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Abstract - This paper clearly demonstrates advantages of 
our evolutionary multiobjective optimization approach to 
the design of fuzq rule-based classr~cation systems over 
single-objective methods. The main advantage of our 
approach is that a large number of tradeoff (i.e., non- 
dominated) fuzzy rule-based systems con be obtained by 
its single run with respect to conflicting objectives: 
accuracy maximization and complexiry minimization, By 
analyzing the obtained &zq rule-based systems, the 
decision maker can understand the tradeoff between these 
two objectives. Such understanding is of great help when 
the decision maker chooses afinal compromise fuzry rule- 
based system. In the cose of single-objective methods. only 
a singlefirzr?, rule-based system is obtained based on the 
pre-specified preference of the decision maker. We 
conipare four foimulotrons of genetic algorithm-based 
rule selection through computational experiments on well- 
howm benchmark data sets. The four formulations hove 
two objectives, their weighled sum, three objectives, and 
their weighted sum. respectively. 

Keywords: Pattem classification, fuzzy systems, rule 
selection, genetic algorithms, multiobjective optimization. 

1 Introduction 
In 1990s, various approaches were proposed to 

improve the accuracy of fuzzy rule-based systems. Those 
approaches were often based on evolutionary computation 
[6], [I91 and neural networks [I], [20], [25]. While the 
accuracy of fuzzy rule-based systems can be significantly 
improved by those approaches, the complexity is also 
increased. That is, the interpretability is usually degraded 
by the leaming of fuzzy rule-based systems. For obtaining 
fuzzy rule-based systems with high interpretability, some 
recent studies took into account the tradeoff between the 
accuracy of fuzzy rule-based systems and their complexity 
[3]-[5], [I 1]-[18], [22]-[24]. A prevailing strategy for 
handling the tradeoff in those studies is to combine an 
accuracy measure and a complexity measure into a single 
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scalar objective function so that standard optimization 
techniques can be employed. Only a few studies handled 
the design of fuzzy rule-based systems in the framework 
of multiobjective optimization where a large number of 
non-dominated fuzzy rule-based systems are obtained. 

In this paper, we intend to demonstrate advantages of 
multiobjective approaches over single-objective ones to 
the design of fuzzy rule-based classification systems. As 
in our former studies [12]-[16], we use the following 
three-objective formulation to find a large number of non- 
dominated fuzzy rule-based classification systems: 

Maximize f i ( S )  and minimize f i ( S ) ,  f 3 ( S ) ,  (1) 

where S is a fuzzy rule-based classification system, 
f i ( S )  is the number of correctly classified training 
pattems by S , f 2  (S) is the number of fuzzy rules in SI 
and f3(S) is the total rule length of fuzzy rules in S, 
Since the number of antecedent conditions of each rule is 
referred to as the rule length, f3(S) is the same as the 
total number of antecedent conditions of fuzzy rules in S ,  
In the three-objective formulation in (I), the first objective 
is viewed as accuracy maximization while the second and 
third objectives correspond to complexity minimization, 

To examine the effect of the third objective (i.e., the 
minimization of the total rule length), we also use the 
following two-objective formulation: 

Maximize f l (S )  and minimize f * ( S ) .  (2) 

Advantages of these multiobjective formulations are 
demonstrated through computational experiments on some 
benchmark data sets from UC Irvine Machine Learning 
Repository. The three-objective formulation in (1) is 
compared with the single-objective approach based on the 
following weighted scalar objective function: 

Maximize w1/i(S)-n,zf2(S)- w3 f 3 (S ) .  ( 3 )  

Moreover the two-objective formulation in (2) is 
compared with the single-objective approach based on the 
following weighted scalar objective function: 

Maximize wlfi(S)-w2 f 2 ( S ) .  (4) 
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2 Design of fuzzy rule-based systems 
Let us assume that we have m training patterns 

x p  = ( x p l ,  ..., x p n ) ,  p = 1,2 ,..., m fmm M classes where 
xpi is the attribute value of the p-th pattern for the i-th 
attribute ( i  = 1,2,,..,n). For simplicity of explanation, we 
assume that the pattern space is normalized into the n- 
dimensional unit hyper-cube [0, I]", i.e., xpi E [0, 11. In 
this section, we explain our three-objective approach [I61 
to the design of fuzzy rule-based classification systems 
from the given training patterns. Our approach consists of 
two stages: heuristic extraction of candidate fuzzy rules 
and genetic rule selection where an evolutionary 
multiobjective optimization algorithm is used to find a 
large number of non-dominated rule sets with respect to 
the three objectives in (1). 

