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Abstract. Evolutionary algorithms to design fuzzy rules from data
for systems modeling have received much attention in recent literature.
Many approaches are able to find highly accurate fuzzy models. How-
ever, these models often contain many rules and are not transparent.
Therefore, we propose several objectives dealing with transparency and
compactness besides the standard accuracy objective. These objectives
are used to find multiple Pareto-optimal solutions with a multi-objective
evolutionary algorithm in a single run. Attractive models with respect
to compactness, transparency and accuracy are the result.

Keywords: Takagi-Sugeno fuzzy model, Pareto optimality, multi-
objective evolutionary algorithm.

1 Introduction

This paper deals with fuzzy model parameter estimation and structure selection.
In fuzzy model identification, we can, in general, take into account three criteria
to be optimized: compactness, transparency and accuracy. Different measures
for these criteria are proposed here. Compactness is related to the size of the
model, i.e. the number of rules, the number of fuzzy sets and the number of
inputs for each rule. Transparency is related to linguistic interpretability [1l2]
and locality of the rules. Often one is interested in the local behavior of the
global nonlinear model. Such information can be obtained by constraining the
model-structure during identification. Transparency and model interpretability
for data-based fuzzy models received a lot of interest in recent literature [3/J41J5]

Evolutionary Algorithms (EA) [78] have been recognized as appropriate
techniques for multi-objective optimization because they perform a search for
multiple solutions in parallel [QJIOJTT]. EAs have been applied to learn both the
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antecedent and consequent part of fuzzy rules, and models with both fixed and
varying number of rules have been considered [1213]. Also, EAs have been com-
bined with other techniques like fuzzy clustering [14/1516] and neural networks
[L7/18]. This has resulted in many complex algorithms and, as recognized in [I]
and [2], often the transparency and compactness of the resulting rule base is not
considered to be of importance. In such cases, the fuzzy model becomes a black-
box, and one can question the rationale for applying fuzzy modeling instead
of other techniques like, e.g., neural networks. If the fuzzy model or a neural
network is handled as a black-box model it will typically store the information
in a distributed manner among the neurons or fuzzy sets and their associated
connectivity [19].

Most evolutionary approaches to multi-objective fuzzy modeling consist of
multiple EAs, usually designed to achieve a single task each, which are ap-
plied sequentially to obtain a final solution. In these cases each EA optimizes
the problem attending to one criterion separately which is an impediment for
the global search. Simultaneous optimization of all criteria is more appropri-
ate. Other approaches are based on classical multi-objective techniques in which
multiple objectives are aggregated into a single function to be optimized [16]. In
this way a single EA obtains a single compromise solution. Current evolutionary
approaches for multi-objective optimization consist of a single multi-objective
EA, based on the Pareto optimality notion, in which all objectives are optimized
simultaneously to find multiple non-dominated solutions in a single run of the
EA. These approaches can also be considered from the fuzzy modeling perspec-
tive [20]. The advantage of the classical approach is that no further interaction
with the decision maker is required, however it is often difficult to define a good
aggregation function. If the final solution cannot be accepted, new runs of the
EA may be required until a satisfying solution is found. The advantages of the
pareto approach are that no aggregation function has to be defined, and the
decision maker can choose the most appropriate solution according to the cur-
rent decision environment at the end of the EA run. Moreover, if the decision
environment changes, it is not always necessary to run the EA again. Another
solution may be chosen out of the family of non-dominated solutions that has
already been obtained.

In this paper we propose a single multi-objective EA to find, with a low
necessity for human intervention, multiple non-dominated solutions for fuzzy
modeling problems. In section 2, fuzzy modeling and the criteria taken into
account, are discussed. The main components of the multi-objective EA are
described in section 4. Section 5 proposes several optimization models for fuzzy
modeling and a decision making strategy. In section 6, experiments with the EA
for a test problem are shown and compared with results in literature. Section 6
concludes the paper and indicates lines for future research.
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2 Fuzzy Model Identification

2.1 Fuzzy Model Structure

We consider rule-based models of the Takagi-Sugeno (TS) type [21] which are
especially suitable for the approximation of dynamic systems. The rule conse-
quents are often taken to be linear functions of the inputs:

