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Abstract. One advantage of evolutionary multiobjective optimization (EMO)
algorithms over classical approaches is that many non-dominated solutions can
be simultaneously obtained by their single run. This paper shows how this
advantage can be utilized in genetic rule selection for the design of fuzzy rule-
based classification systems. Our genetic rule selection is a two-stage approach.
In the first stage, a pre-specified number of candidate rules are extracted from
numerical data using a data mining technique. In the second stage, an EMO
algorithm is used for finding non-dominated rule sets with respect to three
objectives: to maximize the number of correctly classified training patterns, to
minimize the number of rules, and to minimize the total rule length. Since the
first objective is measured on training patterns, the evolution of rule sets tends
to overfit to training patterns. The question is whether the other two objectives
work as a safeguard against the overfitting. In this paper, we examine the effect
of the three-objective formulation on the generalization ability (i.e.,
classification rates on test patterns) of obtained rule sets through computer
simulations where many non-dominated rule sets are generated using an EMO
algorithm for a number of high-dimensional pattern classification problems.

1  Introduction

Fuzzy rule-based systems are universal approximators of nonlinear functions as multi-
layer feedforward neural networks. These two models have been applied to various
problems such as control, function approximation and pattern classification. The main
advantage of fuzzy rule-based systems is their comprehensibility because each fuzzy
rule is linguistically interpretable. In many studies on the design of fuzzy rule-based
systems, however, emphasis has been mainly placed on their accuracy rather than
their comprehensibility. Thus the performance maximization has been the primary
objective. Recently the tradeoff between the accuracy and the comprehensibility was
discussed in some studies [20], [21], [26]-[29]. While those studies took into account
several criteria related to the accuracy and the comprehensibility, the design of fuzzy
rule-based systems was handled in the framework of single-objective optimization.
That is, those studies tried to find a single fuzzy rule-based system by considering
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both the accuracy and the comprehensibility. One of the first studies on fuzzy rule-
based systems in the framework of multiobjective optimization was a two-objective
rule selection [9] where genetic algorithms were used for finding non-dominated rule
sets with respect to the classification accuracy and the number of fuzzy rules. The
two-objective rule selection was extended to the case of three objectives [12] where
the total rule length was considered as the third objective in addition to the above-
mentioned two objectives in [9]. See [2] for further discussions on the tradeoff
between the accuracy and the comprehensibility of fuzzy rule-based systems.

If compared with standard optimization problems, an additional difficulty in the
design of classification systems is that the maximization of any accuracy measure
does not always mean the maximization of their actual performance. This is because
the accuracy of classification systems is measured on training patterns while their
actual performance should be measured on unseen test patterns. That is, any accuracy
measure is just an estimation of the actual performance. The maximization of any
accuracy measure often leads to the overfitting to training patterns, which degrades
the actual performance of classification systems on test patterns. Thus we need some
sort of safeguard for preventing the overfitting. A weighted sum of accuracy and
complexity measures is often used as a safeguard against the overfitting to training
patterns. This paper examines the usefulness of multiobjective formulations as a
safeguard. In the three-objective formulation in [12], the number of fuzzy rules and
their total length were used as complexity measures together with an accuracy
measure. While those complexity measures were originally introduced for obtaining
comprehensible fuzzy rule-based systems, we examine their usefulness as a safeguard
against the overfitting. That is, we examine the effect of those complexity measures in
the three-objective formulation on the generalization ability (i.e., classification rates
on test patterns) of obtained fuzzy rule-based classification systems.

In this paper, we first briefly describe fuzzy rules and fuzzy reasoning for fuzzy
rule-based classification in Section 2. Then we explain our two-stage approach [16] to
the design of fuzzy rule-based systems in Section 3. In the first stage, a pre-specified
number of fuzzy rules are generated as candidate rules from training patterns using a
data mining technique. In the second stage, non-dominated rule sets are found from
the candidate rules by an EMO algorithm. Simulation results on several data sets are
reported in Section 4 where the generalization ability of obtained rule sets on test
patterns is examined. Simulation results clearly show that the two complexity
measures improve not only the comprehensibility of obtained rule sets but also their
generalization ability on test patterns. Finally Section 5 summarizes this paper.