2.1 Fuzzy classification rules 
For our n-dimensional M-class pattem classification 

problem, we use fuzzy rules of the following form: 

Rule R,: If XI is A,I and ... and x n  is A,, 
then Class C, with CF, , ( 5 )  

where R, is the label of the q-th rule, x =(xi, ,,,, x,) is 
an n-dimensional panem vector, A,i is an antecedent 
fuzzy set (i.e., linguistic value such as small and large), 
C, is a class label, and CF, is a rule weight. Fuzzy rules 
of this form were used for Classification problems in [ 1 I]- 

We define the compatibility grade of each training 
pattem x p  = ( x p l ,  ..., x p n )  with the antecedent part 
A, = (A,I,  ..., Aq,,) using the product operator as 

P A , ( x ~ ) = P A ~ I ( x ~ I ) .  ... . ~ ~ ~ , , ( x p n ) ,  (6) 

where paqi ( . ) is the membership function of A , < .  To 
determine the consequent class C, , we calculate the 
confidence of the fuzzy rule '' A, a Class h " for each 
class as an extension of its non-fuzzy version [2] as 

U61. 

1 
rpfClass h 

c(A, - Class h )  = m , (7) 
1 P A q ( x p )  
p=l 

The consequent class C, is specified by identifying the 
class with the maximum confidence: 

max {c(A, 3 Class h ) ]  . (8) 
h=1,2 ...., m 

On the other hand, the rule weight CF, is specified as 
follows: 

c(A, a Class C,) = 

M 

h=l  
h#Cq 

CF, =c(A,  -Class C,)- Xc(A, Class h ) .  (9) 

When we classify a new pattern x p  by a fuzzy rule- 
based classification system S , we use a single winner- 
based fuzzy reasoning method. A single winner rule R, is 
chosen from the rule set S for the new pattem x p  as 

P A , ( L p ) . C F ~ = m a x { P A ' A q ( " p ) ' C F 4  I&ES}. (10) 

2.2 Heuristic extraction of candidate rules 
We use 14 antecedent fuzzy sets in Figure 1 to 

generate candidate rules. That is, we simultaneously use 
four fuzzy partitions of different grauularites for each 
anrihute. We also use don't care as an antecedent fuzzy 
set. Thus the total number of possible combinations of the 
antecedent fuzzy sets is (14+1)" for n-dimensional 
classification problems. 

0.0 I ' O M .  0.0 1.0 ,:Dos. 0.0 1.0 

0.0 l'oDooa. 0.0 1.0 1:lxx%u 0.0 1.0 

Figure 1. Fourteen fuzzy sets from fow fuzzy partitions. 

It is impractical to examine all the 15" combinations 
of the antecedent fuzzy sets for high-dimensional 
classification problems. In this paper, we only examine 
short fuzzy rules with only a few antecedent conditions 
(i.e., with many donP care conditions). The number of 
antecedent conditions excluding don't care conditions of 
each fuzzy rule is referred to as the rule length. Candidate 
rule extraction is performed in a greedy manner for each 
class using a heuristic rule evaluation measure. We use the 
following rule evaluation measure: 

h=l 
htCq 

where s( . ) is the support measure of fuzzy rules, which 
is defined as follows: 

1 
s(A,-Classh)=- pAg(xp) .  (12) 

rpeClassh 

The heuristic rule evaluation measure in (1 1) is a modified 
version of a rule evaluation criterion used in an iterative 
fuzzy GBML (genetics-based machine learning) algorithm 
called SLAVE [lo]. 
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2.3 Genetic rule selection 
Let us assume that N fuzzy rules have been extracted 

as candidate rules using the SLAVE criterion in (11). A 
subset S of the N candidate rules is handled as an 
individual in genetic rule selection, which is represented 
by a binary string of the length N as 

s = S]Sz ... SA',  (13) 

where sj = I  and si = 0 mean that the j-th candidate rule 
is included in Sand excluded from S, respectively. 

We use a well-known high-performance evolutionary 
multiobjective optimization algorithm called NSGA-I1 [l], 
[8] to find a large number of non-dominated rule sets from 
the candidate rules with respect to the three objectives in 
( I ) .  The NSGA-I1 algorithm is also employed in the two- 
objective case in (2). On the other hand, we use a standard 
single-objective genetic algorithm with a single elite 
solution in the case of the single-objective formulations in 
(3) and (4). 

We use two problem-specific heuristic tricks in the 
NSGA-I1 algorithm and the standard single-objective 
genetic algorithm. One is biased mutation where a larger 
probability is assigned to the mutation from 1 to 0 than 
that from 0 to I .  This heuristic is used to efficiently 
decrease the number of fuzzy rules in each rule set. The 
other is the removal of unnecessary fuzzy rules. Since we 
use the single winner-based method for classifying each 
pattem, some fuzzy rules in S may be chosen as winner 
rules for no patterns. We can remove those fuzzy rules 
without degrading the number of correctly classified 
training pattems (i.e., fi(S) ). At the same time, the 
removal of such an unnecessary fuzzy rule improves the 
number of fuzzy rules (i.e., f 2 ( S )  ) and the total rule 
length (i.e., /3(S)). Thus we remove all fuzzy rules that 
are not selected as winner rules for any training pattems 
from the rule set S. The removal of unnecessary fuzzy 
rules is performed for each rule set after f i ( S )  is 
calculated and before f j ( S )  and f 3 ( S )  are calculated. 

