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Abstract
In this paper, we propose an automated method to decide on 
the number of fuzzy sets and for the autonomous mining of 
both fuzzy sets and fuzzy association rules. We compare the 
proposed multi-objective GA based approach with: 1) CURE 
based approach; 2) Chien et al clustering approach. 
Experimental results on 100K transactions extracted from 
the adult data of United States census in year 2000 show that 
the proposed method exhibits good performance over the 
other two approaches in terms of runtime, number of large 
itemsets and number of association rules.  

1. Introduction 

In general, quantitative mining algorithms either ignore or 
over-emphasize elements near the boundary of an interval. 
The use of sharp boundary intervals is also not intuitive with 
respect to human perception. Some work has recently been 
done on the use of fuzzy sets in discovering association rules 
for quantitative attributes, e.g., [1, 4, 8, 9, 11].  However, in 
existing approaches fuzzy sets are either supplied by expert 
or determined by applying clustering algorithm. The former 
is not realistic because it is extremely hard for an expert to 
specify fuzzy sets. The latter approaches have not produced 
satisfactory results. They do not considered the optimization 
of membership functions; a user specifies the number of 
fuzzy sets and membership functions are tuned accordingly. 

In this paper, we propose a clustering method that 
employs multi-objective GA for the automatic discovery of 
membership functions used in determining fuzzy quantitative 
association rules. Our approach optimizes the number of 
fuzzy sets and their ranges according to multi-objective 
criteria in a way to maximize the number of large itemsets 
with respect to a given minimum support value. So, we 
defined two objective parameters in terms of large itemsets 
and the time required to determine fuzzy sets. These two are 
in conflict with each other. So, we use a GA with multiple 
objective optimization capabilities known as Pareto GA [10]. 

Experimental results demonstrate the effectiveness of the 
proposed approach. Also, we compared the proposed 
approach, in terms of the number of produced large itemsets 
and interesting association rules, with CURE based approach 
[2] and Chien et al approach [3], which is an efficient 
hierarchical clustering algorithm based on variation of 
density to solve the problem of internal partitioning. 

The rest of this paper is organized as follows. Fuzzy 
association rule is defined in Section 2. Utilizing GA to 
determine membership functions is described in Section 3. A 
brief overview of CURE based approach and Chien et al
work is given in Section 4. Experimental results are given in 
Section 5. Section 6 is summary and conclusions. 

2. Fuzzy Association Rules 

Consider a database of transactions T={t1, t2,…,tn}, where 
each tj represents the j-th tuple in T. We use I={i1, i2,…,im} to 
represent all attributes that appear in T; each quantitative 
attribute ik is associated with at least two fuzzy sets. The 
degree of membership of each value of ik in any of its fuzzy 
sets is directly based on the evaluation of the membership 
function of the particular fuzzy set with the value of ik as 
input. The value falls in the interval [0, 1], with the lower 
bound 0 strictly indicates “not a member”, the upper bound 1 
indicates “total membership”; and all other values between 0 
and 1, exclusive, specify “partial membership”. Finally, we 
use the following form for fuzzy association rule: 

If Q={u1, u2, …, up} is F1={
p

fff 111 ,,,
21
K

} then     

    R={v1, v2, …, vq} is F2={
q

fff 222 ,,,
21
K },

where IQ ⊂  and IR ⊂  are itemsets with φ=RQI , F1 and 
F2, respectively, contain the fuzzy sets associated with 
corresponding attributes in Q and R, i.e., 

if1
 is a fuzzy set 

related to attribute ui and jf2  is related to attribute vj.

3. Multi-Objective GA for Automated Clustering  

We consider as objective functions the number of large 
itemsets and the gain in time, inverse of the time required to 
find all large itemsets in a given database. It is assumed that 
each of the n components of the objective vector is to be 
maximized. An optimal solution can be defined as: a solution 
not dominated by any other solution in the search space.
Such a solution is called Pareto optimal, and the entire set of 
optimal trade-offs is called Pareto-optimal set [10]. 

Each individual represents the base values of membership 
functions for a quantitative attribute from the given database. 
We used membership functions in triangular shape.  

