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Abstract

This paper focuses on kernel methods for
multi-instance learning. Existing methods
require the prediction of the bag to be iden-
tical to the maximum of those of its indi-
vidual instances. However, this is too re-
strictive as only the sign is important in
classification. In this paper, we provide a
more complete regularization framework for
MI learning by allowing the use of differ-
ent loss functions between the outputs of a
bag and its associated instances. This is es-
pecially important as we generalize this for
multi-instance regression. Moreover, both
bag and instance information can now be di-
rectly used in the optimization. Instead of
using heuristics to solve the resultant non-
linear optimization problem, we use the con-
strained concave-convex procedure which has
well-studied convergence properties. Exper-
iments on both classification and regression
data sets show that the proposed method
leads to improved performance.

1. Introduction

Multi-instance (MI) learning was first introduced by
Dietterich et al. (1997) in the context of drug ac-
tivity prediction. The task is to predict whether a
drug molecule can bind to the targets (enzymes or
cell-surface receptors). Each drug molecule (called a
bag) can have multiple low-energy shapes or conforma-
tions (instances). The molecule is considered useful
as a drug if one of its conformations can bind to the
targets. However, biochemical data can only tell the
binding capability of a molecule, but not a particular
conformation. Thus, while each training pattern has a
known label in supervised learning, only the bags (but
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not the individual instances) have known labels in MI
learning. In other words, MI learning only provides
weak label information of the training data.

Following the seminal work of Dietterich et al. (1997),
a number of new MI learning methods emerged. Ex-
amples include the Diverse Density (DD) (Maron &
Lozano-Perez, 1998), EM-DD (Zhang & Goldman,
2002), Citation-kNN (Wang & Zucker, 2000), MI
SVMs (Andrews et al., 2003) and generalized MI learn-
ing (Tao et al., 2004). Besides classification, progress
has also been made on MI learning with real-valued
outputs (Ray & Page, 2001; Amar et al., 2001; Dooly
et al., 2002). Moreover, many applications are now
considered as MI problems. Examples include content-
based image retrieval (Chen & Wang, 2004; Maron &
Ratan, 1998), where each image is a bag and each lo-
cal image patch an instance, and computer hard-drive
failure prediction (Murray et al., 2005).

In this paper, we focus on kernel methods, which
have been highly successful in various machine learn-
ing problems (Schölkopf & Smola, 2002). To adapt to
MI learning, one common approach is to design kernels
for bags. A standard support vector machine (SVM)
can then be used with these so-called MI kernels (Chen
& Wang, 2004; Gärtner et al., 2002). Note that the
underlying quadratic programming (QP) problem only
involves dual variables corresponding to the bags, but
not instances. A more direct approach that takes the
instances into account is to associate the dual vari-
ables with the instances, but not the bags (Andrews
et al., 2003). Although the bags are now no longer in-
volved in the optimization, the bag label information
of a particular bag Bi of instances {xij}

ni

j=1 is still used
implicitly by requiring

f(Bi) = max
j=1,...,ni

f(xij), (1)

where f is the function to be learned by the SVM.
Moreover, instead of having a QP, the resultant op-
timization problem is a mixed-integer problem. An-
drews et al. (2003) proposed a simple optimization
heuristic for solving this problem. However, unlike
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QPs which have been well-studied, the convergence
properties of this heuristic are unclear.

Besides, as only the sign is important in classification,
namely that sign(f(Bi)) = sign(maxj=1,...,ni

f(xij)),
so (1) may be too restrictive. Moreover, when the bag
labels are noisy, a mislabeled f(Bi) will incorrectly
constrain the predictions on its constituent instances
via the condition (1), and consequently wrongly biases
the learning of f . As will be discussed in Section 4, this
issue becomes even more important in MI regression.

In this paper, we thus relax condition (1) by introduc-
ing a loss function between f(Bi) and the associated
f(xij)’s. This allows both the bags and instances to
directly participate in the optimization process, and
the learned function to be smooth over both bags and
instances. Moreover, instead of using optimization
heuristics as in (Andrews et al., 2003), we will use
the disciplined constrained concave-convex procedure

(Smola et al., 2005) to perform the optimization.

The rest of this paper is organized as follows. Section 2
gives a brief review on the concave-convex procedure.
Section 3 then describes the proposed formulation for
MI classification, together with a similar extension for
MI regression in Section 4. Experimental results are
presented in Section 5, and the last section gives some
concluding remarks.

