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Abstract. MultiObjective Evolutionary Algorithms (MOEAs) may cause
a premature convergence if the selective pressure is too large, so, MOEAs
usually incorporate a niche-formation procedure to distribute the pop-
ulation over the optimal solutions and let the population evolve until
the Pareto-optimal region is completely explored. This niche-formation
scheme is based on a distance index that measures the similarity between
two solutions in order to decide if both may share the same niche or not.
The similarity criterion is usually based on a Euclidean norm (given that
the two solutions are represented with a vector), nevertheless, as this
paper will explain, this kind of metric is not adequate for RBFNNs, thus
being necessary a more suitable distance index. The experimental results
obtained show that a MOEA including the proposed distance index is
able to explore su�ciently the Pareto-optimal region and provide the
user a wide variety of Pareto-optimal solutions.

1 Introduction

The automatic optimization of a RBFNNs from training data [8, 9, 18, 19] is a
problem in which two clearly competing objectives must be satis�ed. The model's
prediction error must be minimized in order to achieve a well �tted model, while
the number of Radial Basis Functions (RBFs) should be as low as possible to
obtain a reliable interpolator. The problem here is how to satisfy both objectives
simultaneously. Improving one of them will probably worsen the other. This
kind of problem is known as a Multi-Objective Problem (MOP) [16, 11, 2, 10],
and their solutions are usually sub-optimal for each objective in particular, but
�acceptable� taking all the objectives into account, where �acceptable� is totally
subjective and problem-dependent.

The algorithms proposed in the literature to construct RBFNNs from exam-
ples usually try to �nd a unique model with a compromise between its complexity
and its prediction error. This is not an adequate approach. In MOPs there is
usually more than one alternative optimal solution (each making di�erent com-
promises between multiple objectives) that can be considered equivalent. Thus,
it is very di�cult to adapt conventional optimization techniques to solve MOPs
because they were not designed to deal with more than one solution simultane-
ously [6]. Nevertheless, Evolutionary Algorithms (EAs) maintain a population
of potential solutions for the problem, thus making it easier to adapt them to
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solve MOPs [6]. In particular, the �tness of the solutions must be adapted to
comprise all the objectives to be satis�ed and new mutation operators must be
designed to alter the structure of RBFNNs. With these changes, an EA becomes
a MOEA able to search the Pareto-optimum region and �nd a wide variety of
solutions with di�erent compromises between the competing objectives.

2 Evolving competing objectives

The great di�erence between single objective and multiple objective problems
is that the set of solutions is not completely ordered for MOPs. In the case of
RBFNNs, as the complexity of a net gets higher, it can achieve a lower approxi-
mation error, but it loses generalization properties, so if we want to satisfy both
objectives (low approximation error and high generalization properties), there
will exist a set of Pareto-optimal solutions with di�erent compromises between
the competing objectives. Thus, good multiobjective algorithm should �nd as
many Pareto-optimum solutions as possible, to provide the �nal user with the
possibility of choosing the right solution following his own criteria.

There have been proposed several approaches in the literature to adapt EA
to MOPs, such as the MOGA presented in [6] or the NSGA described in [21]. In
[8] we used the approach proposed in [6], which de�nes the concept of rank of a
solution as:

rank(�j) = 1 + domj (1)

where domj represents the number of solutions dominating �j in the current
population 1. Note that rank improves when becomes smaller, that is, as the
rank of �j gets a lower value, �j represents a better solution for the MOP, thus,
all the Pareto-optimum solutions will be assigned a rank value of one.

This simple modi�cation in the �tness evaluation of the RBFNNs allows a
generic EA to solve an MOP transparently, that is, without changing any other
of its components, although the design of expert evolutionary operators can
improve the search results, as reported in [9]. The shortcoming of this scheme
is that at the end of the ranking procedure there may exist many solutions
having the same rank, so, the selection procedure will maintain or delete blocks
of solutions for the next generation, what is likely to produce a large selection
pressure which may cause a premature convergence of the algorithm [7].