3 Computational experiments 
We used seven data sets in Table 1 available from 

the UC Irvine Machine Learning repository 
(http://www.ics. uci.edd-mleam/). Data sets with missing 
values are marked by "*" in the third column of Table I .  
Since we did not use incomplete pattems with missing 
values, the number of pattems in the third column does not 
include those patterns. For comparison, experimental 
results by Elomaa and Rousu [9] are cited in Table 1. 
Tbey applied six variants of the C4.5 algorithm [21] to 30 
data sets. The performance of each variant was examined 
by ten iterations of the whole ten-fold cross-validation 
(IOCV) procedure. We show in the last two columns of 
Table 1 the best and worst error rates on test panems 
among the six variants reported in [9] for each data set. 

Table 1. Data sets used in our computational experiments. 

C4.5 in [91 Data set Attributes Pattems Classes 
Best Worst 

Breast W 9 683* 2 5.1 6.0 
Diabetes 8 768 2 25.0 21.2 

Glass 9 214 6 21.3 32.2 
HeartC 13 291* 5 46.3 41.9 

5.7 7.5 
Sonar 60 208 2 24.6 35.8 
Wine 13 178 3 5.6 8.8 

li Incomplete patterns with missing values are not included. 

Iris 4 150 3 

We applied our two-stage rule selection method to 
the seven data sets in Table 1. All attribute values were 
normalized into real numbers in the unit interval [0, I]. 
We generated 300 fuzzy rules for each class as candidate 
rules in a greedy manner using the SLAVE criterion in 
(1 I). That is, the best 300 candidate rules with the largest 
values of the SLAVE criterion were found for each class. 
Thus the total number of candidate rules was 300Mwhere 
M is the number of classes. In this heuristic procedure, we 
examined candidate rules of length 3 or less for the six 
data sets except for the sonar data with 60 attributes. Since 
the sonar data have a large number of attributes, we only 
examined short candidate rules of length 2 or less. 

The NSGA-I1 algorithm was executed. using the 
following parameter values: 

Population size: 200 strings, 
Crossover probability: 0.8 (uniform crossover), 
Biased mutation probabilities: 

Stopping condition: 5000 generations. 
p,(0 + 1) = l i300M and p , ( l +  0) = 0.1, 

The standard single-objective genetic algorithm was also 
executed using the same parameter values and the weight 
values wf = 10, w2 = 1, w3 = 1. 

For evaluating the generalization ability of obtained 
rule sets, we used the IOCV technique as in [9]. First each 
data set was randomly divided into ten subsets of the same 
size. One subset was used as test pattems while the other 
nine subsets were used as training pattems. Our two-stage 
rule selection method was applied to training pattems to 
find non-dominated rule sets. The generalization ability of 
obtained rule sets was evaluated by classifying test 
pattems. This train-and-test procedure was iterated ten 
times so that all the ten subsets were used as test pattems. 
As in [9], we iterated the whole l0CV procedure ten times 
using different data partitions. Thus our method was 
executed 100 times in total for each data set. 

In Table 2, we show experimental results by the two- 
objective formulation in (2) on the Wisconsin breast 
cancer data set (Breast W in Table I ) .  A number of non- 
dominated rule sets were obtained by a single run of the 
NSGA-I1 algorithm, which was executed 100 times during 
the 10 iterations of the whole IOCV procedures. The 
obtained rule sets were categorized into several groups 
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according to the number of fuzzy rules. Then the average 
error rates on training patterns and test panems were 
calculated for each group of rule sets with the same 
number of fuzzy rules. The average rule length was also 
calculated for each group. These average results are 
summarized in Table 2. In the last column, the number of 
rule sets in each group is shown. That is, the last column 
shows the number of runs of the NSGA-II algorithm from 
which the corresponding rule set was obtained. We can 
see that from Table 2 that a number of rule sets were 
obtained by each run of the NSGA-I1 algorithm. The 
experimental results in Table 2 are depicted in Figure 2. 
We also show in Figure 2 the experimental results by the 
standard single-objective genetic algorithm based on the 
weighted scalar objective function of the two objectives. 

Table 2. Experimental results on the Wisconsin breast 
cancer data set by the two-objective formulation. 

