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Abstract 

We examine the effect of instance and feature selection 
on the generalization ability of trained neural networks 
for pattern classification problems. Before the learning 
of neural networks, a genetic-algorithm-based instance 
and feature selection method is applied for reducing the 
size of training data. Nearest neighbor classilication is 
used for evaluating the classification ability of subsets 
of training data in instance and feature selection. Neu- 
ral networks are trained by the selected subset (i.e., re- 
duced training data). In this paper, we tirst explain our 
GA-based instance and feature selection method. Then 
we examine the effect of instance and feature selection 
on the generalization ability of trained neural networks 
through computer simulations on various artificial and 
real-world pattern classification problems. 

1. Introduction 

Nearest neighbor classification [I] is one of the most 
well-known methods for pattern classification. I n  its 
standard formulation, all the given instances are used 
as a reference set for classifying new instanceb. Various 
approaches have been proposed for decreasing the size 
of the reference set [2, 3, 41. Genetic algorithms have 
been also used for designing compact nearest neighbor 
classifiers with a small reference set. For example, in 
[9, IO], the tasks of genetic algorithms are to maximize 
the classification performance of selected patterns and 
to minimize the number of selected instances. Genetic 
algorithms can be also used for selecting salient features 
[6] and finding an appropriate weight of each feature 
VI .  
In our former work [ 5 ] ,  we proposed ii genetic- 
algorithm-based approach to the design of compact ref- 
erence sets with high classifiation ability by simultane- 
ously selecting a small number of instances and fea- 
tures. In this paper, we examine the effect of the in- 
stance and feature selection on the generalization ability 
of trained neural networks. Before the learning of neu- 
ral networks, the size of training patterns is reduced by 
genetic algorihtms. That is, genetic algorithms are used 

for editing the training data for the learning of neural 
networks. Then we use the selected instances and fea- 
tures in the learning. 

2. Instance and Feature Selection 

2.1. Coding 

Let us assume that 7 n  labeled instances xp = ( zp , ,  
. . . , xp,,), p = 1,2.. . . , m are given from c classes in 
an n-dimensional pattern space where zpi is the value 
of the i-th feature in the p-th itistance. Genetic algo- 
rithms are used to select a small number of represen- 
tative instances together with a !.ew significant features 
for designing a compact nearest neighbor classifier with 
high classification performance Let PALL be the set of 
the given m instances: P A L I ,  = {XI, x2,. . . , x,~'}. We 
also denote the set of the given I ) .  features as FALL = 
{fl , f2,. . . , f , l }  where fi is the label of the i-th feature. 
The task of genetic algorithms here is to select a small 
number of instances from P/ILI. and to select only sig- 
nificant features from F . ~ L L .  lxt F and P be the set 
of selected features and the set of selected instances, 
respectively, where F C FALI. and P G P.4~1,. We 
denote the reference set as S :- ( F , F ) .  In the stan- 
dard formulation of nearest neighbor classification, the 
reference set S is specified as S = (FALL,  P,4~,r,) he- 
cause all the given features and instances are used for 
classifying new instances. 

For handling our instance and fexture selection problem 
by genetic algorithms, every reterence set S = ( F ,  f') 
is coded by a binary string of the length (n + m) as 

( 1 )  

where ai denotes the inclusion (ai = 1) or the exclu- 
sion (ai = 0) of the i-th feature fi, and sp  denotes the 
inclusion ( s p  = I )  or the exclusion ( sp  = 0) of the p t h  
instance x,,. The feature set F and the instance set P 
are obtained by decoding the string S as follows: 

s = n1nz.. . n,,Sl.%j . * .  sin, 

F = {filUi = 1;i = L,2,. . . .n}, 

P = {xplsp  = l , p  = 1,2, .  . . ,m}. 

(2) 

( 3 )  
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2.2. Fitness Function 

In the nearest neighbor classification with the i.derence 
set S = ( F ,  P ) ,  the nearest neighbor xp* of ;I new in- 
stance x is found from the instance set P as 

dF(xp+,x)  = Iniil{dr;-(x,,x)Ixp E P ) ,  (4) 

where dk-(x,,x) is the distance between x,, and x, 
which is defined by the feature set F as 

The new instance x is classified by its nearest neighbor 
xpt. If the class of the nearest neighbor xp+ ih the same 
as that of the new instance x, x is correctly classified. 
Otherwise the new instance x is misclassified. 