2. Concave-Convex Procedure

The concave-convex procedure (Yuille & Rangarajan,
2003) is an optimization tool for problems whose ob-
jective function can be expressed as a difference of
convex functions. In the optimization literature, it
is often known as the difference of convex functions

algorithm (DCA) (Pham Dinh & Hoai An, 1998).
While Yuille and Rangarajan (2003) considered only
linear constraints, Smola et al. (2005) generalized this
to the constrained concave-convex procedure (CCCP)
for problems with a concave-convex objective function
with concave-convex constraints.

Consider the following optimization problem:

minx f0(x) − g0(x)
s.t. fi(x) − gi(x) ≤ ci, i = 1, . . . ,m,

(2)

where fi, gi (i = 0, . . . ,m) are real-valued, convex and
differentiable functions on R

n, and ci ∈ R. Given an
initial x(0), CCCP computes x(t+1) from x(t) by re-
placing gi(x) with its first-order Taylor expansion at
x(t), and then setting x(t+1) to the solution of the re-

laxed optimization problem:

min
x

f0(x) −
[

g0(x
(t)) + ∇g0(x

(t))
′
(x − x(t))

]

(3)

s.t. fi(x) −
[

gi(x
(t)) + ∇gi(x

(t))
′
(x − x(t))

]

≤ ci,

Here, the superscript ′ denotes the vector transpose,
and ∇g(x̂) is the gradient of the function g at x̂. It
can be shown that CCCP converges to a local min-
imum solution of (2) (Smola et al., 2005). For non-
smooth functions, it can be easily shown that the gra-
dient should then be replaced by the subgradient.

3. Multi-Instance Classification

In MI classification, we are given a set of train-
ing bags {(B1, y1), . . . , (Bm, ym)}, where Bi =
{xi1,xi2, . . . ,xini

} is the ith bag containing instances
xij ’s, and yi ∈ {±1}. As mentioned in Section 1, we
take both bags and instances directly into account.
Hence, we define a general loss function that depends
on both the training bags and training instances:

V
(

{Bi, yi, f(Bi)}
m
i=1, {f(xij)}

ni

j=1
m
i=1

)

. (4)

3.1. The Loss Function V

In this paper, we split the loss function V in (4)
into two parts. The first part considers the loss be-
tween each bag label yi and its corresponding predic-
tion f(Bi). Here, as in the SVM, we use the hinge
loss (1 − yif(Bi))+ where (z)+ = max(0, z). The sec-
ond part considers the loss between the prediction of
each bag f(Bi) and those of its constituent instances
{f(xij) | j = 1, . . . , ni}. In general, this can be de-
fined in various ways. As mentioned in Section 1, (1)
is often enforced, which is the same as using the loss
ℓ(f(Bi),maxj=1,...,ni

f(xij)), where

ℓ(v1, v2) =

{

0 if v1 = v2,
∞ otherwise.

(5)

To relax condition (1), we will consider some other
popular loss functions, including the L1 loss:

ℓ(v1, v2) = |v1 − v2|, (6)

the L2 loss:

ℓ(v1, v2) = (v1 − v2)
2, (7)

and the ǫ-insensitive loss

ℓ(v1, v2; ǫ) = max{0, |v1 − v2| − ǫ}. (8)

Putting the two parts together, we have
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V ({Bi, yi, f(Bi)}i, {f(xij)}ij) (9)

=
1

m

m
X

i=1

(1 − yif(Bi))+ +
λ

m

m
X

i=1

ℓ(f(Bi), max
j

f(xij)),

where λ is a parameter that trades off the two compo-
nents.

On the other hand, if we ignore the loss between the
prediction of each bag f(Bi) and those of its con-
stituent instances {f(xij)} (or, equivalently, by set-
ting λ in (9) to zero), then the loss function V (·) in
(9) reduces to 1

m

∑m

i=1 (1 − yif(Bi))+. This is then
the same as using the standard SVM with the multi-
instance kernel (Gärtner et al., 2002).

3.2. Representer Theorem

The representer theorem plays a central role in the de-
velopment of the SVM, as it allows the optimization in
a possibly infinite-dimensional space to be reduced to a
finite-dimensional optimization problem. However, as
the proposed optimization problem now involves vari-
ables coming from both the bags and instances, it ap-
pears that the representer theorem no longer holds in
our MI setting.

