on the
remaining training examples until the error reached P%, P = 99, . . . , 0. The P ∗

with the best estimated generalization error was chosen and AdaBoost was run
on all training examples until the training error reached P ∗%, giving the final
hypothesis.

For some data sets it might be advisable to continue boosting even when the
training error has reached 0% (cf. [21]). We did not explore this for the data sets
we used. However, in this situation a similar approach can be taken to choose the
number of boosting iterations: Let M be the number of iterations until training
error 0 is reached. Estimate the generalization error when AdaBoost is run for
M · αk iterations, k = 1, 2, . . ., α > 1, and choose the best k∗.

4.3 Various Combinations of Metric and Attribute Normalization

We performed experiments with various combinations of metric and attribute
normalization. In this respect an interesting question is, if the estimated gener-
alization error from the stopping criterion is a good indicator for which metric
and attribute normalization should be chosen. The results seem to answer this
question affirmatively. We used the following combinations:

cubes: The weak hypotheses for AdaBoost are balls with respect to the ∞-
norm, i.e. axis-parallel hypercubes. No normalization is used.

rectangles: The weak hypotheses for AdaBoost are axis-parallel hyper-rectan-
gles. The hypothesis is grown from the optimal hypercube by the greedy
algorithm described in Section 3.2.

1 This is not to be confused with the cross-validation for estimating the test error. No
test examples were used by the stopping criterion.

70 Peter Auer and Ronald Ortner

Table 1. Generalization error (GE) and estimated error (EE) for various combinations
of metric and normalization for the robot data set.

data set cubes rect. median minmax || · ||2 N (0, 1) N (0, I)

AposBCneg GE 0.1429 0 0.1905 0.0476 0.0952 0.0952 0.0952
AposBCneg EE 0.079 0.0752 0.0833 0.0786 0.0786 0.0781 0.0767

AposBDneg GE 0.1429 0.1429 0.1905 0.0476 0.0952 0.0476 0.0476
AposBDneg EE 0.0438 0.0438 0.0919 0.0381 0.0424 0.0381 0.0381

AposCDneg GE 0.2857 0.0526 0.1429 0.1429 0.0476 0.1905 0.1905
AposCDneg EE 0.0805 0.031 0.0448 0.0448 0.081 0.0348 0.0348

BposACneg GE 0 0 0 0 0 0 0
BposACneg EE 0 0 0 0 0 0 0

BposADneg GE 0 0 0 0 0 0 0
BposADneg EE 0 0 0 0 0 0 0

BposCDneg GE 0 0 0 0 0 0 0
BposCDneg EE 0 0 0 0 0 0 0

CposABneg GE 0 0 0 0 0 0 0
CposABneg EE 0 0 0 0 0 0 0

CposADneg GE 0.2857 0.2857 0 0 0.381 0 0
CposADneg EE 0.0333 0.0333 0 0 0.0295 0 0

CposBDneg GE 0 0 0 0 0 0 0
CposBDneg EE 0 0 0 0 0 0 0

DposABneg GE 0 0 0 0 0 0 0
DposABneg EE 0 0 0 0 0 0 0

DposACneg GE 0 0 0.1905 0.1905 0 0 0
DposACneg EE 0 0 0.0324 0.0324 0 0 0

DposBCneg GE 0 0 0.381 0 0 0.2381 0.1905
DposBCneg EE 0 0 0.0443 0 0 0.0329 0.0324

median: The data are preprocessed by linearly transforming each coordinate
separately, such that the range between the two quartiles is mapped to the
interval [−1, 1]. If the two quartiles are equal, the interval is only centered
at the quartiles. Hypercubes are used as weak hypotheses.

minmax: The data are preprocessed by linearly transforming each coordinate,
such that the range [min, max] of each coordinate is mapped to the interval
[−1, 1]. Hypercubes are used as weak hypotheses.

|| · ||2: 2-norm balls are used as weak hypotheses. Data are not normalized.
N (0, 1): Each coordinate is linearly transformed for mean 0 and variance 1.

2-norm balls are then used as weak hypotheses.
N (0, I): A linear transformation of all instances is chosen such that the mean

of all attributes is 0 and the covariance matrix is the identity. Then 2-norm
balls are used as weak hypotheses.

4.4 The Results

The results for the robot data set are shown in Table 1, which displays the
generalization error (GE) calculated by leave-one-out cross-validation, and the

A Boosting Approach to Multiple Instance Learning 71

best estimated generalization error (EE) calculated by the stopping criterion2.
For the various combinations of metric and attribute normalization the results
show a quite good agreement between the ranking of the generalization error
and the ranking of the estimated error.