R; :If 21 is A;; and ...z, is A;, then (1)

Ui = Garr + -, GinTn + Ginyry, 1= 1,..., M
Here x = [11,22,...,2,]7 is the input vector, §; is the output of the ith rule,
A;; (7 =1,...,n) are fuzzy sets defined in the antecedent space by membership
functions p4,; : R—=[0,1], ;; € R (j = 1,...,n+ 1) are the consequent parame-

ters, and M is the number of rules. The total output of the model is computed
by aggregating the individual contributions of the rules:

M
= Zm(x)z;i (2)

where p;(x) is the normalized firing strength of the ith rule:

. H?:l HA;; (LL'])
- M n
> im1 H]’:1 KA, (z5)

We apply the frequently used trapezoidal membership functions to describe the
fuzzy sets A;; in the rule antecedents:

jia,, (z) = max (o, min (; Lk )) (1)

ij — Qij  Cij — bij

3)

pi(x)

2.2 Multi-objective Identification

Identification of fuzzy models from data requires the presence of multiple criteria
in the search process. In multi-objective optimization, the set of solutions is
composed of all those elements of the search space for which the corresponding
objective vector cannot be improved in any dimension without degradation in
another dimension. These solutions are called non-dominated or Pareto-optimal.
Given two decision vectors a and b in a universe U, a is said to dominate b if
fi(a) < fi(b), for all objective functions f;, and f;(a) < f;(b), for at least one
objective function f;, for minimization. A decision vector a € U is said to be
Pareto-optimal if no other decision vector dominates a.

The Pareto-optimality concept should be integrated within a decision process
in order to select a suitable compromise solution from all non-dominated alter-
natives. In a decision process, the decision maker expresses preferences which
should be taken into account to identify preferable non-domination solutions. In
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this way, preference articulation implicitly defines a wutility function which dis-
criminates between candidate solutions. Approaches based on weights, goals and
priorities have been used more often. Moreover, preference articulation can be
achieved in different ways depending on how the computation and the decision
processes are combined in the search for compromise solutions. Three broad
classes can be identified, a priori, a posteriori, and progressive articulation of
preferences.

2.3 Rule Set Simplification Techniques

Automated approached to fuzzy modeling often introduce redundancy in terms
of several similar fuzzy sets that describe almost the same region in the domain of
some variable. According to some similarity measure, two or more similar fuzzy
sets can be merged to create a new fuzzy set representative for the merged sets
[22]. This new fuzzy set substitutes the ones merged in the rule base. The merging
process is repeated until fuzzy sets for each model variable cannot be merged,
i.e., they are not similar. This simplification may results in several identical rules,
which are removed from the rule set.

We consider the following similarity measure between two fuzzy sets A and
B:

|AN B

If S(A,B) > s (we use 6s = 0.6) then fuzzy sets A and B are merged in a

new fuzzy set C' as follows:

ac = min{aa,ap}
bC = Osz + (]. - Oé)bB
coc=acqg+ (1 —a)p
de = max{da,dp}

(6)
where « € [0, 1] determine the influence of A and B on the new fuzzy set C.

3 Criteria for Fuzzy Modeling

We consider three main criteria to search for an acceptable fuzzy model: (i)
accuracy, (ii) transparency, and (iii) compactness. It is necessary to define quan-
titative measures for these criteria by means of appropriate objective functions
which define the complete fuzzy model identification.

The accuracy of a model can be measured with the mean squared error:

1 & o
MSE = - > (ke — i) (7)

k=1

where yy, is the true output and gy is the model output for the kth input vector,
respectively, and K is the number of data samples.
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Many measures are possible for the second criterion, transparency. Neverthe-
less, in this paper we only consider one of most significant, similarity, as a first
starting point. The similarity S among distinct fuzzy sets in each variable of the
fuzzy model can be expressed as follows:

S = max S(Aij,Bik),iil,...,n,jil,...,M,kil,...,M (8)
i g,k

Aij # Big

This is an aggregated similarity measure for the fuzzy rule-based model with
the objective to minimize the maximum similarity between the fuzzy sets in each
input domain.