2  Fuzzy Rule-Based Classification Systems

Let us assume that we have m training patterns )...,,( 1 pnpp xx=x , mp ,...,2,1=
from M classes where pix  is the attribute value of the p-th training pattern for the i-th
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attribute ( ni 1,2,...,= ). For our n-dimensional M-class pattern classification problem,
we use fuzzy rules of the following form:

Rule qR : If 1x  is 1qA  and  ...  and nx  is qnA  then Class qC  with qCF ,  (1)

where qR  is the label of the q-th rule, )...,,( 1 nxx=x  is an n-dimensional pattern
vector, qiA  is an antecedent fuzzy set (i.e., linguistic value such as small and large),

qC  is a class label, and qCF  is a rule weight. Fuzzy rules of this type were first used
for classification problems in [13]. For other types of fuzzy rules, see [4], [11], [23].

We define the compatibility grade of each training pattern px  with the antecedent
part )...,,( 1 qnqq AA=A  using the product operator as

)(...)()()( 21 21 pnApApAp xxx
qnqqq

µµµµ ⋅⋅⋅=xA ,  mp ...,,2,1= ,  (2)

where )( ⋅
qiAµ  is the membership function of qiA . For determining the consequent

class qC , we calculate the confidence of the fuzzy association rule “ hq Class⇒A ”
for each class as an extension of its non-fuzzy version [1] as follows [8], [19]:

∑∑
=∈

=⇒
m

p
p

h
pq q

p
q

hc
1Class

)()()Class( xxA A
x

A µµ ,  Mh ...,,2,1= .  (3)

The confidence is the same as the fuzzy conditional probability [30]. The consequent
class qC  is specified by identifying the class with the maximum confidence:

}1,2,...,|)Class({max)Class( MhhcCc qqq =⇒=⇒ AA .  (4)

On the other hand, the rule weight qCF  is specified as follows:

∑
≠
=

⇒−⇒=
M

Ch
h

qqqq

q

hcCcCF
1

)Class()Class( AA .  (5)

The rule weight of each fuzzy rule has a large effect on the classification ability of
fuzzy rule-based systems [10]. There are several alternative definitions of rule
weights (see [17]). Better results were obtained in [17] from the above definition in
(5) than the direct use of the confidence (i.e., )Class( qqq CcCF ⇒= A ) when we used
a single winner-based method for classifying new patterns.

In this paper, we use a single winner-based fuzzy reasoning method [13]. For
other fuzzy reasoning methods for pattern classification, see [4], [11], [23]. Let S be
the set of fuzzy rules in our fuzzy rule-based system. A single winner rule wR  is
chosen from the rule set S for an input pattern px  as

}|)(max{)( SRCFCF qqpwp qw
∈⋅=⋅ xx AA µµ .  (6)

Since the winner rule is chosen based on not only the compatibility grade but also the
rule weight, high classification accuracy can be achieved by adjusting the rule weight
of each fuzzy rule without modifying each antecedent fuzzy set [10].
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3  Heuristic Rule Extraction and Genetic Rule Selection

Genetic rule selection was proposed for designing fuzzy rule-based classification
systems with high accuracy and high comprehensibility in [14], [15]. A small number
of fuzzy rules were selected from a large number of candidate rules based on a scalar
fitness function defined as a weighted sum of the number of correctly classified
training patterns and the number of fuzzy rules. A two-objective genetic algorithm
was used in [9] for finding non-dominated rule sets. Genetic rule selection was further
extended to the following three-objective optimization problem in [12]:

Maximize )(1 Sf , minimize )(2 Sf , and minimize )(3 Sf ,  (7)

where S is a subset of candidate rules, )(1 Sf  is the number of correctly classified
training patterns by the rule set S, )(2 Sf  is the number of fuzzy rules in S, and )(3 Sf
is the total rule length of fuzzy rules in S. The number of antecedent conditions of
each fuzzy rule is referred to as the rule length in this paper. As clearly shown in [12],
the use of the average rule length as the third objective )(3 Sf  leads to counter-
intuitive results. Thus we use the total rule length as )(3 Sf  in (7).