Indeed, this can be resolved by the simple observation
that an instance can also be considered as a bag of
size one. Let F be the space of instances and 2F the
power set of instances. Let H be a RKHS of functions1

f : 2F → R, with associated kernel function k. For
any x ∈ F , {x} ∈ 2F , and so f({x}) is well-defined
for f ∈ H. With an abuse of notation, we simply write
f({x}) as f(x), and k({x}, ·) as k(x, ·).

Denote the RKHS norm of H by ‖f‖H and Ω :
[0,∞) → R a strictly monotonically increasing func-
tion. By the representer theorem, each minimizer
f ∈ H of the regularized risk

γV
(

{Bi, yi, f(Bi)}
m
i=1, {f(xij)}

ni

j=1
m
i=1

)

+
1

2
Ω

(

‖f‖
2
H

)

admits a representation of the form

f(x) =

m
∑

i=1



αi0k(x, Bi) +

ni
∑

j=1

αijk(x,xij)



, (10)

where all αi0, αij ∈ R. For simplicity, denote n =
∑m

i=1 ni and α the (m + n)-dimensional vector con-
sisting of all the αi0’s and αij ’s.

1Note that this is also the RKHS implicitly used with
the MI kernel (Gärtner et al., 2002).

3.3. Optimization using CCCP

Using Ω
(

‖f‖
2
H

)

= ‖f‖
2
H as in the SVM, and the loss

function as discussed in Section 3.1, we have the fol-
lowing optimization problem:

min
f∈H,ξ

1

2
‖f‖

2
H +

γ

m
ξ′1 (11)

+
γλ

m

m
∑

i=1

ℓ(f(Bi), max
j=1,...,ni

f(xij))

s.t. yif(Bi) ≥ 1 − ξi,

ξ ≥ 0,

where ξ = [ξ1, . . . , ξm]′ are slack variables for the er-
rors on the training bags, 0 = [0, . . . , 0]′ and 1 =
[1, . . . , 1]′ are vectors of 0’s and 1’s, respectively, and
γ is a user-defined parameter that trades off model
complexity with the error.

3.3.1. Using the L1 Loss for ℓ(·, ·)

In this Section, we first consider the use of the L1 loss
(6) for ℓ(v1, v2). We can then rewrite (11) as:

min
f∈H,ξ,δ

1

2
‖f‖

2
H +

γ

m
ξ′1 +

γλ

m
δ′1

s.t. yif(Bi) ≥ 1 − ξi,

ξ ≥ 0,

−δi ≤ f(Bi) − max
j=1,...,ni

f(xij) ≤ δi,

where δ = [δ1, . . . , δm]′. This is also equivalent to

min
f∈H,ξ,δ

1

2
‖f‖

2
H +

γ

m
ξ′1 +

γλ

m
δ′1 (12)

s.t. yif(Bi) ≥ 1 − ξi,

ξ ≥ 0,

f(xij) − δi ≤ f(Bi),

f(Bi) − max
j=1,...,ni

f(xij) ≤ δi.

Without loss of generality, assume that the
bags and instances are ordered in the order
(B1, . . . , Bm,x11, . . . ,x1n1

, . . . ,xm1, . . . ,xmnm
).

Each object (bag or instance) in the training set can
then be indexed by the following function I:

I(Bi) = i, I(xij) = m +

i−1
∑

k=1

nk + j,

for j = 1, . . . , ni and i = 1, . . . ,m. With this ordering,
one obtains the (m + n) × (m + n) kernel matrix K

defined on all objects in the training set. Denote the
ith column of K by ki.
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Using the representer theorem, we have f(Bi) =
k′
I(Bi)

α+b and f(xij) = k′
I(xij)

α+b from (10). Here,

we have also included an optional bias b. Moreover,
‖f‖

2
H = α′Kα. The optimization problem in (12)

then becomes:

min
α,ξ,δ,b

1

2
α′Kα +

γ

m
ξ′1 +

γλ

m
δ′1

s.t. yi(k
′
I(Bi)

α + b) ≥ 1 − ξi,

ξ ≥ 0,

k′
I(xij)

α − δi ≤ k′
I(Bi)

α,

k′
I(Bi)

α − max
j=1,...,ni

(k′
I(xij)

α) ≤ δi.(13)

Note that the objective function is quadratic and the
first three constraints are linear w.r.t. the variables.
The last constraint (13) is, though nonlinear, a dif-
ference between two convex functions. Hence, we can
solve this with the constrained concave-convex proce-
dure (CCCP) in Section 2.