Finally, measures for the third criterion, the compactness, are the number of
rules M and the number of different fuzzy sets L of the fuzzy model. We assume
that models with a small number of rules and fuzzy sets are compact.

In summary, we have considered three criteria for fuzzy modeling, and we
have defined the following measures for these criteria:

Criteria Measures
Accuracy MSE
Transparency S
Compactness M, L

4 Multi-objective Evolutionary Algorithm

The main characteristics of the Multi-Objective Evolutionary Algorithm are the
following:

1. The proposed algorithm is a Pareto-based multi-objective EA for fuzzy
modeling, i.e., it has been designed to find, in a single run, multiple non-
dominated solutions according to the Pareto decision strategy. There is no
dependence between the objective functions and the design of the EA, thus,
any objective function can easily be incorporated. Without loss of generality,
the EA minimizes all objective functions.

2. Constraints with respect to the fuzzy model structure are satisfied by incor-
porating specific knowledge about the problem. The initialization procedure
and variation operators always generate individuals that satisfy these con-
straints.

3. The EA has a variable-length, real-coded representation. Each individual of
a population contains a variable number of rules between 1 and max, where
maz is defined by a decision maker. Fuzzy numbers in the antecedents and
the parameters in the consequent are coded by floating-point numbers.

4. The initial population is generated randomly with a uniform distribution
within the boundaries of the search space, defined by the learning data and
model constraints.
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5. The EA search for among simplified rule sets, i.e, all individuals in the pop-
ulation has been previously simplified (after initialization and variation),
which is an added ad hoc technique for transparency and compactness. So,
all individuals in the population have a similarity S between 0 and 0.6.

6. Chromosome selection and replacement are achieved by means of a variant of
the preselection scheme. This technique is, implicitly, a niche formation tech-
nique and an elitist strategy. Moreover, an explicit niche formation technique
has been added to maintain diversity respect to the number of rules of the
individuals. Survival of individuals is always based on the Pareto concept.

7. The EAs variation operators affect at the individuals at different levels: (i)
the rule set level, (ii) the rule level, and (iii) the parameter level.

4.1 Representation of Solutions and Constraint Satisfaction

An individual I for this problem is a rule set of M rules as follows:

Ry: A oo A Gino--- G Ci(ng)

Ry Avn - Anin G -+ Curn Cur(nyn)

The constraints on the domain of the variables for a fuzzy model come given
by the semantic of a fuzzy number. Thus, a fuzzy number A;; (i = 1,...,M,
j =1,...,n) can be represented by means of four real values a;;, b;j,¢cij,d;j €
[, u;], with a;; < bj; < ¢;; < di;. The consequent parameters are also real
values constrained by a domain, i.e. (;; € [l,u] (i=1,...,M,j=1,...,n+1).
Other constraint are related with the number of rules M of the model, which
can be defined between a lower number 1 and a upper number max fixed by the
decision maker.

In the following sections we describe easy initialization and variation proce-
dures to generate random individuals which satisfy these constraints.

4.2 Initial Population

Initial population is completely random, except that the number of individuals
with M rules, for all M € [1,max], should be between minNS and maxzNS
to ensure diversity respect to the number of rules, where minN.S and maxN S,
with 0 < minNS < % < maxNS < PS (PS is the population size), are the
minimum and maximum niche size respectively (see next subsection).

To generate an individual with M rules, the procedure is as follows: for each

trapezoidal fuzzy number A;; (: = 1,...,M, j = 1,...,n), four random real
values from [l;,u;] are generated and sorted to satisfy the constraints a;; <
bij < ¢jj < d;j. Parameters (;; (i =1,...,M, j=1,...,n+ 1) are real values

generated at random from [I, u]. After, the individual is simplified according to
the procedure described in a previous section.
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4.3 Selection and Generational Replacement

We use a variant of the preselection scheme [8] which has been one of the results
of previous works for general constrained multi-objective optimization problems
by EA [23].