In the instance and feature selection in this paper, the 
number of selected instances and the number o F  selected 
features are to be minimized, and the classification per- 
formance of the reference set S = ( F ,  P) is to be max- 
imized. Thus our problem is written as follows: 

(6) 

where IF1 is the number of features in F (i.e.. the car- 
dinality of F), )PI is the number of instances in P, and 
Perj (S) is a performance measure of the reference set 
S = (F, P). The performance measure is defined based 
on the classification results of the given m instances by 
the reference set 5' = (F ,  P). 
In our former work [SI, we defined the performance 
measure Pet.j(S) by the number of correctly classi- 
tied instances by S = ( F , P ) .  Each instance x, (q = 
1.2, . . . , m) was classified by its nearest neighbor xp*, 
which is defined as 

Minimize (FI, minimize !PI, 
and maximize P e r f ( S ) ,  

former work [5], we showed that the generalization 
ability i c  higher when we use [his performance mea- 
sure han when we use a simple performance mea- 
sure where the nearest neighbot xp t  to an instance xq 
(cl = 1 , 2 . .  . . ,m) is defined as 111 (7). 

The fitness value of the reference set S = (F', P) is de- 
fined by the three objectives of our instance and feature 
selection problem in (6) as 

2.3. Basic Algorithm 

We use a genetic algorithm to maximize the fitness 
function in (9) by appropriately \electing instances and 
features. Our genetic algorithm is similar to [9, 101 
where only the instance selection was discussed, In 
our genetic algorithm, first a number of binary strings 
(say, Npop strings) of the length (n + m) are randomly 
generated to form an initial population. Next a pair 
of strings are randomly selected from the current 
population to generate two strings by crossover and 
mutation. The selection, crossover, and mutation are 
iterated to generate Npop string\. The newly generated 
Kp0,, strings are added to the current population to 
form an enlarged population ot the size 2-N,,,. The 
next population is constructed by selecting the best 
ATpo,, strings from the enlarged population. The popu- 
lation update is iterated until a pre-specified stopping 
condition is satisfied. Our generic algorithm is written 
as follows: 

[GA-based Instance and Feature Selection] 

In the definition of the performance measure in [9, 101 
for the instance selection, when an instance x,, was in- 
cluded in the reference set, xq was not selected as its 
own nearest neighbor. In the context of the instance and 
feature selection, this means that the nearest neighbor 
xpt of x, is selected as follows: 

(8) 
That is, Per.f(S) is the number of correctly classified 
instances when the nearest neighbor of each instance 
is defined by (8). We use this performance ineaseure 
in our instance and feature selection problem. In our 

Step I (Initialization): Randomly generate NPOP 
strings of the length (n. + in). 

Step 2 (Genetie Operations): Itcrate the following 
procedures NPOP)~ times to generate NPOP 
strings. 

I .  Randomly select a pair of strings from the 
current population. 

2. Apply a crossover operation to the selected 
pair of strings to generate two offspring. 
In computer simulalions of this paper, we 
use the uniform crossover to avoid the 
dependency of the performance on the 
order of n features and m instances in the 
string. 
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3. Apply a mutation operation to each bit 
value of the two stings generated by the 
crossover operation. The mutalioil c:prra- 
tion changes the bit value from I to 0 or 
from 0 to I. For the muatation 011 the sub- 
string for instance selection, we bias the 
mutation probability. That is, we use differ- 
ent probability for the bit change from I to 
0 and from 0 to I .  The number 01’ selected 
instances can be efficiently decrea4ed by the 
biased mutatation. 

Step 3 (Generation Update): Add the newly generated 
NpOp strings in Step 2 to the current population of 
the Npop strings to form an enlarged population 
of the size 2 . Npop. Select the Npop best strings 
with the largest fitness values from the enlarged 
population to form the next population. 

Step 4 (Termination Test): If a pre-specified stopping 
condition is not satisfied, return to Step 2. Oth- 
erwise decode the best string with the largest fit- 
ness value to generate a reference set as shown in 
( 2 )  and (3). In our computer simulations, we use 
the total number of generations (i.e., iterations of 
Step 2 and Step 3) as the stopping condition of 
our genetic algorithm. 

Our genetic algorithm is different from the standard im- 
plementation [ I  I] in the selection and generation update 
procedures. In our algorithm, the selection of parent 
strings for the crossover is performed randoinly. The 
selection of good strings is actually performed in the 
generation update procedure. In this sense, the gener- 
ation update procedure of our genetic algorithm can be 
viewed as a selection procedure for generating a mating 
pool from which parent strings are randomly selected. 
We adopted this implementation according to the first 
attempt of the application of genetic algorithms to the 
instance selection in 19. IO]. We also examined a more 
standard implementation based on the roulette wheel se- 
lection with the linear scaling and a single elite strategy. 
Simulation results of these two implementations were 
almost the same. So we only report simulation results 
by the above implementation. 

2.4. Numerical example 

In this section, we show the result of the instance and 
feature selection by our genetic-algorithm-based ap- 
proach. We apply the genetic algorithm to artiticial two- 
dimensional data. We generated 30 instances for each 
class in a unit square [O, 11 x [O, 11. 