When we use K linguistic values and “don’t care” as antecedent fuzzy sets, the
total number of possible combinations of antecedent fuzzy sets is nK )1( + . In early
studies [9], [14], [15], all combinations were examined for generating candidate rules.
Thus genetic rule selection was applicable only to low-dimensional problems (e.g.,
iris data with four attributes). On the other hand, only short fuzzy rules were
examined for generating candidate rules in [12] where genetic rule selection was
applied to higher-dimensional problems (e.g., wine data with 13 attributes).

In our former study [16], we suggested the use of a data mining technique for
extracting a pre-specified number of candidate rules in a heuristic manner. That is,
genetic rule selection was extended to a two-stage approach with heuristic rule
extraction and genetic rule selection. Our two-stage approach is applicable to high-
dimensional problems (e.g., sonar data with 60 attributes).

3.1  Heuristic Rule Extraction

In the field of data mining, association rules are often evaluated by two rule
evaluation criteria: support and confidence. In the same manner as the fuzzy version
of confidence in (3), the definition of support [1] can be also extended to the case of
fuzzy association rules as follows [8], [19]:

∑
∈

=⇒
h

pq
p

qm
hs

Class
)(

1
)Class(

x
A xA µ .  (8)

The product of the confidence and the support was used in our former study [16]
on the two-stage approach. Seven heuristic criteria were compared with each other in
[18] where good results were obtained from the following criterion:
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∑
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SLAVE )Class()Class()( AA .  (9)

This is a modified version of a rule evaluation criterion used in an iterative fuzzy
GBML (genetics-based machine learning) algorithm called SLAVE [3], [7].

In our heuristic rule extraction, a pre-specified number of candidate rules with the
largest values of the SLAVE criterion are found for each class. For designing fuzzy
rule-based systems with high comprehensibility, only short rules are examined as
candidate rules. The restriction on the rule length is consistent with the third objective
(i.e., the total rule length) of our three-objective rule selection problem in (7).

3.2  Genetic Rule Selection

Let us assume that N fuzzy rules have been extracted as candidate rules using the
SLAVE criterion. A subset S of the N candidate rules is handled as an individual in
EMO algorithms, which is represented by a binary string of the length N as

NsssS ⋅⋅⋅= 21 ,      (10)

where 1=js  and 0=js  mean that the j-th candidate rule is included in S and
excluded from S, respectively.

A simple multiobjective genetic algorithm [24] based on a scalar fitness function
with random weights was used in our former studies [9], [12], [16]. Recently several
EMO algorithms with much higher search ability have been proposed (for example,
NSGA-II [5], PAES [22], and SPEA [32]). Since each rule set is represented by a
binary string in our three-objective rule selection problem in (7), most EMO
algorithms are applicable. In this paper, we use the NSGA-II because its high search
ability has been demonstrated in [5] and its implementation is relatively easy.

We use two problem-specific heuristic tricks in the NSGA-II. One is biased
mutation where a larger probability is assigned to the mutation from 1 to 0 than that
from 0 to 1. This is for efficiently decreasing the number of fuzzy rules in each rule
set. The other is the removal of unnecessary rules. Since we use the single winner-
based method for classifying each pattern, some fuzzy rules in S may be chosen as
winner rules for no patterns. We can remove those fuzzy rules without degrading the
first objective (i.e., the number of correctly classified training patterns). At the same
time, the second objective (i.e., the number of fuzzy rules) and the third objective
(i.e., the total rule length) are improved by removing unnecessary rules. Thus we
remove all fuzzy rules that are not selected as winner rules for any training patterns
from the rule set S. The removal of unnecessary rules is performed after the first
objective is calculated for each rule set and before the second and third objectives are
calculated.
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4  Computer Simulations

4.1  Data Sets

We used six data sets in Table 1 available from the UCI ML repository (http://www.
ics.uci.edu~mlearn/). Data sets with missing values are marked by “*” in the third
column of Table 1. Since we did not use incomplete patterns with missing values, the
number of patterns in the third column does not include those patterns with missing
values. As benchmark results, we cited simulation results by Elomaa and Rousu [6] in
Table 1. They applied six variants of the C4.5 algorithm [25] to 30 data sets in the
UCI ML repository. The performance of each variant was examined by ten iterations
of the whole ten-fold cross-validation (10-CV) procedure [25], [31]. We show in the
last two columns of Table 1 the best and worst error rates on test patterns among the
six variants reported in [6] for each data set.

