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Abstract- We examine three methods for improving the ability 
of evolutionary multiobjective optimization (EMO) algorithms 
to find a variety of fuzzy rule-based classification systems with 
different tradeoffs with respect to their accuracy and complexity. 
The accuracy of each fuzzy rule-based classification system is 
measured by the number of correctly classified training patterns 
while its complexity is measured by the number of fuzzy rules 
and the total number of antecedent conditions. One method for 
improving the search ability of EMO algorithms is to remove 
overlapping rule sets in the three-dimensional objective space. 
Another method is to choose similar rule sets as parents for 
crossover operations. The other method is to bias the selection 
probability of parents toward rule sets with high accuracy. The 
effectiveness of each method is examined through computational 
experiments on benchmark data sets.  

I. INTRODUCTION 

 Evolutionary multiobjective optimization (EMO) is one of 
the most active research areas in the field of evolutionary 
computation [1], [2]. The main advantage of EMO algorithms 
over classical multiobjective optimization methods is that a 
large number of non-dominated solutions can be obtained by 
a single run of EMO algorithms. This advantage has been 
utilized to find non-dominated fuzzy rule-based classification 
systems with different accuracy-complexity tradeoffs in our 
former studies [3]-[7]. Human users can visually observe the 
accuracy-complexity tradeoff structure of obtained non-
dominated fuzzy rule-based classification systems for a 
particular pattern classification problem. The multiobjective 
approach to the design of fuzzy rule-based classification 
systems can be easily applied to the design of crisp rule-
based classification systems [8]. EMO algorithms have also 
been used to find non-dominated neural networks [9], [10] 
and non-dominated feature sets [11], [12]. 
 When we try to improve the search ability of EMO 
algorithms, we have to take into account two goals. One goal 
is to improve the convergence of solutions to the Pareto front. 
This goal can be rephrased as driving solutions to the Pareto 
front as close as possible. The other goal is to increase the 
diversity of solutions (i.e., to expand the population in the 
objective space as large as possible). Recently developed 
EMO algorithms such as SPEA [13] and NSGA-II [14] share 
some common characteristic features to simultaneously 
achieve these two goals. One is the use of the Pareto-
dominance relation to evaluate each solution. Larger fitness 

values are assigned to solutions with better (i.e., smaller) 
ranks using the Pareto-dominance relation because smaller 
rank solutions can be viewed as being closer to the Pareto 
front. Diversity-maintenance mechanisms are also used in 
many EMO algorithms. Larger fitness values are assigned to 
solutions in less crowded regions in the objective space. 
Recently the necessity of elitism in EMO algorithms has been 
widely recognized in the literature (e.g., see Deb [1]). Elitism 
for multiobjective optimization is to store non-dominated 
solutions as an archive (i.e., secondary) population separately 
from the current population or to store them as a part of the 
current population. Stored non-dominated solutions are used 
to generate new offspring solutions. It is very difficult to 
implement non-elite EMO algorithms with high search ability. 
 The NSGA-II algorithm of Deb et al. [14] seems to be the 
most well-known and frequently used EMO algorithm in the 
literature (e.g., see the proceedings of recent conferences on 
evolutionary computation such as CEC-2004, GECCO-2004, 
PPSN-2004 and EMO-2005). We also used this algorithm for 
the multiobjective design of fuzzy and non-fuzzy rule-based 
classification systems in recent studies [6]-[8] while we used 
a simple EMO algorithm in earlier studies [3]-[5]. In the 
NSGA-II algorithm, each solution is evaluated based on the 
Pareto-dominance relation and a crowding measure. Elitism 
is also implemented in the NSGA-II algorithm based on the 
Pareto-dominance relation and the crowding measure. While 
the NSGA-II algorithm is one of the best EMO algorithms 
with respect to both the convergence to the Pareto front and 
the diversity of solutions, it was reported in [15]-[17] that the 
performance of the NSGA-II algorithm with respect to the 
diversity of solutions can be further improved by a similarity-
based mating scheme for multiobjective knapsack problems. 
 The goal of this paper is to improve the search ability of 
the NSGA-II algorithm to find a variety of fuzzy rule-based 
classification systems. We examine three methods to achieve 
this goal. One is the removal of overlapping rule sets in the 
objective space, another is the selection of similar rule sets as 
parents for crossover, and the other is the selection bias 
toward rule sets with high accuracy. The effect of each 
method is examined through computational experiments on 
benchmark data sets from the UC Irvine Machine Learning 
Repository where the NSGA-II algorithm is used to find non-
dominated fuzzy rule-based classification systems of the 
three-objective fuzzy rule selection problem in [4]-[7]. 
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II. THREE-OBJECTIVE FUZZY RULE SELECTION