To illustrate the utilized encoding scheme, consider a 
quantitative attribute, say ik, having 3 fuzzy sets, the 
corresponding membership functions and their base variables 
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are shown in Figure 1. Each base variable takes finite values. 
For instance, the search space of the base value 1

ki
b  lies 

between the minimum and maximum values of attribute ik,
denoted )min(

ki
D  and )max(

ki
D , respectively. Enumerated next 

to Figure 1 are the search intervals of all the base values and 
the intersection point 

ki
R of attribute ik.
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Figure 1 Membership functions and base 
variables of attribute ik

We used 8 quantitative attributes in the experiments of 
this study and assumed that each attribute can have at most 7 
fuzzy sets. So, a chromosome consisting of the base lengths 
and the intersecting points is represented in the form: 

1110512111105984763542321121

888888111111111111121111 iiiiiiiiiiiiiiiiiiiiiiii bbRbbwbbRbbRbbRbbRbbRbbw KK

where gene 
jiw  denotes the number of fuzzy sets for 

attributes ji . If the number of fuzzy sets is 2, then while 
decoding the individual, the first two base variables are 
considered and the others are omitted. However, if 

jiw  is 3, 
then the next three variables are also taken into account. So, 
as long as the number of fuzzy sets increases, the number of 
variables to be taken into account is enhanced too. 

We used real-valued coding, where chromosomes are 
represented as floating point numbers and their genes are the 
real parameters. While the value of a gene is reflected under 
its own search interval, the following formula is employed: 

))min()(max()min(
max

k
i

k
i

k
i

k
i jjjj

bb
g

g
bb −+= , where g is the value of 

the gene in search, maxg  is the maximum value that gene g

may take, )min( k
i j

b  and )max( k
i j

b  are the minimum and the 

maximum values of the reflected area, respectively. Also, we 
used Pareto-based ranking procedure, where the rank of an 
individual is the number of solutions encoded in the 
population by which its corresponding decision vector is 
dominated. Individuals who are strong according to parent 
selection policy are candidates to form a new population. We 
adapted the elitism selection policy in our experiments. 
Finally, after selecting chromosomes with respect to the 
evaluation function, genetic operators such as, crossover and 
mutation, are applied to these individuals.

To generate fuzzy association rules, the following 
formula is used to calculate the fuzzy support of itemset Z
and its corresponding set of fuzzy sets F, denoted S<Z,F>:

||

)][,(

, T

ztFf
S

Tt jijZz z

FZ
i j j∑ ∏∈ ∈

><

∈
=

µ
, where T  denotes the 

number of transactions in database T.
Each large itemset, say L, is used in deriving all 

association rules (L−S)⇒S, for each .LS ⊂  The strong 
association rules discovered are chosen by considering only 

rules with confidence over a pre-specified minimum 
confidence.  However, not all of these rules are interesting 
enough to be presented to the user. Whether a rule is 
interesting or not can be judged either subjectively or 
objectively. Ultimately, only the user can judge if a given 
rule is interesting or not, and this judgment, being subjective, 
may differ from one user to another. However, objective 
interestingness criterion based on the statistics behind the 
data can be used as one step towards the goal of weeding out 
presenting uninteresting rules to the user.  

4. Overview of CURE and Chein et al Work  

The process of CURE can be summarized as follows. 
Starting with individual values as individual clusters, at each 
step the closest pair of clusters are merged to form a new 
cluster. This is repeated until only k clusters are left. As a 
result, the values of each attribute in the database are 
distributed into k clusters. The centroids of the k clusters are 
the set of midpoints of the fuzzy sets for the corresponding 
attribute. Here, note that in the process to obtain the 
membership functions by CURE clustering algorithm, the 
number of clusters, i.e., number of fuzzy sets should be given 
by the user beforehand. To overcome this restriction, we 
integrated a GA with CURE clustering approach.  

A GA finds the most appropriate number of clusters 
according to a predefined fitness function. In the GA process 
used in this study, each variable holds the number of fuzzy 
sets only. This is because CURE clustering algorithm itself 
adjusts the base values of the membership functions. 

As Chien et al clustering approach is concerned, it is an 
efficient hierarchical clustering algorithm based on variation 
of density to solve the problem of interval partitioning. For 
this purpose, two main characteristics for clustering 
numerical data are defined first. Then, a reasonable interval 
can be generated automatically by giving a proper parameter 
α  to determine the importance of relative closeness and 
relative inter-connectivity. The reader is referred to [3] for 
more details about this clustering technique.  

5. Experimental Results 

Effectiveness of the proposed approach has been 
demonstrated by comparison with two existing clustering 
approaches: CURE based approach and Chien et al work. 
We concentrate on testing the time requirements as well as 
changes in the main factors that affect the proposed 
clustering process: finding nondominated sets, number of 
large itemsets, and number of association rules. The 
experiments have been conducted on Pentium III 1.4 GHz 
CPU with 512 MB memory and running Windows 2000. As 
experiment data, we used 100K transactions from the adult 
data of US census in 2000; we concentrated our analysis on 8 
quantitative attributes. Further, in all the experiments 
conducted in this study, the GA process started with a 
population of 80 individuals for the GA-based approach and 
30 individuals for the other approach. As the termination 
criteria for the developed GA programs, the maximum 
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number of generations has been fixed at 500. Finally, in all 
the experiments in which GA have been used, the minimum 
support was set to 10%, unless otherwise specified, and the 
maximum number of fuzzy sets has been specified as 7 for 
each of the three methods. 
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Figure 2 Nondominated set using 20K transactions