Table 1. Data sets used in our computer simulations

Error rate by C4.5 in [6]
Data set

Number of
attributes

Number of
patterns

Number of
classes      Best               Worst

Breast W   9   683* 2   5.1   6.0
Diabetes   8 768 2 25.0 27.2

Glass   9 214 6 27.3 32.2
Heart C 13     97* 5 46.3 47.9
Sonar 60 208 2 24.6 35.8
Wine 13 178 3   5.6   8.8

* Incomplete patterns with missing values are not included.

4.2  Simulation Conditions

We applied our two-stage approach to six data sets in Table 1. All attribute values
were normalized into real numbers in the unit interval [0, 1]. As antecedent fuzzy sets,
we used 14 triangular fuzzy sets generated from four fuzzy partitions with different
granularities in Fig. 1 because we did not know an appropriate granularity of the
fuzzy partition for each attribute. In addition to the 14 triangular fuzzy sets, we also
used “don’t care” as an additional antecedent fuzzy set. We generated 300 fuzzy
rules of the length two or less for each class of the sonar data set as candidate rules in
a greedy manner using the SLAVE criterion. That is, the best 300 candidate rules with
the largest values of the SLAVE criterion were found for each class. For the other
data sets, we generated 300 fuzzy rules of the length three or less for each class. Thus
the total number of candidate rules was 300M where M is the number of classes.

The NSGA-II was employed for finding non-dominated rule sets from 300M
candidate rules. We used the following parameter values in the NSGA-II:



614         H. Ishibuchi and T. Yamamoto

Population size: 200 strings,
Crossover probability: 0.8,
Biased mutation probabilities: Mp 300/1)10(m =→   and  =→ )01(mp 0.1,
Stopping condition: 5000 generations.

We also examined the combination of 2000 strings and 500 generations. Almost the
same results were obtained from this combination and the above parameter values.

For evaluating the generalization ability of obtained rule sets, we used the 10-CV
technique as in [6]. First each data set was randomly divided into ten subsets of the
same size. One subset was used as test patterns while the other nine subsets were used
as training patterns. Our two-stage approach was applied to training patterns for
finding non-dominated rule sets. The generalization ability of obtained rule sets was
evaluated by classifying test patterns. This train-and-test procedure was iterated ten
times so that all the ten subsets were used as test patterns. As in [6], we iterated the
whole 10-CV procedure ten times using different data partitions. Thus our two-stage
approach was executed 100 times in total for each data set.
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Fig. 1. Four fuzzy partitions used in our computer simulations

4.3  Simulation Results

Wisconsin Breast Cancer Data Set. The NSGA-II was applied to the Wisconsin
breast cancer data set (Breast W in Table 1) 100 times. From each run of the NSGA-
II, 11.5 non-dominated rule sets were obtained on the average. We calculated error
rates of each non-dominated rule set on training patterns and test patterns. Simulation
results are summarized in Table 2 where the last column shows the number of runs
from which the corresponding rule sets (with respect to the number of fuzzy rules and
the average rule length) were obtained. For example, rule sets including four rules of
the average length 1.50 were obtained from 72 out of 100 runs. We omit from Table 2
some rare combinations of the number of fuzzy rules and the average rule length that
were obtained from only 30 (out of 100) runs or less.
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Table 2. Performance of obtained rule sets for the Wisconsin breast cancer data set

Average error rateNumber
of rules

Average
length Training Test

Number
of runs

0 0.00 100.00 100.00 100
1 1.00 35.43 35.43 100
2 1.00 5.25 6.13 100
2 1.50 3.34 3.47 100
2 2.00 3.15 3.87 92
3 1.33 2.85 4.19 79
3 1.67 2.64 4.33 92
4 1.50 2.42 4.41 72
4 1.75 2.32 5.09 36
5 1.40 2.21 4.43 35
5 1.60 2.05 4.51 61
5 1.80 2.07 4.02 35
6 1.50 1.91 4.19 35
6 1.67 1.87 3.97 45