In this section, we briefly describe three-objective fuzzy
rule selection to which the NSGA-II algorithm is applied in
the next section. Let us assume that we have m labeled
patterns ,  from M classes 
as training data. We use fuzzy rules of the following type for
our n-dimensional pattern classification problem:

px )...,,( 1 pnp xx mp ...,,2,1

Rule : If  is  and ... and  is qR 1x 1qA nx qnA
then Class  with , ,   (1)qC qCF rule...,,2,1 Nq

where qR is the label of the q-th fuzzy rule,
is an n-dimensional pattern vector, is an antecedent
fuzzy set, qC is a consequent class, qCF is a rule weight,
and rule is the number of fuzzy rules. The consequent class

q and the rule weight qCF  of each rule q  are specified
from compatible training patterns with its antecedent part

(  in a heuristic manner [18], [19].

)...,,( 1 nxxx
qiA

N
C R

qA )...,,1 qnq
As antecedent fuzzy sets, we use 14 triangular fuzzy sets 

from four homogeneous fuzzy partitions in Fig. 1. We also
use “don’t care” as an additional antecedent fuzzy set. As a 
result, each antecedent fuzzy set qiA in (1) assumes one of
the 15 alternative fuzzy sets. This means that there exist
possible combinations of the 15 antecedent fuzzy sets for our
n-dimensional pattern classification problem.
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Fig. 1. Homogeneous fuzzy partitions.

Since it is very difficult (at least very time-consuming) to
examine all the  combinations of the antecedent fuzzy
sets for high-dimensional pattern classification problems, we
only examine short fuzzy rules with only a few antecedent
conditions. In computational experiments of this paper, we
examine fuzzy rules of length 3 or less. Only for the sonar
data set with 60 attributes, we examine fuzzy rules of length
2 or less. A prespecified number of promising candidate
fuzzy rules are selected from those short fuzzy rules using a 
heuristic rule evaluation measure. See [19], [20] for various
heuristic rule evaluation measures of fuzzy rules. In this
paper, we use a heuristic measure used in an iterative fuzzy 
genetics-based machine learning algorithm called SLAVE

[21]. That is, we choose a prespecified number of promising
short fuzzy rules for each class using the SLAVE measure. In 
computational experiments of this paper, 300 fuzzy rules are
chosen for each class as candidate rules for multiobjective
fuzzy rule selection. 

n15

Let us assume that N fuzzy rules have already been chosen
as candidate rules (i.e., candidate rules for each class 
where M is the number of classes). Any subset S of the N
candidate rules can be represented by a binary string of
length N as N

MN /

sssS 21  where  and 1js 0js  mean 
that the j-th candidate rule is included in S and excluded from
S, respectively.

The three-objective fuzzy rule selection problem in [4]-[7]
is written as follows (also see [19]):

Maximize  and minimize  and , (2))(1 Sf )(2 Sf )(3 Sf

where is the number of correctly classified training 
patterns by S, is the number of fuzzy rules in S, and 

is the total number of antecedent conditions of fuzzy 
rules in S. Since the number of antecedent conditions of each 
rule is referred to as the rule length, can be viewed as 
the total rule length. Each training pattern  is classified by
a single winner rule  chosen from the rule set S as

)(1 Sf
)(2 Sf

)(3 Sf

)(3 Sf
px

wR

}|)(max{)( SRCFCF qqpqwpw xx AA , (3)

where )( pq xA is the compatibility grade of the training
pattern p with the antecedent part  of
the fuzzy rule qR . We use the product operator to calculate
the compatibility grade

x )...,,( 1 qnqq AAA

)( pq xA  as 

)(...)()( 11 pnqnApqApq xxxA , (4)

where qi )( piA x is the compatibility grade of the attribute
value  with the antecedent fuzzy set .pi qi

