
Learning of Neural Networks with GA-Based Instance Selection

Hisao Ishibuchi, Tomoharu Nakashima, and Manabu Nii
Department of Industrial Engineering, Osaka Prefecture University

Gakuen-cho 1-1 , Sakai, Osaka 599-853 I , JAPAN
E-mail {hisaoi. nakashi, manabu}ie.osakafu-u.ac.jp

Abstract

We examine the effect of instance and feature selection
on the generalization ability of trained neural networks
for pattern classification problems. Before the learning
of neural networks, a genetic-algorithm-based instance
and feature selection method is applied for reducing the
size of training data. Nearest neighbor classilication is
used for evaluating the classification ability of subsets
of training data in instance and feature selection. Neu-
ral networks are trained by the selected subset (i.e., re-
duced training data). In this paper, we tirst explain our
GA-based instance and feature selection method. Then
we examine the effect of instance and feature selection
on the generalization ability of trained neural networks
through computer simulations on various artificial and
real-world pattern classification problems.

1. Introduction

Nearest neighbor classification [I] is one of the most
well-known methods for pattern classification. I n its
standard formulation, all the given instances are used
as a reference set for classifying new instanceb. Various
approaches have been proposed for decreasing the size
of the reference set [2, 3, 41. Genetic algorithms have
been also used for designing compact nearest neighbor
classifiers with a small reference set. For example, in
[9, IO], the tasks of genetic algorithms are to maximize
the classification performance of selected patterns and
to minimize the number of selected instances. Genetic
algorithms can be also used for selecting salient features
[6] and finding an appropriate weight of each feature
VI .
In our former work [5] , we proposed ii genetic-
algorithm-based approach to the design of compact ref-
erence sets with high classifiation ability by simultane-
ously selecting a small number of instances and fea-
tures. In this paper, we examine the effect of the in-
stance and feature selection on the generalization ability
of trained neural networks. Before the learning of neu-
ral networks, the size of training patterns is reduced by
genetic algorihtms. That is, genetic algorithms are used

for editing the training data for the learning of neural
networks. Then we use the selected instances and fea-
tures in the learning.

2. Instance and Feature Selection

2.1. Coding

Let us assume that 7 n labeled instances xp = (zp , ,
. . . , xp,,), p = 1,2.. . . , m are given from c classes in
an n-dimensional pattern space where zpi is the value
of the i-th feature in the p-th itistance. Genetic algo-
rithms are used to select a small number of represen-
tative instances together with a !.ew significant features
for designing a compact nearest neighbor classifier with
high classification performance Let PALL be the set of
the given m instances: P A L I , = {XI, x2,. . . , x,~'}. We
also denote the set of the given I) . features as FALL =
{fl , f2,. . . , f , l } where fi is the label of the i-th feature.
The task of genetic algorithms here is to select a small
number of instances from P/ILI. and to select only sig-
nificant features from F . ~ L L . lxt F and P be the set
of selected features and the set of selected instances,
respectively, where F C FALI. and P G P.4~1,. We
denote the reference set as S :- (F , F) . In the stan-
dard formulation of nearest neighbor classification, the
reference set S is specified as S = (FALL, P,4~,r,) he-
cause all the given features and instances are used for
classifying new instances.

For handling our instance and fexture selection problem
by genetic algorithms, every reterence set S = (F , f')
is coded by a binary string of the length (n + m) as

(1)

where ai denotes the inclusion (ai = 1) or the exclu-
sion (ai = 0) of the i-th feature fi, and sp denotes the
inclusion (s p = I) or the exclusion (sp = 0) of the p t h
instance x,,. The feature set F and the instance set P
are obtained by decoding the string S as follows:

s = n1nz.. . n,,Sl.%j . * . sin,

F = {filUi = 1;i = L,2,. . . .n},

P = {xplsp = l , p = 1,2, . . . ,m}.

(2)

(3)

0-7803-7078-3/Ol/$lO.W (C)uIol IEEE. Page: 2102

http://manabu}ie.osakafu-u.ac.jp

2.2. Fitness Function

In the nearest neighbor classification with the i.derence
set S = (F , P) , the nearest neighbor xp* of ;I new in-
stance x is found from the instance set P as

dF(xp+,x) = Iniil{dr;-(x,,x)Ixp E P) , (4)

where dk-(x,,x) is the distance between x,, and x,
which is defined by the feature set F as

The new instance x is classified by its nearest neighbor
xpt. If the class of the nearest neighbor xp+ ih the same
as that of the new instance x, x is correctly classified.
Otherwise the new instance x is misclassified.