Number Average Average error rates Number 
ofrules length Training Test ofruns 

1 2.16 35.41 35.63 100 
2 2.00 3.19 4.27 100 
3 2.06 2.59 4.34 100 
4 2.02 2.25 5.35 92 
5 2.00 2.06 4.99 93 
6 1.93 1.84 4.28 84 
7 1.92 1.73 3.29 54 

Two-objective rule selection 
training 0 test 

Weighted scalar rule selection 
training 0 test 

6 

U 8 
0 2  6 

Number of furzy mles 

Figure 2. Experimental results in Table 2 on the 
Wisconsin breast cancer data set. 

In Figure 2, we can observe a clear tradeoff between 
the number of fuzzy rules and the error rates on training 
patterns (see the closed circles). On the other hand, the 
relation between the number of fuzzy rules and the error 
rate on test patterns is unclear in Figure 2 (see the open 
circles). In Figure 3, we show experimental results by the 
two-objective formulation on the other data sets. The 

badeoff between the number of fuzzy rules and the error 
rates on training patterns is clearly observed for all data 
sets. On the other hand, the relation between the number 
of fuzzy rules and the error rates on test patterns is not 
clear. In Figure 3 (C), we observe the overfitting of 
obtained rule sets to training data (i.e., deterioration in the 
error rates on test patterns due to the increase in the 
number of fuzzy rules). We can also see from Figure 2 and 
Figure 3 that good results were not always obtained by the 
weighted scalar objective function. 
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Figure 3. Experimental results by the two-objective 
approach on the other data sets. Each figure is depicted in 
the same manner as Figure 2. 

In Table 3, we show experimental results by the 
three-objective formulation in ( 1 )  on the Wisconsin breast 
cancer data set. Since the total rule length was taken into 
account in addition to the classification accuracy and the 
number of fuzzy rules, rule sets with the same number of 
fuzzy rules but the different total rule length were obtained 
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as non-dominated rule sets. As a result, more non- 
dominated rule sets were obtained by the three-ohjective 
formulation in Table 3 than the two-objective formulation 
in Table 2. The experimental results in Table 3 are 
depicted in Figure 4 where the experimental results by the 
weighted scalar objective function of the three objectives 
are also shown. As in Figure 2, the tradeoff between the 
number of fuzzy rules and the error rates on training 
patterns is clear in Figure 4 (a). On the other hand, the 
relation between the number of fuzzy rules and the error 
rate on test patterns is unclear in Figure 4 (b). A part of the 
experimental results in Table 3 are visualized in Figure 5 
from a different viewpoint where the relation between the 
average rule length and the error rates is examined for 
some rule sets with the same number of rules (i.e., two 
rules in (a) and four rules in (b)). In Figure 5 ,  we can 
observe a clear tradeoff between the average rule length 
and the error rates on training patterns. We can also 
observe the overfitting of rule sets to training patterns (i.e., 
the increase in the error rate on test patterns) due to the 
increase in the average rule length in Figure 5. 

0 Three-objective rule selection 

Weighted scalar rule selection 

4 

3 1 ;  _i 
2 

1 3 4 5 6 7  
Number af furzy mlcs 

(a) Error rates on training pattems. 

0 Three-objective rule selection 

Weighted  scala^ rule selection - [:FI - Y B 

- Y 4 0  . 
E o  
g 3  w 

2 3 4 5 6 7  
Number of fuzzy N k S  

(b) Error rates on test patterns 

Figure 4. Experimental results by the three-objective 
formulation on the Wisconsin breast cancer data sets. 

Table 3. Experimental results on the Wisconsin breast 
cancer data set by the three-objective formulation. 

3 1.67 2.64 4.33 92 
4 1.50 2.42 4.41 72 
4 1.75 2.32 5.09 36 
5 1.40 2.21 4.43 35 
5 1.60 2.05 4.51 61 
5 1.80 . 2.07 4.02 35 
6 1.50 1.91 4.19 35 
6 1.67 1.87 3.97 45 

A :trainine 0:test 

(a) Rule sets with two fuzzy rules. 

A:tmining 0:test 

Average NIe length 

(b) Rule sets with four fuzzy rules 

Figure 5 .  Relation between the average rule length and the 
average error rates on training and test patterns. 

4 Conclusions 
In this paper, we compared single., two-, and three- 

objective approaches to the design of fuzzy rule-based 
systems for classification problems. The main advantage 
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of the three-objective approach is that a large number of 
non-dominated rule sets are obtained by its single run. 
The decision maker can understand the tradeoff between 
the accuracy and the complexity of fuzzy rule-based 
systems by the obtained rule sets. Another advantage is 
that the second and third objectives (i.e., the number of 
fuzzy rules and the total rule length) can work as a 
safeguard against the overfitting of fuzzy rule-based 
classification systems to training patterns. This advantage 
was also examined in our former studies [14], [15]. 
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