The NSGA-II algorithm is used to find a large number of 
non-dominated rule sets of the three-objective fuzzy rule 
selection problem in (2). As in [4]-[7], we use two problem-
specific heuristics to efficiently decrease the number of fuzzy
rules in each rule set S during the execution of the NSGA-II
algorithm. One is biased mutation probabilities where a 
larger probability is assigned to the mutation from 1 to 0 than
that from 0 to 1. The other is the removal of unnecessary
fuzzy rules. Since we use the single winner-based method for
classifying each training pattern, some fuzzy rules in S may
be chosen as winner rules for no training patterns. We can
remove those fuzzy rules without degrading the number of
correctly classified training patterns (i.e., ). At the
same time, the removal of such an unnecessary fuzzy rule
decreases the number of rules (i.e., ) and the total rule
length (i.e., ). Thus we remove all fuzzy rules that are 
not selected as winner rules for any training patterns from the
rule set S. The removal of unnecessary fuzzy rules is 
performed for each rule set S after is calculated and
before  and  are calculated. 

x A

)(1 Sf

)(2 Sf
)(3 Sf

)(1 Sf
)(2 Sf )(3 Sf
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III. THE NSGA-II ALGORITHM AND ITS MODIFICATION

In this section, we first describe the NSGA-II algorithm of 
Deb et al. [14]. Then we explain three methods for improving
its search ability to find a variety of non-dominated rule sets
of the three-objective fuzzy rule selection problem in (2).

A. The NSGA-II Algorithm 
The outline of the NSGA-II algorithm is shown in Fig. 2.

First an initial population P is generated in line 1. Pairs of
parent solutions are chosen from the current population P in
line 3. The set of the selected pairs of parent solutions is
denoted by C in line 3. Crossover and mutation operations
are applied to each pair in C to generate the offspring
population in line 4. The next population is constructed
by choosing good solutions from the merged population

. The Pareto-dominance relation and a crowding
measure are used to evaluate each solution in the current
population P in line 3 and the merged population  in 
line 5. Elitism is implemented in line 5 by choosing good
solutions as members in the next population from the merged
population .

'C

'CP

'CP

'CP

1: Initialize:P )(P
2: while the stop_criterion is not satisfied do
3: SelectFrom:C )(P
4: Vary:'C )(C
5: Replace:P )'( CP
6: end while
7: return )(P

Fig. 2. Outline of the NSGA-II algorithm.

The main characteristic feature of the NSGA-II algorithm
is its fitness assignment mechanism to each solution. In line 3, 
pairs of parent solutions are chosen from the current
population P by the binary tournament selection scheme
where each solution is evaluated in the following manner.
The first rank (i.e., rank 1) is assigned to all non-dominated
solutions in the current population P. All solutions with the
first rank are tentatively removed from the current population
P. The second rank (i.e., rank 2) is assigned to all non-
dominated solutions in the remaining current population. All
solutions with the second rank are tentatively removed from
the remaining current population. In this manner, smaller
rank values are assigned to better solutions. In the binary
tournament selection scheme of the NSGA-II algorithm, the
better solution with the smaller rank value is chosen as a
parent from two solutions. When the two solutions have the
same rank, their crowding measures are calculated using all 
solutions with the same rank in the current population P. In 
the NSGA-II algorithm, a crowding measure of each solution
is defined as the sum of the distances from adjacent solutions

with the same rank. More specifically, two adjacent solutions
of each solution are identified with respect to each objective.
Then the distance between those adjacent solutions is 
calculated on each objective and summed up over all
objectives for calculating the crowding measure. For each
extreme solution with the maximum or minimum value of at 
least one objective among the same rank solutions, an
infinitely large value is assigned to such an extreme solution
as its crowding measure because one of the two adjacent
solutions cannot be identified. Solutions with larger values of
the crowding measure are viewed as being better because
those solutions are not located in crowded regions in the
objective space.
 The Pareto-dominance relation and the crowding measure
are also used for the generation update in line 5. That is, the
selection of good solutions from the merged population

is based on the rank assigned to each solution using
the Pareto-dominance relation. The crowding measure is 
calculated only when solutions with the same rank are to be
compared. The next population is constructed in line 5 from
the merged population in the following manner. The
first rank is assigned to all non-dominated solutions in the
merged population. All solutions with the first rank are
removed from the merged population and added to the next
population. The second rank is assigned to all non-dominated
solutions in the remaining merged population. All solutions
with the second rank are removed from the remaining merged
population and added to the next population. In this manner,
better solutions with respect to the Pareto-dominance relation
are chosen and added to the next population. If the number of
the added solutions to the next population exceeds the
population size, solutions with the worst rank in the next
population are sorted using the crowding measure calculated
for each solution with the same rank. Solutions with the
worst rank are removed from the next population in an 
increasing order of their crowding measures until the number
of remaining solutions in the next population becomes the
population size. For further descriptions of the NSGA-II
algorithm, see Deb [1] and Deb et al. [14].