Table 2. Generalization error of the boosting approach and [19] for the robot data.

data set Boosting [19]

AposBCneg 0 0
AposBDneg 0.0476 0.0952
AposCDneg 0.0476 0.0476
BposACneg 0 0.0952
BposADneg 0 0.0952
BposCDneg 0 0
CposABneg 0 0.0952
CposADneg 0 0
CposBDneg 0 0
DposABneg 0 0.0476
DposACneg 0 0
DposBCneg 0 0

Average 0.0079 0.0396

In Table 2 we compare our results with the algorithm by Scott et al. [19] (cf.
Section 2.1). For this we have chosen that combination of metric and normal-
ization with the minimal estimated error from the stopping criterion. As can be
seen our algorithm outperforms the algorithm of [19].

Table 3. Generalization error (GE) and estimated error (EE) for various combinations
of metric and normalization for the musk data sets.

data set cubes rect. median minmax || · ||2 N (0, 1) N (0, I)

musk1 GE 0.1511 0.0804 0.2293 0.1554 0.1196 0.088 0.3717
musk1 EE 0.0515 0.0131 0.111 0.058 0.0456 0.0708 0.2469

musk2 GE 0.1402 0.0578 0.1912 0.1431 0.1265 0.1294 0.1902
musk2 EE 0.0824 0.0549 0.0737 0.0515 0.0403 0.0309 0.1215

The results for the musk data as summarized in Table 3 are based on a 10-fold
cross-validation, where the values are averaged over ten runs. A comparison of
the different approaches was taken from [2] and is reported in Table 4. Again, the
numbers for the boosting approach are those that have the minimal estimated
error from the stopping criterion. We find that our approach is quite competitive
with these other approaches.

To obtain comparable results with [23] for the protein data sets the tests were
performed in the following way: For each of the 8 sets of negative bags and each
2 The estimated error (EE) is averaged over all runs of the leave-one-out cross-

validation for (GE).

72 Peter Auer and Ronald Ortner

Table 4. Generalization error of the boosting approach and [6, 15] for the musk data.

data set Boosting IAPR[6] DD[15]

musk1 0.08 0.076 0.12
musk2 0.129 0.108 0.16

of the 20 positive bags, a classifier is trained where the set of negative bags and
the remaining 19 positive bags are used as training examples, resulting in 160
classifiers. Then each bag is assigned to the majority class among all classifiers
for which it was not used as training example. The error of this classification
by majority is reported as the generalization error for the positive and nega-
tive bags. The results are summarized in Table 5. With the exception of the
N (0, I)-normalization our boosting approach again outperforms the competing
approach.

Table 5. Generalization error of the boosting approach and [23] for the protein data.

Protein cubes rect. median minmax || · ||2 N (0, 1) N (0, I) [23]

Pos. bags 0 0 0 0 0 0 1 0.25
Neg. bags 0.036 0.095 0.036 0.036 0.036 0.036 0 0.25

5 Conclusion

We presented a boosting approach to multiple instance learning that was inspired
by problems stemming from generic object recognition. In this context the ap-
plication of the AdaBoost algorithm with suitable weak hypotheses worked con-
sistently well. Our approach with balls as weak hypotheses improves over or is at
least competitive to other approaches. We think that the results strongly benefit
from the introduced stopping criterion. The estimated generalization error used
by the stopping criterion also turns out to be a good indicator for choosing a
distance metric and an attribute normalization.

Since – as already mentioned in the introduction – computer vision seems
to be an obvious area of application for multiple instance learning, and due to
the encouraging results so far, we will incorporate our findings in future work
on object recognition problems.

Acknowlegements

This work was supported by the European project LAVA (IST-2001-34405). We
would like to thank Thomas Korimort for implementing the algorithms and
conducting some of the tests.

A Boosting Approach to Multiple Instance Learning 73

References

1. Amar, R.A., Dooly, D.R., Goldman, S.A., Zhang, Q.: Multiple-instance learning
of real-valued data. In: Proceedings of the Eighteenth International Conference on
Machine Learning (ICML 2001), Morgan Kaufmann (2001) 3–10

2. Andrews, S., Tsochantaridis, I., Hofmann T.: Support vector machines for mul-
tiple instance learning. In: Advances in Neural Information Processing Systems
15. Papers from Neural Information Processing Systems (NIPS 2002), MIT Press
(2002)

3. Auer, P.: On learning from multi-instance examples: Empirical evaluation of a
theoretical approach. In: Proceedings of the Fourteenth International Conference
on Machine Learning (ICML 1997), Morgan Kaufmann (1997) 21–29