In each iteration of the EA, two individuals are picked at random from the
population. These individuals are crossed nChildren times and children mutated
producing 2 - nChildren offspring. After, the best of the first offspring replaces
the first parent, and the best of the second offspring replaces to the second parent
only if:

- the offspring is better than the parent, and

- the number of rules of the offspring is equal to the number of rules of the
parent, or the niche count of the parent is greater than minNS and the
niche count of the offspring is smaller than maz NS

An individual I is better than another individual J if I dominates J. The
best individual of a collection is any individual I such that there is no other
individual J which dominates I. The niche count of an individual I is the number
of individuals in the population with the same number of rules as I.

Note that the preselection scheme is an implicit niche formation technique to
maintain diversity in the populations because an offspring replaces an individual
similar to itself (one of their parents). Implicit niche formation techniques are
more appropriate for fuzzy modeling than explicit techniques, such as sharing
function, which can provoke an excessive computational time. However, we need
an additional mechanism for diversity with respect to the number of rules of the
individuals in the population. One of the reasons is that the number of rules is
an integer parameter and the variation operators can generate individuals with
quite different numbers of rules of the parents. The preselection scheme is not
effective in such a case. The added explicit niche formation technique ensures
that the number of individuals with M rules, for all M € [1,max], is greater
or equal to minN'S and smaller or equal to mazN.S. Moreover, the preselection
scheme is also an elitist strategy because the best individual in the population
is replaced only by a better one.

4.4 Variation Operators

As already said, an individual is a set of M rules. A rule is a collection of
n fuzzy numbers (antecedent) plus n + 1 real parameters (consequent), and a
fuzzy number is composed of four real numbers. In order to achieve an appropri-
ate exploitation and exploration of the potential solutions in the search space,
variation operators working in the different levels of the individuals are neces-
sary. In this way, we consider three levels of variation operators: rule set level,
rule level, and parameter level. After a sequence of crossovers and mutations,
the offspring are simplified according to the rule set simplication procedure as
described previously.

Five crossover and four mutation operators are used in the EA. In the fol-
lowing, a € [0, 1] is a random number from a uniform distribution.
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Rule Set Level Variation Operators

Crossover 1: Given two parents I; = (Ry... R}, ) and I = (R}... R3.),
this operator exchanges information about the number of rules of the parents
and information about the rules of the parents, but no rule is internally
crossed. Two children are produced: I3 = (R}...RLR}...R?) and I, =
(Riy1.- Ry Ry ... R3,), where a = round(a - My + (1 — ) - M) and
b = round((1 — a) - My + o - Mz). The number of rules of the children is
between M7 and M.

Crossover 2: This operator increases the number of rules of the two chil-
dren as follows: the first child contains all M; rules of the first parent and
min{max —Mj, Ms} rules of the second parent; the second child contains
all My rules of the second parent and min{max —M>s, M7} rules of the first
parent.

Mutation 1: This operator deletes or adds, both with equal probability,
one rule in the rule set. For deletion, one rule is randomly deleted from the
rule set. For rule-addition, one rule is randomly generated, according to the
initialization procedure described, and added to the rule set.

Rule Level Variation Operators

Crossover 3: Given two parents Iy = (R}...R}...R}; ) and I, = (R}
...R%...R3, ), this operator produces two children I3 = (R} ... R} ... R}, )
and Iy = (R}...Rj...R},), with R} = aR} + (1 — @)R? and R} = aRj +
(1—a)R}, where i, j are random indexes from [1, M;] and [1, Ms] respectively.
Crossover 4: Given two parents I = (Rj...R;...R}; ) and I, = (R}
. R? ... R%,,), this operator produce two children I3 = (R} ... R?... Ry;)
and Iy = (R?...R}...R3,), where R} and Rj are obtained with the uni-
form crossover.

Mutation 2: This operator removes a randomly chosen rule and inserts a
new one which is randomly generated by the rule-initialization procedure.

Parameter Level Variation Operators

Crossover 5: Given two parents, and one rule of each parent randomly
chosen, this operator crosses the fuzzy numbers corresponding to a random
input variable or the consequent parameters. The crossover is arithmetic.
Mutation 3: This operator mutates a random fuzzy number or the conse-
quent of a random rule. The new fuzzy number or consequent is generated
at random.