Notice that while maxj=1,...,ni
(k′

I(xij)
α) in (13) is

convex, it is a non-smooth function of α. To use
the CCCP, we have to replace the gradients by
the subgradients. Now, for the pointwise maximum
function h(x) = max1≤i≤p hi(x), its subdifferential2

at x0 is the convex hull of the union of subgra-
dients of “active” functions at x0, i.e., ∂h(x0) =
conv

(

∪i∈S(x0)∂hi(x0)
)

, where conv denotes the con-
vex hull, and S(x0) is the nonempty index set of all
i ∈ {1, . . . , p} for which hi(x0) = h(x0). Thus, we ob-
tain that for i = 1, . . . ,m, ∂ maxj=1,...,ni

(k′
I(xij)

α) =
{

∑ni

j=1 βijkI(xij) | βij ∈ R
+
}

, where

βij

{

= 0, if k′
I(xij)

α 6= maxk=1,...,ni
(k′

I(xik)α),

≥ 0, otherwise,
(14)

with
ni
∑

j=1

βij = 1. (15)

At the tth iteration, denote the current α estimate

and the corresponding βij by α(t) and β
(t)
ij , respec-

tively. CCCP then replaces maxj=1,...,ni
(k′

I(xij)
α) in

the constraint by

max
j=1,...,ni

(k′
I(xij)

α(t))+

ni
∑

j=1

β
(t)
ij k′

I(xij)
(α−α(t)). (16)

2A subgradient of f at x is any vector g that satisfies
the inequality f(y) ≤ f(x) + g′(y − x) for all y. The
subdifferential of f at x is the set of all subgradients of f
at x.

Note from (14) that βij 6= 0 only for the active xij ’s.
Hence,

ni
∑

j=1

β
(t)
ij k′

I(xij)
α(t) = max

j=1,...,ni

(k′
I(xij)

α(t))
∑

βij 6=0

β
(t)
ij

= max
j=1,...,ni

(k′
I(xij)

α(t)),

on using (15), and (16) reduces to
∑ni

j=1 β
(t)
ij k′

I(xij)
α.

The optimization problem (3) in our case is then:

min
α,ξ,δ,b

1

2
α′Kα +

γ

m
ξ′1 +

γλ

m
δ′1

s.t. yi(k
′
I(Bi)

α + b) ≥ 1 − ξi,

ξ ≥ 0,

k′
I(xij)

α − δi ≤ k′
I(Bi)

α,

k′
I(Bi)

α −

ni
∑

j=1

β
(t)
ij k′

I(xij)
α ≤ δi,

which is a standard QP problem. Following CCCP,
the obtained α solution from this QP is then used as
α(t+1) and the iteration continues until convergence.

In the experiments, we initialize β
(0)
ij = 1/ni for

i = 1, . . . ,m. Moreover, recall that the subgradient
need not be unique. For convenience, we pick the sub-
gradient with

βij =

{

0, if k′
I(xij)

α 6= maxk=1,...,ni
(k′

I(xik)α),

1/na, otherwise,

where na is the number of active xij ’s. Note that any
other choices may also be used.

3.3.2. Using the Loss Function in (Andrews
et al., 2003)

Recall that if we enforce (1) (which is the same as using
(5) for ℓ(·, ·)), then the loss function V (·) in (9) be-
comes 1

m

∑m

i=1 (1 − yi maxj=1,...,ni
f(xij))+, which is

the same as that used for the MI-SVM in (Andrews
et al., 2003). Moreover, as V (·) does not depend on
the f(Bi)’s, it can be easily seen from the proof of the
representer theorem in (Schölkopf & Smola, 2002) that
all the αi0’s in (10) are zero. Therefore, the obtained
decision function in (10) is only spanned by a subset
of the training instances, and is thus the same as that
in (Andrews et al., 2003).

If we use CCCP, we will obtain from (11) the following
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optimization problem:

min
α,ξ,b

1

2
α′Kα +

γ

m
ξ′1

s.t. if yi = +1,





ni
∑

j=1

β
(t)
ij k′

I(xij)
α + b



 ≥ 1 − ξi,

if yi = −1, − (k′
I(xij)

α + b) ≥ 1 − ξi

ξ ≥ 0.