4. Auer, P., Long, P.M., Srinivasan, A.: Approximating hyper-rectangles: Learning
and pseudorandom sets, J. Comput. Syst. Sci. 57(3): 376-388 (1998)

5. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases
[http://www.ics.uci.edu/˜mlearn/MLRepository.html]. Irvine, CA: University of
California, Department of Information and Computer Science (1998)

6. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance
problem with axis-parallel rectangles. In: Artif. Intell. 89 (1-2): 31–71 (1997)

7. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. In: J. Comput. Syst. Sci. 55(1): 119–139 (1997)

8. Goldman, S.A., Kwek, S.K., Scott, S.D.: Agnostic learning of geometric patterns.
In: J. Comput. Syst. Sci. 62(1): 123–151 (2001)

9. Gärtner, T., Flach, P.A., Kowalczyk, A., Smola, A.J.: Multi-instance kernels. In:
Machine Learning. Proceedings of the Nineteenth International Conference (ICML
2002), Morgan Kaufmann (2002) 179-186

10. Fussenegger, M., Opelt, A., Pinz, A., Auer, P.: Object recognition using segmen-
tation for feature detection. Accepted for ICPR 2004 (2004)

11. Klivans, A., Servedio, R.A.: Learning DNF in time 2Õ(n1/3) In: Proceedings on 33rd
Annual ACM Symposium on Theory of Computing (STOC 2001), ACM (2001)
258-265

12. Littlestone, N.: Learning quickly when irrelevant attributes abound: A new linear
threshold algorithm. In: Machine Learning 2(4): 285-318 (1988)

13. Maron, O.: Learning from ambiguity. Technical Report AITR-1639 (1998)

14. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In:
Advances in Neural Information Processing Systems 10 (NIPS 1997), MIT Press
(1998)

15. Maron, O., Ratan, A.L.: Multiple-instance learning for natural scene classification.
In: Proceedings of the Fifteenth International Conference on Machine Learning
(ICML 1998), Morgan Kaufmann (1998) 341-349

16. Opelt, A., Fussenegger, M., Pinz, A., Auer, P.: Weak hypotheses and boosting for
generic object detection and recognition. In: Computer Vision - ECCV 2004. 8th
European Conference on Computer Vision. Proceedings, Part II. Lecture Notes in
Computer Science 3022, Springer (2004) 71-84

17. Ramon, J., Raedt, L.D.: Multi instance neural networks. In: Proceedings of IMCL-
2000 workshop on Attribute-Value and Relational Learning (2000)

18. Ruffo, G.: Learning single and multiple instance decision trees for computer secu-
rity applications. Doctoral dissertation. Department of Computer Science, Univer-
sity of Turin, Torino, Italy (2000)

74 Peter Auer and Ronald Ortner

19. Scott, S.D., Zhang, J., Brown, J.: On generalized multiple-instance learning. Tech-
nical report UNL-CSE-2003-5, University of Nebraska (2003)

20. Schapire, R.: The boosting approach to machine learning: An overview. In: MSRI
Workshop on Nonlinear Estimation and Classification, Berkeley, CA, Mar. (2001)

21. Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: A new
explanation for the effectiveness of voting methods. In: Ann. Statist. 25(5): 1651–
1686 (1998)

22. Wang, J., Zucker, J.D.: Solving the multiple-instance problem: A lazy learning
approach. In: Proceedings of the Seventeenth International Conference on Machine
Learning (ICML 2000), Morgan Kaufmann, San Francisco, CA (2000) 1119–1126

23. Wang, C., Scott, S.D., Zhang, J., Tao, Q., Fomenko, D.E., Gladyshev, V.N. : A
study in modeling low-conservation protein superfamilies. Technical report UNL-
CSE-2004-0003, University of Nebraska (2004)

24. Zhang, Q., Goldman, S.: EM-DD: An improved multiple-instance learning tech-
nique. In: Advances in Neural Information Processing Systems 14 (NIPS 2001),
MIT Press (2001) 1073–1080

	1 Introduction
	2 Multiple Instance Learning with Boosting
	2.1 Multiple Instance Learning
	2.2 A Boosting Approach

	3 The Algorithm
	3.1 Calculating the Optimal Ball
	3.2 Extension of the Optimal Hypercube

	4 Experiments
	4.1 The Data Sets
	4.2 A Stopping Criterion for AdaBoost
	4.3 Various Combinations of Metric and Attribute Normalization
	4.4 The Results

	5 Conclusion
	References