Mutation 4: This operator changes the value of one of the antecedent fuzzy
sets a, b, ¢ or d of a random fuzzy number, or a parameter of the consequent
¢, of a randomly chosen rule. The new value of the parameter is generated
at random within the constraints by a non-uniform mutation.
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5 Optimization Models and Decision Making

After preliminary experiments in which we have checked different optimization
models, the following remarks can be maded:

1. The minimization of the number of rules M of the individuals has negative
influence on the evolution of the algorithm. The reason is than this parameter
is not an independent variable to optimize, as the amount of information in
the population decreases when the average number of rules is low, which
is not good for exploration. Then, we do not minimize the number of rules
during the optimization, but we will take it into account at the end of the
run, in a posteriori articulation of preferences applied to the last population.

2. It is very important to note that a very transparent model will be not ac-
cepted by a decision maker if the model is not accurate. In most fuzzy mod-
eling problems, excessively low values for similarity hamper accuracy, for
which these models are normally rejected. Alternative decision strategies, as
goal programming, enable us to reduce the domain of the objective functions
according to the preferences of a decision maker. Then, we can impose a goal
gs for similarity, which stop minimization of the similarity in solutions for
which goal gg has been reached.

3. The measure L (number of different fuzzy sets) is considerably reduced by
the rule set simplification technique. So, we do not define an explicit objective
function to minimize L.

According to the previous remarks, we finally consider the two following
optimization models:
Optimization Model 1:

Minimize fj = MSE )
Minimize fo = S

Optimization Model 2:

Minimize fi = MSE

Minimize fo = maz{gs, S} (10)

At the end of the run, we consider the following a posteriori articulation
of preferences applied to the last population to obtain the final compromise
solution:

1. Identify the set X* = {z7,...,z;} of non-dominated solutions according to:

Minimize fi = MSE
Minimize fo =S (11)
Minimize f3 = M

2. Choose from X* the most accurate solution z}; remove z; from X*;

3. If solution z is not accurate enough or there is no solution in the set X*
then STOP (no solution satisfies);
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4. If solution x} is not transparent or compact enough then go to step 2;
5. Show the solution z; as output.

Computer aided inspection shown in Figure[3 can help in decisions for steps
2 and 3.

6 Experiments and Results

Consider the 2"? order nonlinear plant studied by Wang and Yen in [24125]:

y(k) = g(y(k — 1), y(k — 2)) + u(k) (12)
with
y(k — Dy(k —2)(y(k — 1) — 0.5)
1+ y2(k—1y?(k—2)

The goal is to approximate the nonlinear component g(y(k — 1),y(k — 2))
of the plant with a fuzzy model. As in [24], 400 simulated data points were
generated from the plant model ([[2). Starting from the equilibrium state (0,0),
200 samples of identification data were obtained with a random input signal
u(k) uniformly distributed in [—1.5,1.5], followed by 200 samples of evaluation
data obtained using a sinusoidal input signal u(k) = sin(27k/25). The resulting
signals and the real surface are shown in Figure [T

g(y(k —=1),y(k —2)) =

(13)

o ; f ; ; A A A
0 50 100 150 280 250 300 350

Fig. 1. Left: Input u(k), unforced system g(k), and output y(k) of the plant in (IZ).
Right: Real surface.

The following values for the parameters of the EA were used in the simula-
tions: population size 100, crossover probability 0.8, mutation probability 0.4,
number of children for the preselection scheme 10, minimum number of individ-
uals for each number of rules 5, and maximum number of individuals for each
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number of rules 20. All crossover and mutation operators are applied with the
same probability. The EA stops when the solutions satisfy the decisor maker.

We show results obtained with the EA by using the optimization models (@)
(maz = 5) and [@Q) (maz = 5, gs = 0.25). Figure [2 shows the non-dominated
solutions in the last population according to (1) for both optimization models
(@) and (I0). One can appreciate the effectiveness of the preselection technique
and the added explicit niche formation technique to maintain diversity in the
populations. The main differences between the optimization models (@) and (I0)
are that with (@) the EA obtains more diversity but the fuzzy models are less
accurate. Goal-based model have the disadvantage that it is necessary to choose,
a priori, a good goal for the problem, although this value is representative of the
maximum degree of overlapping of the fuzzy sets allowed by a decisor.