We can see from Table 1 and Table 2 that the generalization ability of many rule
sets outperforms the best result of the C4.5 algorithm in Table 1 (i.e., 5.1% error rate).
For visually demonstrating the tradeoff between the accuracy and the complexity,
error rates on training patterns in Table 2 are shown in Fig. 2 (a) where the smallest
error rate is denoted by a closed circle for each number of fuzzy rules. Thus closed
circles in Fig. 2 (a) can be viewed as simulation results obtained from the two-
objective formulation without the third objective (i.e., total rule length). From this
figure, we can observe a clear tradeoff between the error rate on training patterns and
the number of fuzzy rules. If we use a weighted sum of the accuracy on training
patterns and the number of fuzzy rules as a scalar fitness function, one of the closed
circles is obtained as a single optimal solution. For example, the right-most closed
circle may be obtained when the weight for the accuracy is very large. On the other
hand, error rates on test patterns are shown in Fig. 2 (b). Rule sets corresponding to
closed circles in Fig. 2 (a) are also denoted by closed circles in Fig. 2 (b). From Fig. 2
(b), we can observe the overfitting due to the increase in the number of fuzzy rules.
That is, error rates on test patterns in Fig. 2 (b) tend to increase with the number of
fuzzy rules while error rates on training patterns in Fig. 2 (a) monotonically decrease.
Moreover we can notice another kind of overfitting in Fig. 2 (b) from the difference
between the closed circle and the smallest error rate on test patterns for each number
of fuzzy rules. That is the overfitting due to the increase in the average rule length.

For demonstrating the overfitting due to the increase in the average rule length, a
part of the simulation results in Table 2 are depicted in Fig. 3. It should be noted that
the horizontal axis of Fig. 3 is the average rule length while it was the number of
fuzzy rules in Fig. 2. Fig. 3 (a) and Fig. 3 (b) show error rates of obtained rule sets
with two and four fuzzy rules, respectively. From Fig. 3, we can see that error rates on
test patterns increased as the average rule length increased in some cases.
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   (a) Error rates on training patterns.    (b) Error rates on test patterns.

Fig. 2. Error rates of obtained rule sets for the Wisconsin breast cancer data set
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(a) Rule sets with two rules.      (b) Rule sets with four rules.

Fig. 3. Error rates of obtained rule sets with the same number of fuzzy rules and different
average rule length for the Wisconsin breast cancer data set

Diabetes Data Set. In the same manner as Fig. 2 and Fig. 3, simulation results on the
diabetes data set (Diabetes in Table 1) are summarized in Fig. 4 and Fig. 5. In Fig. 4
(a), we can observe a clear tradeoff between the accuracy on training patterns and the
number of fuzzy rules. On the other hand, error rates on test patterns increase in some
cases in Fig. 4 (b) as the number of fuzzy rules increases. That is, we can observe the
overfitting due to the increase in the number of fuzzy rules in Fig. 4 (b). The
overfitting due to the increase in the average rule length is clear in Fig. 5 (b) where
we show error rates by obtained rule sets including four rules. We can see from the
comparison between Fig. 4 (b) and Table 1 that the generalization ability of many rule
sets is slightly inferior to the best result of the C4.5 algorithm (i.e., 25.0% error rate)
and slightly superior to its worst result (i.e., 27.2% error rate).
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  (a) Error rates on training patterns.    (b) Error rates on test patterns.

Fig. 4. Error rates of obtained rule sets for the diabetes data set
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(a) Rule sets with two rules.      (b) Rule sets with four rules.

Fig. 5. Error rates of obtained rule sets with the same number of fuzzy rules and different
average rule length for the diabetes data set

Glass Identification Data Set. Simulation results on the glass identification data set
(Glass in Table 1) are summarized in Fig. 6 and Fig. 7. In Fig. 6 (b), the overfitting
due to the increase in the number of fuzzy rules is not clear. This result may suggest
that the generalization ability of fuzzy rule-based systems can be further improved by
using more fuzzy rules and/or adjusting each fuzzy rule (e.g., adjusting the rule
weight). This is also suggested from the fact that the generalization ability on test
patterns in Fig. 6 (b) is significantly inferior to the best result of the C4.5 algorithm in
Table 1 (i.e., 27.3% error rate). On the other hand, we can observe the overfitting due
to the increase in the average rule length in Fig. 7. For this data set, Sanchez et al.[27]
reported a 42.1% error rate on test patterns by fuzzy rule-based systems with 8.5 rules
on the average. Many rule sets in Fig. 6 (b) outperform the reported result in [27].
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  (a) Error rates on training patterns.    (b) Error rates on test patterns.