'CP

'CP

B. Removal of Overlapping Solutions
In the above-mentioned generation update procedure in

line 5 of the NSGA-II algorithm, the first rank is assigned to
all non-dominated solutions even when some of them are 
overlapped with each other in the objective space (i.e., even
when some of them have the same objective vector). Many
non-dominated solutions with the same objective vector may 
have a bad effect on the search ability of the NSGA-II
algorithm with respect to the diversity of solutions. A direct
method for decreasing this bad effect is to construct the next
population using different solutions in the objective space.
That is, only a single solution can remain in the next
population among multiple solutions with the same objective
vector. This method can be easily combined into the NSGA-
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II algorithm. The same care should be taken in constructing
an initial population as well as the next population. That is,
we should construct the initial population using different
solutions in the objective space. When all solutions in the
initial population are different in the objective space, we can
always construct the next population with no overlapping
solutions from the merged population .'CP

C. Recombination of Similar Parents
It was reported in [15] that the recombination of similar

parents improved the performance of the NSGA-II algorithm
for multiobjective knapsack problems and multiobjective
scheduling problems. A similarity-based mating scheme in
Fig. 3 was used in [15] to choose similar parents. In this
mating scheme, the first parent (i.e., Parent A in Fig. 3) is
selected by the binary tournament selection scheme in the
same manner as in the NSGA-II algorithm. On the other hand,
its mate (i.e., Parent B in Fig. 3) is chosen in the following
manner. First candidates are selected by iterating the
binary tournament selection scheme times. Then the most
similar candidate to Parent A is chosen as Parent B from the

candidates. The similarity between Parent A and each
candidate is calculated by the Euclidean distance between 
them in the objective space. The selection bias toward similar
parents is adjustable by the value of in this mating scheme.

1 2

Distance-based
Selection

Crossover

Parent BParent A

1 2

Distance-based
Selection

Crossover

Parent BParent A

Fig. 3. Mating scheme for choosing similar parents.

D. Selection of Extreme and Similar Parents
The similarity-based mating scheme in Fig. 3 was

extended in [16] to choose an extreme solution as Parent A as
shown in Fig. 4 where its candidates are selected by
iterating the binary tournament selection scheme  times. In
the original extension in [16], the Euclidean distance from
each candidate to the average objective vector over the
candidates was calculated in the objective space. The most
dissimilar candidate from the average objective vector was
chosen as Parent A in [16]. In this paper, we choose the 
candidate with the highest classification accuracy among the

candidates. This is because the other extreme solution
with the lowest complexity is usually an empty rule set with
no fuzzy rules (i.e., with a zero classification rate). 

Selection of the most
similar solution to

parent A

Parent B

1 2

Parent A

Selection of the most
extreme solution

Parent A

1 2

Crossover

Selection of the most
similar solution to

parent A

Parent B

1 21 2

Parent A

Selection of the most
extreme solution

Parent A

1 2

Crossover

Fig. 4. Mating scheme for choosing extreme and similar
parents. Among candidate, the best candidate with the
highest classification accuracy is chosen as Parent A. 

IV. COMPUTATIONAL EXPERIMENTS 

Through computational experiments on six data sets in
Table 1 from the UC Irvine Machine Learning Repository,
we examine the effects of the three methods in the previous
section on the performance of the NSGA-II algorithm for the
three-objective fuzzy rule selection problem. Each method is
combined with the NSGA-II algorithm. Thus we have three 
variants of the NSGA-II algorithm. Since the aim of our 
computational experiments in this paper is to examine the
search ability of the three variants of the NSGA-II algorithm,
all patterns in each data set are used as training patterns. As
we have already mentioned, 300 fuzzy rules are generated as 
candidate rules for each class using the SLAVE measure.

TABLE 1. DATA SETS IN COMPUTATIONAL EXPERIMENTS.