By picking the subgradient with

βij =

{

1, if j = arg maxk=1,...,ni
(k′

I(xik)α),

0, otherwise,

this becomes identical to the optimization heuristic
for the MI-SVM used in (Andrews et al., 2003) and
βij plays the role of the “selector variable” there. In
other words, Andrews et al. (2003) is indeed using
the CCCP with a particular choice of the subgradient.
This also explains why they can “achieve competitive
results even with the simpler optimization heuristics”,
as Pham Dinh and Hoai An (1998) stated that CCCP
(which is called DCA there) can often converge to a
global solution. Moreover, Andrews et al. (2003) only
considers this as a heuristic and thus no convergence
proof is given. On the contrary, we know that CCCP,
using any of the loss functions discussed in this Sec-
tion, is actually guaranteed to decrease the objective
function monotonically and converge to a local min-
imum (Smola et al., 2005). As illustrated in (Yuille
& Rangarajan, 2003), this provides another example
that CCCP can be used to understand and prove the
convergence of existing optimization algorithms.

3.3.3. Using Other Loss Functions for ℓ(·, ·)

Other loss functions can be used for ℓ(·, ·). Using the
same notations as in Section 3.3.1, the optimization
problem with the L2 loss (7) is:

min
α,ξ,δ,b

1

2
α′Kα +

γ

m
ξ′1 +

γλ

m
δ′δ

s.t. yi(k
′
I(Bi)

α + b) ≥ 1 − ξi,

ξ ≥ 0,

k′
I(xij)

α − δi ≤ k′
I(Bi)

α,

k′
I(Bi)

α − max
j=1,...,ni

(k′
I(xij)

α) + δi ≤ 0,

while that with the ǫ-insensitive loss (8) is:

min
α,ξ,δ,δ∗

,b

1

2
α′Kα +

γ

m
ξ′1 +

γλ

m
(δ′1 + δ∗′1)

s.t. yi(k
′
I(Bi)

α + b) ≥ 1 − ξi,

ξ ≥ 0,

k′
I(xij)

α − k′
I(Bi)

α ≤ ǫ + δi,

k′
I(Bi)

α − max
j=1,...,ni

(k′
I(xij)

α) ≤ ǫ + δ∗i .

Here, δ∗ = [δ∗1 , . . . , δ∗m]′ is another vector of slack vari-
ables.

CCCP can again be straight-forwardly applied. It
can be easily shown that the net effect is to re-
place maxj=1,...,ni

(k′
I(xij)

α) in the last constraint by
∑ni

j=1 βijk
′
I(xij)

α as in Section 3.3.1, and the resultant

relaxed optimization problem is then a QP problem.

4. Multi-Instance Regression

In this Section, we show how the same regularization
framework can be easily adapted for MI regression.

4.1. The Loss Function

As in Section 3, we split the loss function V into two
parts. The first part considers the loss between the
value of each bag and its corresponding prediction.
As in ν-support vector regression (Schölkopf & Smola,
2002), we use the ǫ-insensitive loss and an extra νǫ
term (where ν is a user-defined parameter) to penalize
the value of ǫ.

The second part considers the loss between the predic-
tion of each bag and those of its constituent instances.
Its design is, however, more complicated than that in
classification (Section 3.1). Recall that in classifica-
tion, the assumption is that a bag is positive if at least
one of its constituent instances is positive. Hence, we
can simply measure the difference between f(Bi) and
maxj=1,...,ni

f(xij) as in Section 3.1. However, in MI
regression, it is less certain how the bag output should
be related to the outputs of its constituent instances.

Ray and Page (2001) assumed that there is one pri-

mary instance in each bag that is responsible for the
output of the bag. However, as it is not known which
instance in the bag is the primary instance, this prob-
lem can be shown to be NP-complete, even when only
a linear regression model is used (Ray & Page, 2001).

In this paper, we make the simplifying assumption that
the primary instance is the one with the highest out-
put value. Using the loss function3 in Section 3.1,

3For simplicity, we only consider the L1 loss for ℓ here.
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and introducing slack variables δ = [δ1, . . . , δm]′, ξ =
[ξ1, . . . , ξm]′ and ξ∗ = [ξ∗1 , . . . , ξ∗m]′, we obtain the fol-
lowing optimization problem:

min
f∈H,ξ,ξ∗,ǫ,δ

1

2
‖f‖2

H
+ γνǫ +

γ

m
(ξ′

1 + ξ
∗′
1) +

γλ

m
δ
′
1

s.t. f(Bi) − yi ≤ ǫ + ξi,

yi − f(Bi) ≤ ǫ + ξ
∗

i ,

−δi ≤ f(Bi) − max
j=1,...,ni

f(xij) ≤ δi, (17)

ξ, ξ
∗
, δ ≥ 0, ǫ ≥ 0.