Fig. 6. Error rates of obtained rule sets for the glass identification data set
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(a) Rule sets with five rules.      (b) Rule sets with seven rules.

Fig. 7. Error rates of obtained rule sets with the same number of fuzzy rules and different
average rule length for the glass identification data set

Cleveland Heart Disease Data Set. Simulation results on the Cleveland heart disease
data set (Heart C in Table 1) are summarized in Fig. 8 and Fig. 9. In Fig. 8 (a), we can
observe a clear tradeoff between the accuracy on training patterns and the number of
fuzzy rules. On the other hand, the overfitting due to the increase in the number of
fuzzy rules is clear in Fig. 8 (b). That is, error rates on test patterns tend to increase
with the number of fuzzy rules in Fig. 8 (b) while error rates on training patterns in
Fig. 8 (a) monotonically decrease. The worst result on test patterns in Fig. 8 (b)
corresponds to the best result on training patterns in Fig. 8 (a). The overfitting due to
the increase in the average rule length is also clear in Fig. 9. The generalization ability
of some rule sets in Fig. 8 (b) outperforms the best result of the C4.5 algorithm in
Table 1 (i.e., 46.3% error rate).
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  (a) Error rates on training patterns.    (b) Error rates on test patterns.

Fig. 8. Error rates of obtained rule sets for the Cleveland heart disease data set
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(a) Rule sets with six rules.      (b) Rule sets with ten rules.
Fig. 9. Error rates of obtained rule sets with the same number of fuzzy rules and different
average rule length for the Cleveland heart disease data set

Sonar Data Set. Simulation results on the sonar data set (Sonar in Table 1) are
summarized in Fig. 10. We can observe the tradeoff between the accuracy and the
number of fuzzy rules in Fig. 10. The overfitting due to the increase in the number of
fuzzy rules is not observed in Fig. 10 (b). The overfitting due to the increase in the
average rule length is observed in the case of three fuzzy rules in Fig. 10 (b). The
generalization ability of some rule sets in Fig. 10 (b) outperforms the best result of the
C4.5 algorithm in Table 1 (i.e., 24.6% error rate).
Wine Recognition Data Set. Simulation results on the wine recognition data set
(Wine in Table 1) are summarized in Fig. 11. The generalization ability of some rule
sets in Fig. 11 (b) outperforms the best result of the C4.5 algorithm in Table 1 (i.e.,
5.6% error rate).
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  (a) Error rates on training patterns.    (b) Error rates on test patterns.

Fig. 10. Error rates of obtained rule sets for the sonar data set
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Fig. 11. Error rates of obtained rule sets for the wine recognition data set

5  Concluding Remarks

We demonstrated the effect of a three-objective formulation of fuzzy rule selection on
the generalization ability of obtained rule sets through computer simulations on six
data sets. We observed clear overfitting to training patterns due to the increase in the
number of fuzzy rules in computer simulations on three data sets: Wisconsin, diabetes
and Cleveland. For those data sets, the second objective of our three-objective
formulation (i.e., minimization of the number of fuzzy rules) can work as a safeguard
against the overfitting. We also observed the overfitting due to the increase in the rule
length in computer simulations on all the six data sets. The two-objective formulation
is not enough for those data sets where the third objective (i.e., minimization of the
total rule length) is necessary as a safeguard against the overfitting. Except for the
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glass identification data set and the sonar data set, the maximization of the accuracy
on training patterns did not lead to the maximization of the accuracy on test patterns.
Thanks to the three-objective formulation, we found fuzzy rule-based systems with
high generalization ability for many data sets. Empirical analysis in this paper on the
relation between the generalization ability of fuzzy rule-based systems and their
complexity strongly relied on the ability of EMO algorithms to simultaneously find
many non-dominated rule sets. Without this ability of EMO algorithms, we could not
efficiently examine many non-dominated rule sets. Simulation results reported in this
paper suggest the potential usefulness of EMO algorithms in the field of knowledge
discovery and data mining.
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