Data set Attributes Patterns Classes
Breast W 9   683* 2
Diabetes 8 768 2

Glass 9 214 6
Heart C 13   297* 5
Sonar 60 208 2
Wine 13 178 3

* Incomplete patterns with missing values are not included.

The three variants of the NSGA-II algorithm are executed 
using the following parameter specifications (Parameter
values were specified from preliminary experiments):
  Population size: 200 strings,
  Crossover probability: 0.8 (uniform crossover),
  Biased mutation probabilities:

Mp 300/1)10(m   and )01(mp 0.1,
Stopping condition: 5000 generations,

 and  in Fig. 3 and Fig. 4: 10 and 10.
Each variant is applied to each data set 10 times. Table 2 
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shows the average number of obtained non-dominated rule
sets over 10 runs. The largest value for each data set is 
highlighted by boldface in Table 2. The last row shows the
average value over the six data sets for each variant. From
Table 2, we can see that the removal of overlapping solutions
by the first method increases the number of obtained non-
dominated rule sets for many data sets. We also record the
best error rate on training patterns among rule sets in the final
population obtained by each variant for each data set. The
average best error rate is calculated over 10 runs in Table 3.
On the other hand, Table 4 shows the average error rate on
training patterns of all the obtained non-dominated rule sets
over 10 runs. We can see from Table 3 and Table 4 that the
third method drove the population toward rule sets with high
classification accuracy on training patterns.

TABLE 2. THE AVERAGE NUMBER OF OBTAINED RULE SETS BY
EACH VARIANT OF THE NSGA-II ALGORITHM.

Data set Original
NSGA-II

Removal of
overlap Similar Extreme

& similar
Breast W 11.2 14.2 12.3 11.6
Diabetes 19.5 23.3 20.3 15.9

Glass 28.3 31.0 32.4 16.7
Heart C 45.5 46.3 46.0 15.0
Sonar 12.7 15.8 12.8 10.1
Wine 14.2 13.9 12.9 13.2

Average 21.9 24.1 22.8 13.8

TABLE 3. THE AVERAGE VALUE OF THE BEST ERROR RATES
OBTAINED BY EACH VARIANT OVER 10 RUNS.

Data set Original
NSGA-II

Removal of
overlap Similar Extreme

& similar
Breast W 1.9 1.7 1.9 1.8
Diabetes 21.9 21.8 21.9 21.9

Glass 21.9 21.5 21.0 20.6
Heart C 29.1 28.9 29.0 28.6
Sonar 11.1 10.0 11.0 10.3
Wine 0.0 0.0 0.0 0.0

Average 14.3 14.0 14.1 13.9

TABLE 4. THE AVERAGE VALUE OF THE AVERAGE ERROR RATES
OF OBTAINED NON-DOMINATED RULE SETS OVER 10 RUNS.

Data set Original
NSGA-II

Removal of
overlap Similar Extreme

& similar
Breast W 14.8 12.1 13.5 10.3
Diabetes 28.2 27.3 28.0 27.5

Glass 36.7 35.5 35.7 25.8
Heart C 38.3 38.2 38.2 31.5
Sonar 24.9 22.3 24.7 15.8
Wine 20.0 19.8 21.4 18.4

Average 27.1 25.9 26.9 21.5

 Examples of non-dominated rule sets obtained by each 
variant of the NSGA-II algorithm are shown in Figs. 5-7 for
the Cleveland heart disease data set (i.e., Heart C). It should 
be noted that non-dominated rule sets in each figure were
obtained by a single run of each variant. We can observe in
these figures the existence of the clear tradeoff between the
accuracy on training patterns and the complexity of fuzzy
rule-based classification systems. We can also see from these 
figures (and Table 3 and Table 4) that each method increases
the search ability of the NSGA-II algorithm to find fuzzy
rule-based systems with high accuracy on training patterns.
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V. CONCLUSIONS 

 In this paper, we examined three methods for improving 
the search ability of the NSGA-II algorithm to find a variety 
of non-dominated rule sets of a three-objective fuzzy rule 
selection problem. Experimental results showed that the 
performance of the NSGA-II algorithm was improved by 
removing overlapping solutions in terms of the variety of 
obtained non-dominated rule sets. It was also shown that the 
choice of extreme and similar parents drove the population 
toward rule sets with high classification accuracy. 
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