In the instance and feature selection in this paper, the
number of selected instances and the number o F selected
features are to be minimized, and the classification per-
formance of the reference set S = (F , P) is to be max-
imized. Thus our problem is written as follows:

(6)

where IF1 is the number of features in F (i.e.. the car-
dinality of F),)PI is the number of instances in P, and
Perj (S) is a performance measure of the reference set
S = (F, P). The performance measure is defined based
on the classification results of the given m instances by
the reference set 5' = (F , P).
In our former work [SI, we defined the performance
measure Pet.j(S) by the number of correctly classi-
tied instances by S = (F , P) . Each instance x, (q =
1.2, . . . , m) was classified by its nearest neighbor xp*,
which is defined as

Minimize (FI, minimize !PI,
and maximize P e r f (S) ,

former work [5], we showed that the generalization
ability i c higher when we use [his performance mea-
sure han when we use a simple performance mea-
sure where the nearest neighbot xp t to an instance xq
(cl = 1 , 2 ,m) is defined as 111 (7).

The fitness value of the reference set S = (F', P) is de-
fined by the three objectives of our instance and feature
selection problem in (6) as

2.3. Basic Algorithm

We use a genetic algorithm to maximize the fitness
function in (9) by appropriately \electing instances and
features. Our genetic algorithm is similar to [9, 101
where only the instance selection was discussed, In
our genetic algorithm, first a number of binary strings
(say, Npop strings) of the length (n + m) are randomly
generated to form an initial population. Next a pair
of strings are randomly selected from the current
population to generate two strings by crossover and
mutation. The selection, crossover, and mutation are
iterated to generate Npop string\. The newly generated
Kp0,, strings are added to the current population to
form an enlarged population ot the size 2-N,,,. The
next population is constructed by selecting the best
ATpo,, strings from the enlarged population. The popu-
lation update is iterated until a pre-specified stopping
condition is satisfied. Our generic algorithm is written
as follows:

[GA-based Instance and Feature Selection]

In the definition of the performance measure in [9, 101
for the instance selection, when an instance x,, was in-
cluded in the reference set, xq was not selected as its
own nearest neighbor. In the context of the instance and
feature selection, this means that the nearest neighbor
xpt of x, is selected as follows:

(8)
That is, Per.f(S) is the number of correctly classified
instances when the nearest neighbor of each instance
is defined by (8). We use this performance ineaseure
in our instance and feature selection problem. In our

Step I (Initialization): Randomly generate NPOP
strings of the length (n. + in).

Step 2 (Genetie Operations): Itcrate the following
procedures NPOP)~ times to generate NPOP
strings.

I . Randomly select a pair of strings from the
current population.

2. Apply a crossover operation to the selected
pair of strings to generate two offspring.
In computer simulalions of this paper, we
use the uniform crossover to avoid the
dependency of the performance on the
order of n features and m instances in the
string.

0-7803-7@78-3/0lL$lO.W (C)zoOl IEEE. Page: 2103

!

3. Apply a mutation operation to each bit
value of the two stings generated by the
crossover operation. The mutalioil c:prra-
tion changes the bit value from I to 0 or
from 0 to I. For the muatation 011 the sub-
string for instance selection, we bias the
mutation probability. That is, we use differ-
ent probability for the bit change from I to
0 and from 0 to I . The number 01’ selected
instances can be efficiently decrea4ed by the
biased mutatation.

Step 3 (Generation Update): Add the newly generated
NpOp strings in Step 2 to the current population of
the Npop strings to form an enlarged population
of the size 2 . Npop. Select the Npop best strings
with the largest fitness values from the enlarged
population to form the next population.

Step 4 (Termination Test): If a pre-specified stopping
condition is not satisfied, return to Step 2. Oth-
erwise decode the best string with the largest fit-
ness value to generate a reference set as shown in
(2) and (3). In our computer simulations, we use
the total number of generations (i.e., iterations of
Step 2 and Step 3) as the stopping condition of
our genetic algorithm.

Our genetic algorithm is different from the standard im-
plementation [I I] in the selection and generation update
procedures. In our algorithm, the selection of parent
strings for the crossover is performed randoinly. The
selection of good strings is actually performed in the
generation update procedure. In this sense, the gener-
ation update procedure of our genetic algorithm can be
viewed as a selection procedure for generating a mating
pool from which parent strings are randomly selected.
We adopted this implementation according to the first
attempt of the application of genetic algorithms to the
instance selection in 19. IO]. We also examined a more
standard implementation based on the roulette wheel se-
lection with the linear scaling and a single elite strategy.
Simulation results of these two implementations were
almost the same. So we only report simulation results
by the above implementation.

2.4. Numerical example

In this section, we show the result of the instance and
feature selection by our genetic-algorithm-based ap-
proach. We apply the genetic algorithm to artiticial two-
dimensional data. We generated 30 instances for each
class in a unit square [O, 11 x [O, 11.

Our genetic algorithm was appled to the two-
dimensional data for selecting a small number of in-
stances and features. The following parameter speci-
fications were used:

Population size: 50,
Crossover probability: 1 .O,
Mut;ition probability: 0.01,
Stopping condition: IO00 generations.
(wp,,:lv-F,u’p) = (5 , l : l) .

