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Abstract. This paper presents the nonlinear time series prediction using
Lyapunov theory-based fuzzy neural network and multi-objective ge-
netic algorithm (MOGA). The architecture employs fuzzy neural net-
work (FNN) structure and the tuning of the parameters of FNN using
the combination of the MOGA and the modified Lyapunov theory-based
adaptive filtering algorithm (LAF). The proposed scheme has been used
for a wide range of applications in the domain of time series prediction.
An application example on sunspot prediction is given to show the mer-
its of the proposed scheme. Simulation results not only demonstrate the
advantage of the neuro-fuzzy approach but it also highlights the advan-
tages of the fusion of MOGA and the modified LAF.

1 Introduction

Time series prediction is a very important practical application with a diverse range of
applications including economic and business planning, inventory and production
control, weather forecasting, signal processing and control [1]. As a result, there has
been considerable interest in the application of intelligent technologies such as neural
networks (NNs) and fuzzy logic [2]-[3]. More recently, these two computationally
intelligent techniques have been viewed as complementary leading to developments in
fusing the two technologies [4], with a number of several successful neurafuzzy sys-
tems reported in the literature [5]. Such work has demonstrated the superior prediction
capabilities of a fuzzy neural network as compared to the conventional neural network
approach [5)-[6].

In this paper, we employ the fuzzy neural network (FNN) for nonlinear time series
prediction. A new combination of the modified Lyapunov theory-base filtering algo-
rithm (LAF) and multi-objective genetic algorithm (MOGA) [10] is used to adjust the
network parameters. The proposed scheme provides not only the advantages of fuzzy
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logic and NN but it also offer additional advantages offered by the modified LAF and
MOGA. The weight parameters of FNN in the consequence part are adaptively ad-
justed by the modified LAF. The MOGA is used to tune the parameters of the mem-
bership functions (MBFs) in the premise part. Most real world problems require the
simultaneous optimisation of multiple criteria/objectives. In this case, MOGA can
provide the solution to these problems. In the proposed scheme, 2 types of error: in-
stantaneous and a prior errors defined in later section are the multiple criteria to be
solved by MOGA. The proposed scheme has been used for a wide range of applica-
tions in the domain of time series prediction. The theoretical prediction mechanism of
the proposed scheme is further confirmed by the simulation example for real world
data such as sunspot forecasting.

The paper is organized as follow: section 2 briefly describes the main features of
the proposed FNN and the two criteria. Section 3 presents the fuzzy neurel network
learning: structure learning and parameter learning. The parameter learning 1 � the
modified LAF algorithm is presented in section 4. Section 5 describes the MOGA and
the transformation of the multiobjective function into a new function so that single
objective optimization methods can be used. The prediction results are presented in
section 6. The finally section 7 concludes the paper with a discussion of the signifi-
cance of the results.

2 Fuzzy Neural Network

Neural-fuzzy systems have been applied to many fields successfully since a decade
ago. In this section, the fuzzy logic inference system can be implemented as a five-
layer NN (Fig. 1). This type of architecture is the most common among neural fuzzy
inference systems. Given the training input data xn, n = 1, 2 .... N, and the desired
output dm m=1,2 .... M, the inference rules of simplified fuzzy reasoning can be estab-
lished by experts or generated based on numerical data as proposed by Wan and Men-
del [11]. The rule base contains the following form:
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where i is a rule number, the Ai
N 's are MBF's of the antecedent part and wi

M's are
real numbers of the consequent part.

The operation of the this system can be described layer by layer as follows:

Layer 1: Fuzzification

This layer consists of linguistic variables. The crisp inputs xn, n=1,2 .... N are fuzzified
by using MBFs of the linguistic variables Ai

N. Usually, triangular, trapezoid, Gaussian
or bell-shaped membership functions are used.
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Layer 2. Rule Nodes

The second layer contains one node per each fuzzy if-then rule. Each rule node per-
forms connective operation between rule antecedents (if-part). Usually, the minimurn
or the dot product is used as intersection AND. The union OR is usually done using
maximum operation. In our example case the firing strengths µi, of the fuzzy rules are
computed according to

)(....)()( 2211 N
i
N

ii
i xAxAxA ⋅⋅=µ  (2.2)

Layers 3-5:Normalization, Consequence & Summation

In the third layer, the firing strengths of the fuzzy rules are normalized. Layer 4 is
related to consequent fuzzy labels which are singletons in our case. The values of the
singletons are multiplied by normalized firing strength. The final layer computes the
overall output as the summation of the incoming signals. Therefore the output ym of
the fuzzy reasoning can be represented by the following equation:
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Y = [y1, y2, ...., yM] (2.4)

After the fuzzy logic rules and network structure have been established, the learn-
ing algorithm can then applied to adjust the parameters of the MBFs in the premise
part and the weights in the consequence parts. In this paper, we proposed to use the
modified LAF algorithm to adaptively adjust the weights in the consequence parts and
MOGA to tune the parameters of MBFs.