The first experiment is dedicated to find the 
nondominated set for each of the three different methods 
using 20K transactions. We decided to use 20K transactions 
because according to the next two experiments, the three 
approaches perform almost the same up to 20K transactions. 
The results are reported in Figure 2, where the three 
approaches are labeled as MOGA, CURE and Chein’s work, 
to represent the proposed approach, CURE based approach 
and Chien et al work based approach, respectively. MOGA 
mostly outperforms the others for both objectives.  
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Figure 3 Runtime to find large itemsets for optimum case  

The second experiment compares the runtime of the three 
approaches to find large itemsets for different numbers of 
transactions, varying from 10K to 100K. The results are 
reported in Figure 3. The runtime here represents the time 
required to find all large itemsets after the number of fuzzy 
sets and their ranges have been determined by employing the 
corresponding method. MOGA outperforms the other two 
approaches for all numbers of transactions. Finally, the 
curves plotted in Figure 3 demonstrate that the three methods 
are scalable with respect to the number of transactions. 

The third experiment compares the runtime of the three 
approaches to find large itemsets when the number of fuzzy 
sets is fixed at 5. The results are reported by the curves 
plotted in Figure 4. We have decided on considering 5 fuzzy 
sets in this experiment because it is approximately the 
average number of fuzzy sets found by each of the three 
approaches. From Figure 4, the other two approaches 

outperform MOGA; the extra time in MOGA is spent on 
optimizing membership functions.  
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Figure 4 Runtime to find large itemsets for 5 fuzzy sets 
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Figure 5 Total runtime required to find optimum fuzzy sets 
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Figure 6 Number of large itemsets for optimum fuzzy sets 

The fourth experiment compares the total runtime 
required for each of the three methods to find optimum fuzzy 
sets for different numbers of transactions. The results are 
reported in Figure 5; the total runtime of MOGA is smaller 
than the other two approaches up to around 40K transactions; 
after that, MOGA requires higher execution time than the 
other two approaches. The extra runtime is spent on 
optimizing membership functions. Figure 5 shows that all the 
three approaches scale well on the number of transactions. 

The fifth experiment compares the change in the number 
of large itemsets for different values of minimum support.  
All the 100K transactions have been utilized and the 
optimum solution case has been considered. The results are 
reported by the curves plotted in Figure 6; MOGA finds 
larger number of large itemsets than the other two 
approaches. This is quite consistent with our intuition, 
simply because MOGA puts more effort on the optimization 
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process and this has been reflected into finding better results 
than classical clustering approaches.  
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Figure 7 Number of large itemsets for 5 fuzzy sets 
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Figure 8 Number of association rules for optimum case 
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Figure 9 Number of association rules for 5 fuzzy sets 

The sixth experiment is similar to the fifth but here 5 
fuzzy sets are considered instead of the optimum case. The 
three curves plotted in Figure 7 show the number of large 
itemsets for different values of minimum support. For small 
values of minimum support, the difference between the three 
curves is larger than the difference for the optimum solution 
case shown in Figure 6. Finally, for the two cases plotted in 
Figures 6 and 7, the curves become smoother and the 
difference between them decreases as the minimum support 
increases. This is true because as the minimum support 
increase, the number of large itemsets decreases and 
approaches zero. 

The last two experiments report the correlation between 
minimum confidence and number of interesting association 

rules discovered for each of the three approaches. Figure 8 
reports the values for the optimum solution case. Figure 9 
gives the results in case the number of clusters is set to 5 for 
each of the three methods. MOGA optimizes the ranges of 
the membership functions and the number of fuzzy sets in a 
way that outperforms the other two approaches.  

6. Summary and Conclusions 

In this paper, we proposed a multi-objective GA based 
clustering method, which automatically adjusts the fuzzy sets 
to provide large number of large itemsets in low duration. 
This is achieved by tuning together, for each quantitative 
attribute, the number of fuzzy sets and the base values of the 
membership functions. In addition, we demonstrated through 
experiments that using multi-objective GA has 3 important 
advantages over CURE and Chien et al work. First, the 
number of clusters for each quantitative attribute is 
determined automatically. Second, the GA-based approach 
optimizes membership functions of quantitative attributes for 
a given minimum support. So, it is possible to obtain more 
appropriate solutions by changing the minimum support in 
the desired direction. Finally, the number of large itemsets 
and interesting association rules obtained using the GA-
based approach are larger. As a result, all these advantages 
show that the proposed approach is more appropriate and can 
be used more effectively to achieve optimal solutions than 
the classical clustering algorithms described in the literature.  
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