Note that our assumption used in selecting the primary
instance is valid in some applications, such as on the
problem of predicting the strengths of synthetic musk
molecules in (Dooly et al., 2002). While it may not be
always correct, some error can still be tolerated with
the use of the slack variable δi in (17). On the con-
trary, enforcing the hard constraint in (1) is certainly
undesirable in this regression setting.

4.2. Optimization Problem in CCCP Iteration

Using the representer theorem and the CCCP as in
Section 3, we obtain the following relaxed optimization
problem at the tth iteration:

min
α,b,ξ,ξ∗,ǫ,δ

1

2
α

′
Kα + γνǫ +

γ

m
(ξ′

1 + ξ
∗′
1) +

γλ

m
δ
′
1

s.t. k
′

I(Bi)α + b − yi ≤ ǫ + ξi,

yi − k
′

I(Bi)α − b ≤ ǫ + ξ
∗

i ,

k
′

I(xij)α − δi ≤ k
′

I(Bi)α,

k
′

I(Bi)α −

ni
X

j=1

β
(t)
ij k

′

I(xij)α ≤ δi,

ξ, ξ
∗
, δ ≥ 0, ǫ ≥ 0,

which is again a QP problem.

On the other hand, Ray and Page (2001) used the
Expectation Maximization (EM) algorithm to find the
primary instance. Note that this can also be easily
incorporated into our formulation, by simply replacing
maxj=1,...,ni

f(xij) in (17) with f(x̂), where x̂ is the
primary instance predicted by EM. In this case, the
computation is even simpler as the non-smooth max
function is removed, and the optimization problem is
immediately a QP problem without using CCCP.

5. Experiments

As mentioned in Section 1, Gärtner et al. (2002) pro-
posed a number of MI kernels. Unlike the standard
kernels that are defined on instances, these kernels are
defined on bags. In the following, we will use a partic-
ular MI kernel called the normalized set kernel . Given

a kernel k defined on instances, and any two bags B1

and B2, the normalized set kernel κ(·, ·) is defined as

κ(B1, B2) =
kset(B1, B2)

√

kset(B1, B1)
√

kset(B2, B2)
, (18)

where kset(B1, B2) =
∑

x∈B1,z∈B2
k(x, z). In the ex-

periments, we will use the Gaussian kernel as k. Note
that in the degenerate case where both bags contain
only one instance, κ({x}, {z}) reduces to the usual
normalized kernel k(x, z)/

√

k(x,x)k(z, z).

Recall that a number of loss functions can be used as
ℓ(·, ·) in our method. In the sequel, we will always use
the L1 loss (Section 3.3.1) in all the experiments.

5.1. Classification: Corel Images

The first experiment is on image categorization us-
ing the data set4 in (Chen & Wang, 2004), which in
turn is extracted from the COREL images. There
are 10 classes (beach, flowers, horses, etc.), with each
class containing 100 images. Each image is regarded
as a bag, and is partitioned into a number of non-
overlapping segments using the k-means clustering al-
gorithm. Each segment, represented by 9 features, is
then regarded as an instance. On average, there are
about 4.3 instances per bag.

We follow exactly the same setup as (Chen & Wang,
2004). The data is randomly divided into a training
and test set, each containing 50 images of each cate-
gory. Since this is a multi-class problem, the standard
one-vs-rest approach is taken. The experiment is re-
peated 5 times, and the average accuracy reported.
Model parameters are selected using a validation set.

Comparisons are made with 1) DD-SVM (Chen &
Wang, 2004), which is a SVM that learns a set of in-
stance prototypes by using the diverse density (DD)
function (Maron & Lozano-Perez, 1998); 2) Hist-SVM
(Chapelle et al., 1999), which is a histogram-based
SVM for image classification; 3) MI-SVM (Andrews
et al., 2003); 4) Standard SVM using the MI kernel
in (18). Note that in the Hist-SVM and MI-SVM,
dual variables are only associated with the instances;
whereas in the DD-SVM and standard SVM using the
MI kernel, dual variables are only associated with the
bags. Our method, on the other hand, has dual vari-
ables associated with both the bags and instances.