According to the described decision process, we finally choose a compromise
solution showed in Figure Bl by means of different graphics for the obtained
model. Figure Bl(a) shows the local model. The surface generated by the model
is shown in Figure Bi(b), fuzzy sets for each variable are showed in Figure Blc),
and finally, the identification and validation results as well as the prediction error
are shown in Figure B{(d).

We compared our results, with those obtained by the four different ap-
proaches proposed in [25] and [26]. The best results obtained for in each case
are summarized in Table [, with an indication of the number of rules, number
of different fuzzy sets, consequent type, and obtained M SFE for training and
evaluation data. In [25], the low MSE on the training data is in contrast with
the M SFE for the evaluation data which indicates overtraining. The solution in
[26] is similar to the solutions in this paper with respect to the accuracy, trans-
parency and compactness, but hybrid techniques (initial fuzzy clustering and a
sequence of specific genetic algorithms) were required in [26]. Solutions in this
paper are obtained with a single EA and they have been chosen among different
alternatives, which is an advantage for an appropriate decision process.

Table 1. Fuzzy models for the dynamic plant. All models are of the Takagi-Sugeno

type.

Ref. No. of rules No. of sets |Consequent| MSE train|MSE eval
[25] 36 rules (initial) 12 (B-splines)| Linear |[1.9-10°°[2.9-1073

24 rules (optimized) - Linear |2.0-107%(6.4-107*
[26] 7 rules (initial) 14 (triangular)| Linear |1.8-107°[1.0-107°

5 rules (optimized) |5 (triangular) | Linear |5.0-107*|4.2-107%
This paper’ |5 rules 5 (trapezoidal)| Linear |[2.0-10°[1.3-107°
This paper?|5 rules 6 (trapezoidal)| Linear |5.9-107*8.8-107*
1 Solution corresponds to the solution marked with * in Figure Blleft), and Figure

Bl(left)

2 Solution corresponds to the solution marked with * in Figure P{right), and Figure

Blright)
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Fig. 2. Left: Non-dominated solutions according to (1) obtained with the Pareto-
based multi-objective EA by using the optimization model @). Right: Non-dominated
solutions according to (II) obtained with the Pareto-based multi-objective EA by using
the optimization model (). Solution marked with * is the final compromise solution.

7 Conclusions and Future Research

This paper remarks some initial results in the combination of Pareto-based multi-
objective evolutionary algorithms and fuzzy modeling. Criteria such as accuracy,
transparency and compactness have been taken into account in the optimization
process. Some of these criteria have been partially incorporated into the EA by
means of ad hoc techniques, such as rule set simplification techniques. An im-
plicit niche formation technique (preselection) in combination with other explicit
techniques with low computational costs have been used to maintain diversity.
These niche formation techniques are appropriate in fuzzy modeling if excessive
amount of data are required. Excessive computational times would result if shar-
ing function were used. Elitism is also implemented by means of the preselection
technique. A goal based approach has been proposed to help to obtain more ac-
curate fuzzy models. Results obtained are good in comparison with other more
complex techniques reported in literature, with the advantage that the proposed
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Fig. 3. Accurate, transparent and compact fuzzy models for the plant model ([I2)). Left:
Final compromise solution obtained with the Pareto-based multi-objective EA by using
the optimization model ([@) and a posteriori decision process. Right: Final compromise
solution obtained with the Pareto-based multi-objective EA by using the optimization
model ([ and a posteriori decision process.
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technique identifies a set of alternative solutions. We also proposed an easy de-
cision process with a posteriori articulation of preferences to choose finally a
compromise solution.

One of the main differences between the proposed EA and other approaches
for fuzzy modeling is the reduced complexity because we use a single EA for
generating, tuning and simplification processes. Moreover, human intervention
is only required at the end of the run to choose one of the multiple non-dominated
solutions found by the EA.

In our future works we will consider other and more complex fuzzy modeling
test problems in order to check the robustness of the EA, other measures to opti-
mize transparency, e.g., similarity in the consequent domain instead or together
with of the antecedent domain, scalability of the algorithm, and applications in
the real word by means of research projects.
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