Our genetic algorithm was appled to the two- 
dimensional data for selecting a small number of in- 
stances and features. The following parameter speci- 
fications were used: 

Population size: 50, 
Crossover probability: 1 .O, 
Mut;ition probability: 0.01, 
Stopping condition: IO00 generations. 
(wp,,:lv-F,u’p) = (5 , l : l ) .  

Our genetic algorithm selected \ix instances (three for 
each class) and two features (i.e., n o  feature was re- 
moved). The selected instances are shown in Fig.1 
along with the classitication boundary generated by 
them. From Fig.1, we can see that all training data are 
correctly classified. 

0 :  Class I 0: Class 2 

1. 

Figure 1. Selected patterns. 

3. Learning of Neural Networks 

Ishibuchi et al. [5 ]  demonstrated that the instance and 
feature selection can improve the generalization ability 
of nearest neighbor classifiers. In this section, we use 
selected reference sets as training data for the learning 
of neural networks. The purpose of this paper is to ex- 
amine the effect of the instancc and feature selection 
described in the previous section on the generalization 
ability of the neural networks. We use standard three- 
layered neural networks. In this paper we use the back- 
propagation algorithm to the learning of the neural net- 
works. 

When we do not reduce the size of the training data, the 
number of input units is specified as where n is the 
number of attributes in the given data set. All the nb in- 
stances are used in the backpropagation algorithm. On 
the other hand, when we use thc reduced training data 
by our GA-based instance and feature selection method 
in Section 2, the number of input units n1 of neural net- 
works is smaller than n. That is, we use neural networks 
with simpler architecture. The number of instances is 
also smaller than m. Thus the instance and feature 
selection decreases both the complexity of neural net- 
works and the size of training data. Its straightforward 
positive effect on the learning ot neural networks using 
less instances leads to less computation time than the 

0-7SO3-7078-3/0U$l0.00 (C)u)Ol IEEE, Page: 2104 



case of the entire training data. The instance and feature 
selection may have two different effects on the learning 
of neural networks. One is a negative effect li) decreas- 
ing the number of training instances. In genzral, it is 
dit-ficult to obtain good generalization by the leariling 
of neural networks from a small number of training in-  
stances. The other is a positive effect by removing out- 
liers or noisy instances. Such instances deteriorate the 
generalization ability of trained neural networks. An- 
other merit of the instance and feature selection is to 
speed up the learning of neural networks. 

I t  is not clear whether the learning of simpler neural net- 
works using less instances leads to higher generalization 
ability than the case of the entire training data. In the 
next section, we examine the effect of the instance and 
feature selection on the generalization ability of trained 
neural networks through computer simulations. 

4. Computer Simulations 

We used two artificial data sets and four real-life data 
sets. In our computer simulations, we appliec! our GA- 
based method to each data set after normalizing attribute 
values to real numbers in the unit interval [O. I ] .  Each 
data set is briefly described in the following. 

Data Set I with Small Overlap: We generated a two- 
class pattern classification problem in the unit square 
[O, 11 x [0,1]. For each class, we generated 50 instances 
using the normal distribution i V ( f i k ,  Ck) where p k  and zk were specified as follows: 

cL1 = ( O , l ) , P . L  = ( L O ) :  
(10) 

Data Set XI with Large Overlap: We generated a two- 
class pattern classification problem in the same manner 
as in the above data set using larger variances. We spec- 
ified the normal distribution of each class as follows: 

f i1  = (0,1),P2 = ( L O ) ,  
( 1 1 )  

Iris Data: The iris data consist of 150 instances with 
four features from three classes (50 instances trom each 
class). 

Appendicitis Data: The appendicitis data consist of 
106 instances with eight features from two classes. 
Since one feature has some missing values. we used 
seven features as in, [ 131. 

Cancer Data: The cancer data consist of 286 instances 
with nine features from two classes. This data set was 
alsousedin [13]. 

Wine Data: The wine dataconskt of 178 instances with 
13 features from three classes, tchich is available from 
the inachine learning database i l l  UC Irvine. 

In our computer simulations, we penerated 100 training 
data and 1000 test data according to the normal distri- 
butions of Data I and Data 11. For the other data sets, we 
divided each data set into two ;*roups: 2/3 for training 
data, and 1/3 for test data. Our GA-based instance and 
feature selection method was applied to the training data 
for selecting a compact referencc set with a small num- 
ber of instances and features. I'he selected instances 
and features were then used to train neural networks. 
The test data were classified by the trained neural net- 
works for evaluating its generalization ability. These 
procedures were iterated 30 timc*s using different parti- 
tions into training data and test data for calculating the 
average classification rate on the test data. 

In Table 1 we show simulation results of our GA-based 
instance and feature selection method over 30 trials for 
each data set. This table shons the average number 
of the selected instances and fcatures and the perfor- 
mance on test data by the neatest neighbor classifier 
with the selected instances and features. The number 
of the training data for each datii set is shown in paren- 
theses in this table. 