Table 1 shows the results. Recall that the main differ-
ence between our method and MI-SVM is in the loss
function ℓ, the superiority of our method over MI-SVM
thus demonstrates the usefulness of introducing more

4http://www.cs.uno.edu/∼yixin/ddsvm.html.
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flexible loss functions. Moreover, our method also out-
performs the standard SVM with MI kernel. To en-
sure that the improvement is statistically significant,
we performed 50 repetitions (instead of 5) and the dif-
ference is confirmed to be significant at the 0.01 level
of significance by using the paired t-test. As discussed
in Section 3.1, this shows that explicitly considering
the loss between the predictions of each bag and its
constituent instances is useful.

Table 1. Performance of MI classification on the Corel data
set. Here, results on DD-SVM, Hist-SVM and MI-SVM are
taken from (Chen & Wang, 2004).

method accuracy (%)
averaged over DD-SVM 81.5 ± 3.0
5 repetitions Hist-SVM 66.7 ± 2.2

MI-SVM 74.7 ± 0.6
SVM (MI kernel) 84.1 ± 0.90

our method 84.4 ± 1.38

averaged over SVM (MI kernel) 84.11 ± 1.23
50 repetitions our method 85.17 ± 1.29

5.2. Regression: Synthetic Musk Molecules

This synthetic data set5 is generated by Dooly et al.
(2002) using an affinity model between the musk
molecules and receptors. The goal is to predict the
real-valued binding energies of these molecules. In this
experiment, we use three data sets6 (LJ-16.30.2, LJ-

80.166.1 and LJ-160.166.1) downloaded from the au-
thor’s website7. There are four more datasets available
there. However, they are easier variations of the three
that we used, and so are dropped in this study.

These three data sets are relatively low-dimensional.
To make the regression problem more challenging, we
created three more data sets (LJ-16-50-2, LJ-80-206-1

and LJ-160-566-1) by adding irrelevant features to the
original data sets. For example, LJ-16-50-2 is gener-
ated by adding 20 more irrelevant features to LJ-16-

30-2 while keeping its real-valued outputs intact.

Comparisons are made with the following MI regres-
sion methods: 1) Diverse Density (DD) (Maron &
Lozano-Perez, 1998); 2) EM-DD (Zhang & Goldman,
2002); 3) Citation-kNN (Wang & Zucker, 2000); 4)
Standard SVM using the MI kernel in (18). Recently,

5As far as we know, “Affinity” is the only real-world data
set used in MI regression experiments (Dooly et al., 2002).
However, this data set is not publicly available.

6We follow the naming convention in (Dooly et al.,
2002). Each filename is of the form LJ-r-f -s, where r is
the number of relevant features, f is the total number of
features, and s is the number of different scale factors used
for the relevant features.

7http://www.cs.wustl.edu/∼sg/multi-inst-data

Ray and Craven (2005) demonstrated that supervised
learners can sometimes outperform MI methods on MI
(classification) problems. However, we speculate that
this may be less likely for MI regression. Thus, we also
compare with a standard SVM using an instance-level
kernel, and the instances inherit their real-valued out-
puts from the corresponding bags. As in (Dooly et al.,
2002), we will report the percentage error (%err)8 and
mean squared error (MSE).

Table 2 shows the results. On the first three data sets,
the proposed method achieves comparable or better
performance as the citation-kNN and MI kernel-based
SVM. On the other hand, DD does not perform well,
and so is dropped on the last three data sets that are
more difficult. As pointed out in (Amar et al., 2001),
the performance of the nearest neighbor-based and DD
algorithms degrade rapidly as the fraction of relevant
features decreases. This is demonstrated by the results
on the last three data sets, where our SVM-based ap-
proach has consistently the best performance. More-
over, as expected, the supervised method does not per-
form well in MI regression.

6. Conclusion

In this paper, we provide a more complete regular-
ization framework for MI learning by allowing a loss
function between the outputs of a bag and its asso-
ciated instances. This is less restrictive than strictly
constraining the two to be equal as in previous stud-
ies, and is particularly useful when the bag labels are
noisy or in MI regression. This new framework al-
lows the use of different loss functions for MI classi-
fication and regression, and both bags and instances
can now directly participate in the optimization pro-
cess. Moreover, instead of using heuristics to solve the
resultant nonlinear optimization problem, we use the
constrained concave-convex procedure, and thus guar-
antees the convergence to local optimum. Experiments
on both classification and regression data show that
the proposed method can have improved performance.
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