To avoid this premature convergence problem, MOGA and our MOEA [8] use
a niche-formation method to distribute the population over the Pareto-optimal
region. The di�erence between MOGA and our MOEA is that the former per-
forms a �tness sharing step based on the objective function values and our
MOEA uses the parameter values for this step, thus maintaining the diversity
in the parameter set rather than in the objective function values. This change
allows to distinguish two di�erent solution with the same �tness value, but needs

1 A solution �j dominates another solution �k if �j is better or equal than �k for all the
objectives in the MOP (approximation error and generalization properties)
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a phenotypic distance index to estimate the similarity between two solutions of
the problem.

Two solutions are considered belonging to the same niche if their phenotypic
distance is lower than the threshold �sh [4]. The idea behind this sharing scheme
is to divide the population into several niches formed by similar solutions, and
modify the �tness of the members of a niche inversely proportional to the size
of the niche. To carry out this task, the following equation is applied [21]:

Sh (d(�j ; �k)) =

(
1�

�
d(�j;�k)
�sh

�2
; if d(�j ; �k) < �sh

0; otherwise
(2)

where d(�j ; �k) denotes the phenotypic distance index between �j and �k described
below.

Finally, the �tness of every solution is modi�ed according to:

f 0

j = fj �

nX
k=1

Sh (d(�j ; �k)) (3)

being n the size of the population.

3 A Phenotypic Distance Index for RBFNNs

Most of the approaches in the literature use a Euclidean norm in the parameter
space to estimate the phenotypic distance between two solutions, given that these
two solutions are coded as arrays of parameters [5, 4, 21], but this metric is not
suitable for RBFNNs. Using this metric, two identical RBFNNs with the same
RBFs (centers and radii), but coded in di�erent positions in the array of RBFs,
would obtain a distance di�erent than 0. This simple example demonstrate the
necessity of a more adequate phenotypic distance for this problem.

Another issue to consider is that in the MOP that we are solving, two di�erent
solutions may have di�erent complexity (number of RBFs), thus, the distance
index must be designed having this fact in mind. Taking these considerations
into account, this paper proposes the following phenotypic distance index:

d(�j ; �k) =

mjP
i1=1

min
�cji1 � cki2

 : 1 � i2 � mk

	
mj +mk

+

+

mkP
i2=1

min
�cki2 � cji1

 : 1 � i1 � mj

	
mj +mk

(4)

where mj and mk are respectively the number of RBFs in �j and �k, and cji1 y
cki2 their centers. Basically, this index calculates the Euclidean norm between
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each center in one RBFNN and its closest center the other RBFNN, and then
calculates the mean value of this measures.

The proposed phenotypic index is not a�ected by the coding order of the
RBFs in the solutions, di�erent number of RBFs in the nets and it is also robust
against RBFNNs with several identical RBFs. Thus, it is able to distribute the
solutions over the Pareto-optimal region and provide the user a wide variety of
possibilities, as shown in the following section.

4 Experimental Results

As described above, the MOEA [8] with the new phenotypic distance index
is able to obtain in only one execution several optimum solutions for di�erent
con�gurations (a Pareto-optimum frontier of solutions) for a given training set
of examples. In this case, the examples belong to the Mackey-Glass time-delay
di�erential equation [13]:

ds(t)

dt
= � �

s(t� �)

1 + s10(t� �)
� �s(t) (5)

Following previous studies [22], the parameters were �xed to � = 0:2, � = 0:1,
thus obtaining a chaotic time series with no clearly de�ned period; it does not
converge or diverge, and is very sensitive to initial conditions.

As in [12], the time series values at integer points were obtained applying the
fourth-order Runge-Kutta method to �nd the numerical solution for the above
equation. The values s(0) = 1:2, � = 17, and s(t) = 0 for t < 0 were assumed.
This data set can be found in the �le mgdata.dat belonging to the Fuzzy Logic
Toolbox of Matlab 5.