Table 1 .  Szmulation resulf5 of instance and 
feature $election b y  the GA -based method. 

Dataset I Feature- 

lris 

We used the reduced raining data to train neural net- 
works. The BP (back-propagation) algorithm [ 121 was 
iterated 5000 times (i.e., 5000 epochs). The learning 
rate and the momentum rate ate 0.1 and 0.9, respec- 
tively. The number of hidden units is five for the iris 
and the appendicitis data, 15 for the cancer data, and 
two for the wine data. 

Table 2 shows average simulation results. From Table 
2, we can see that the generahation ability of neural 
networks was improved by using the reduced training 
data for the appendicitis data and the cancer data. How- 
ever, the generalization ability wiis not improved for the 
iris data and the wine data. It IS well-known that the 
iris data and the wine data are not challenging as clas- 
sification problems. That is, there are only small over- 
laps between classes in the iris data and the wine data. 
On the other hand, in the appendicitis data and the can- 
cer data, two classes are overlapping with each other. 
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In that case, higher generalization is obtained by using 
simple classification boundaries than by using c.omp!ex 
classification boundaries. 

Table 2. Siriiulatioii results of neural n r / i ~ ~ o i ~ k s  
using the 'original and  reduced data set.$. 

Data set 1 Original I Reduced 
Data set I 1 70.2% I 70.0% 
Data set I1 6 I .2% 64.3% 

iris 94.5% 93.2% 
83.9% appe 1 1 88.4% 

cancer 68.8% 73.8% 
wine 97.7% 95.8% 

In our computer simulations, simple clahsification 
boundaries were produced by trained neural networks 
with the redued training data. To clearly demonstrate 
this, we show the classification boundaries made by 
trained neural networks in Fig. 2 and Fig. 3. In Fig. 
2, we show the classification boundaries by the neural 
networks by using the original training data (i.e., be- 
fore the insrance and feature selection). On the other 
hand, the classification boundaries by the reduced train- 
ing data were shown in Fig. 3. From Fig. 2 and Fig. 
3. we can see that simpler classification boundaries can 
be obtained by using the reduced training data set. and 
overtitting is ovservbed by using the original data set. 
From these simulation results, we can say thar instance 
and feature selection prevented the overtitting of neural 
networks to training data. 

XI 

Figwe 2. Classification boundaries by using 
the original data set. 

To examine how the generalization ability of the trained 
neural networks improves during the course of the 
learning, we monitored the classification rates of the 
trained neural networks for training data and test data. 
Fig. 4 and Fig. 5 show the classification rates of the 
trained neural networks by using the original training 
data and the reduced training data, respectively. From 
Fig. 4 and Fig. 5, we can see that the generalization 

XI 

Figure 3. Classification boundaries bw ~ i s i m ~  
the reduced data set. 

ability of the trained neural networks first increased in 
the begginingofthe learning in the case of'both the orig- 
inal training data and the reduccd training data. How- 
ever, the generalization ability decreased after a certain 
number of iteration of the learning in the case of the 
original training data. On the contrary, we did not ob- 
serve any degradation of the genoralization ability in the 
case of the reduced training data. From Fig. 4 and Fig. 
5, we can see that the neural networks were likely to 
be overfit to the training data when we did not use the 
reduced training data. 

Figure 4. Classification iates by using the 
original training data. 

Another positive effect of using the reduced training 
data is the decrease in the learning time of neural net- 
works. In Table 3, we show the average CPU time for 
training the neural networks wirh the original training 
data and the reduced training data. From this table, we 
can see that the CPU time for the learning was drasti- 
cally decreased by the reduction of training data. 
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Figure 5.  Clussijication rates b y  using the re- 
duced data set. 
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Table 3. CPU time. (sec.) 
Data set 

Data set I 
Data set I1 

Iris 
Appendicitis 

1 Original I Reduced 

Cancer 16.4 I .6 
Wine 3.3 

5. Conclusions 

In this paper, we examined the effect of the instane and 
feature selection on the generalization ability of trained 
neural networks. We used a genetic-algorithm-based 
inethod for selecting a small number of instances and 
features. The reduced training data with a sriiall num- 
ber of instances and features were used for the learning 
of neural networks by the backpropagation algorithm. 

Through the computer simulations on artificial and real- 
world data sets, we showed that the generalization abil- 
ity of trained neural networks were improved for diffi- 
cult problems with large overlaps. On the other hand, 
the generalization ability was not improved for simple 
prohlems with small overlaps. Instance and feature se- 
lection prevented the overfitting of neural networks to 
training data on almost all data sets in our computer 
simulations. 

We also showed another positive effect of using reduced 
training data. The learning time of neural networks 
was shorter when we use the reduced training data than 
when the original training data were used. 
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