Fig. 1. The Fuzzy Neural Network

Fig. 1 illustrates the overall process of the proposed scheme for the prediction
problem. The layer 5 consists of 1 summation node or 1 output, y1 (t) which is defined
as
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y2(t) is not another output node of FNN as shown in Fig. 2 and it is only computed
using (2.6)
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Fig. 2. The block diagram of FNN with the modified LAF + MOGA

3 Fuzzy Neural Network Learning

There are two major learning in fuzzy neural network: the structure learning and the
parameter learning. The structure learning is to generate initial fuzzy rules when there
is no initial fuzzy rule established by the experts. The initial fuzzy rules can generated
based on numerical data. Wang and Mendal have proposed a simple and straightfor-
ward algorithm [11]. The main steps of the algorithm are described as follows:

First, we have to determine the input and output variables and construct the nu-
merical data set. The kth numerical data set can be formed as

)}('),...,('),('{)}('),...,('),('{ 2121 tytytytxtxtx nn →

where the left hand side and the right hand side specify the input and output numerical
data. Second, calculate the membership degree for each variable by a row vector de-
noted by )(txi for inputs and )(ty j  for outputs as
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jjj  are the membership de-
grees for x'i(t) and y'i(t). Third, calculate the importance degree to each data pair as
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Fourth, construct the fuzzy rules for all data pairs. For instance, a fuzzy rule has
this form:
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 (3.4)

Fifth, delete the conflict fuzzy rules, while two rules have the same fuzzy set in IF
part but a different set in THEN part. The proper rule is selected according to the
highest importance degree.

4 Parameter Learning Algorithm 1 � The Modified LAF

The LAF algorithm in [7] has been modified to adaptively adjusts the weights of FNN
in the consequence part. Those weights in the consequence part are updated as follow:
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where gi
m (t) is the adaptation gain and αm (t) is defined as
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The adaptation is given by
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where 0 < k ≤ 1. U(t) = [µ1, µ1, ..., µQ].
It is noticeable that the values of U(t) and αm in (4.3) may be zero and rise singu-

larities problem. Therefore the adaptation gain may be modified as (4.4)
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where 0 < k ≤ 1, and λ1, λ2 are small positive numbers.

5 Parameter Learning Algorithm 2 - MOGA

The MOGA is used to tune the parameters of the membership functions (MBFs) in the
premise part. Without the need of linearly combining multiple attributes into a com-
posite scalar objective function, evolutionary algorithms incorporate the concept of
Pareto's optimality or modified selection schemes to evolve a family of solutions along
the tradeoff surface. The manner of Parento optimality is one of the useful approaches
to solve mutliobjective optimization problems. In this paper we employ the weighted
sum-based optimization method.

5.1 Weighted Sum Based Optimization

In a weighted sum-based optimization, multiobjective F=(f1, ..., f2) is transformed into

∑
=

=
k

i
iiw fwF

1
so that single objective opirnization methods can be used. Preferences

are used for specifying weights, With reference to Fig. 2, two fitness F1, and F2 can be
evaluated from el(t) and e2(t) ∀t. Thus, these two objective functions is transformed in
an overall fitness function F = w1 F1 + w2 F2 , where w1 + w2 =1. For example, we
may choose w1 = 0.3 and w2 = 0.7.

5.2 Computational Algorithms

The procedure of the MOGA algorithm is described as follows:

1. Initialization: Training data is clustered to generate 9 centroids based on which
the Gaussian MBFs (mean and variance) are evaluated. 80 potential candidates
P(t) are created by varying ± 20% of the MBF s.

2. Evaluate the overall fitness F. Select candidates proportional to their fitness rela-
tive to the others in P(t) using the Stochastic Universal Sampling technique.

3. Applying genetic operators, whole arithmetic: crossover, mutation, and adaptation
with the best candidate by adding a perturbation to the relative best-fit candidate,
to reproduce new candidates.

4. Combine all new candidates with the P(t) to form the new population for the next
generation.

5. Repeat step 2, 3, 4 until termination condition is satisfied.
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6 Simulation Example

In order to demonstrate the performance of the proposed method, we have applied the
method to  prediction of the sunspot data. Sunspot data is used as a benchmark for
many years by researchers. Data file of the Sunspot times series is download from [9].
It consists the sunspot data from the year 1700 to 1999 (300 Samples).

Fig. 3 shows the plot of the sunspot time series. Fig. 4 shows the mean squared er-
ror of e2(t) giving MSE=0.0159 at the 30th generation. Fig. 3 show no distinct differ-
ence between the y2(t) and x(t).  Fig. 5 and 6 reveal some weight parameters of the
FNN. A computer program developed in MATLAB software is used to implement the
proposed scheme.

Fig 3. Normalized sunspot time series & the predictor output

Fig. 4. MSE of e2(t)
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Fig. 5. Weight parameters of FNN

Fig. 6. Weight param8eters of FNN

7 Conclusion

This paper has presented a new approach in designing a FNN with MOGA and the
modified LAF techniques.The previous section clearly demonstrate the performance
of the proposed FNN for the prediction of nonlinear time series. The modified LAF
has provided the fast error convergence to the training of FNN. On the other hand,
MOGA has added advantage of global optimization to the FNN training based on two
criteria/objectives. The results have emphasized the benefits of the fusion of fuzzy and
NN technologies as well as the advantages of the fusion of the modified LAF and
MOGA. This increases in transparency of the neurofuzzy approach overcomes the
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drawback of FNN with gradient techniques and/or GA in the conventional NNs or
FNNs. In general the prediction capability (accuracy) of this system is proportional to
its granularity (the number of fuzzy sets) in the premise part and the numbers of
weights in the consequence part. Future works need to be conducted in this area.
Many issues need to be addressed regarding simulations, practical implementations,
and the further analysis on the theoretical parts of the proposed scheme.
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