Following the conventional settings to perform a long term prediction of these
time series, we predict the value s(t + 85) from the current value s(t) and the
past values s(t � 6), s(t � 12), and s(t � 18); thus, the training vectors for the
model have the following format:

[s(t� 18); s(t� 12); s(t� 6); s(t); s(t+ 85)] (6)

As argued by Moody and Darken in [15], this prediction problem is a signi�-
cant challenge in which classical methods do little better than chance, and thus
the use of RBFNNs is justi�ed.

The �rst 500 input vectors were used to train the model and the next 500
vectors were used to test the RBFNNs obtained. The algorithm was run several
times with a population of 25 solutions for 1000 generations, and the Levenberg-
Marquardt minimization algorithm was applied to the best solutions found to
�ne-tune their parameters. Table 1 compares the obtained result with other
approaches presented in the literature in terms of their Root Mean Squared Error
(RMSE), de�ned as:
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Fig. 1. Comparison of the proposed algorithm with others applied in the literature to
predict the s(t+ 85) value of the Mackey-Glass time series

RMSE =

vuuut
nP

k=1

(yk �F(xk;�;
))
2

n
(7)

Some of the other approaches are also based on RBFNNs, such as the model
RAN [17], which iteratively constructs an RBFNN analyzing the novelty of the
input data, or the modi�cations of RAN proposed in [20], which include the
Givens QR decomposition (RAN-GQRD) to obtain the weights of the net and
a pruning criterion (RAN-P-GQRD) to reduce the complexity of the net. The
results are compared with other paradigms too. One of them [1] presents two
di�erent algorithms to train fuzzy systems, one using brute force and another
incremental, and it is shown that the brute force approach presents an unstable
behavior as the number of rules is increased and it not reaches the approxi-
mation errors obtained by the incremental algorithm. The other one [3] applies
BGAs (Breeder Genetic Algorithms) to train MLPs. It can be appreciated that
the algorithm with the new phenotypic distance index is able to distribute the
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Algorithm m np Test NRMSE

MLP + BGA (De Falco et al. 1998) 16 80 0.2666

� = 0:1 57 342 0.378
RAN � = 0:05 92 552 0.376

(Platt 1991) � = 0:02 113 678 0.373
� = 0:01 123 738 0.374

� = 0:1 14 84 0.206
RAN-GQRD � = 0:05 24 144 0.170

(Rosipal et al. 1998) � = 0:02 44 264 0.172
� = 0:01 55 330 0.165

� = 0:1 14 84 0.206
RAN-P-GQRD � = 0:05 24 144 0.174

(Rosipal et al. 1998) � = 0:02 31 186 0.160
� = 0:01 38 228 0.183

10 190 0.1086
11 206 0.1098

Fuzzy Systems 12 228 0.1026
(Bersini et al. 1997)

Brute Force
13 247 0.2235
14 266 0.1568
15 285 0.1028

Incremental 14 266 0.0965

13 78 0.2003 � 0.0178
14 84 0.1977 � 0.0164
15 90 0.1635 � 0.0401
16 96 0.1507 � 0.0193
17 102 0.1467 � 0.0178
18 108 0.1297 � 0.0175

Proposed Algorithm 19 114 0.1188 � 0.0131
20 120 0.1268 � 0.0174
21 126 0.1187 � 0.0104
22 132 0.1042 � 0.0135
23 138 0.1012 � 0.0132
24 144 0.0989 � 0.0063
25 150 0.0901 � 0.0066

Table 1. Comparison of the proposed algorithm with others applied in the literature
to predict the s(t+85) value of the Mackey-Glass time series; m represents the number
of RBFs or rules (depending on the model), and np is the number of free parameters
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population over the Pareto-optimal solutions that dominate all the solutions in
Table 1. Figure 1 summarizes graphically the results.

5 Conclusions

This paper presents a new phenotypic distance index to improve the �tness
sharing procedure in a MOEA. The objective of this new index is to better
distribute the solutions in the population over the Pareto-optimal region and
thus avoid the premature convergence of the algorithm.

Section 4 has shown that with this new index, a wide variety of RBFNNs
have been obtained, each one Pareto-optimal, but with a di�erent compromise
between the two con�icting objectives: approximation error and complexity.
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