Our genetic algorithm selected \ix instances (three for
each class) and two features (i.e., n o feature was re-
moved). The selected instances are shown in Fig.1
along with the classitication boundary generated by
them. From Fig.1, we can see that all training data are
correctly classified.

0 : Class I 0: Class 2

1.

Figure 1. Selected patterns.

3. Learning of Neural Networks

Ishibuchi et al. [5] demonstrated that the instance and
feature selection can improve the generalization ability
of nearest neighbor classifiers. In this section, we use
selected reference sets as training data for the learning
of neural networks. The purpose of this paper is to ex-
amine the effect of the instancc and feature selection
described in the previous section on the generalization
ability of the neural networks. We use standard three-
layered neural networks. In this paper we use the back-
propagation algorithm to the learning of the neural net-
works.

When we do not reduce the size of the training data, the
number of input units is specified as where n is the
number of attributes in the given data set. All the nb in-
stances are used in the backpropagation algorithm. On
the other hand, when we use thc reduced training data
by our GA-based instance and feature selection method
in Section 2, the number of input units n1 of neural net-
works is smaller than n. That is, we use neural networks
with simpler architecture. The number of instances is
also smaller than m. Thus the instance and feature
selection decreases both the complexity of neural net-
works and the size of training data. Its straightforward
positive effect on the learning ot neural networks using
less instances leads to less computation time than the

0-7SO3-7078-3/0U$l0.00 (C)u)Ol IEEE, Page: 2104

case of the entire training data. The instance and feature
selection may have two different effects on the learning
of neural networks. One is a negative effect li) decreas-
ing the number of training instances. In genzral, it is
dit-ficult to obtain good generalization by the leariling
of neural networks from a small number of training in-
stances. The other is a positive effect by removing out-
liers or noisy instances. Such instances deteriorate the
generalization ability of trained neural networks. An-
other merit of the instance and feature selection is to
speed up the learning of neural networks.

I t is not clear whether the learning of simpler neural net-
works using less instances leads to higher generalization
ability than the case of the entire training data. In the
next section, we examine the effect of the instance and
feature selection on the generalization ability of trained
neural networks through computer simulations.

4. Computer Simulations

We used two artificial data sets and four real-life data
sets. In our computer simulations, we appliec! our GA-
based method to each data set after normalizing attribute
values to real numbers in the unit interval [O. I] . Each
data set is briefly described in the following.

Data Set I with Small Overlap: We generated a two-
class pattern classification problem in the unit square
[O, 11 x [0,1]. For each class, we generated 50 instances
using the normal distribution i V (f i k , Ck) where p k and zk were specified as follows:

cL1 = (O , l) , P . L = (L O) :
(10)

Data Set XI with Large Overlap: We generated a two-
class pattern classification problem in the same manner
as in the above data set using larger variances. We spec-
ified the normal distribution of each class as follows:

f i1 = (0,1),P2 = (L O) ,
(1 1)

Iris Data: The iris data consist of 150 instances with
four features from three classes (50 instances trom each
class).

Appendicitis Data: The appendicitis data consist of
106 instances with eight features from two classes.
Since one feature has some missing values. we used
seven features as in, [131.

Cancer Data: The cancer data consist of 286 instances
with nine features from two classes. This data set was
alsousedin [13].

Wine Data: The wine dataconskt of 178 instances with
13 features from three classes, tchich is available from
the inachine learning database i l l UC Irvine.

In our computer simulations, we penerated 100 training
data and 1000 test data according to the normal distri-
butions of Data I and Data 11. For the other data sets, we
divided each data set into two ;*roups: 2/3 for training
data, and 1/3 for test data. Our GA-based instance and
feature selection method was applied to the training data
for selecting a compact referencc set with a small num-
ber of instances and features. I'he selected instances
and features were then used to train neural networks.
The test data were classified by the trained neural net-
works for evaluating its generalization ability. These
procedures were iterated 30 timc*s using different parti-
tions into training data and test data for calculating the
average classification rate on the test data.

In Table 1 we show simulation results of our GA-based
instance and feature selection method over 30 trials for
each data set. This table shons the average number
of the selected instances and fcatures and the perfor-
mance on test data by the neatest neighbor classifier
with the selected instances and features. The number
of the training data for each datii set is shown in paren-
theses in this table.

Table 1 . Szmulation resulf5 of instance and
feature $election b y the GA -based method.

Dataset I Feature-

lris

We used the reduced raining data to train neural net-
works. The BP (back-propagation) algorithm [121 was
iterated 5000 times (i.e., 5000 epochs). The learning
rate and the momentum rate ate 0.1 and 0.9, respec-
tively. The number of hidden units is five for the iris
and the appendicitis data, 15 for the cancer data, and
two for the wine data.

Table 2 shows average simulation results. From Table
2, we can see that the generahation ability of neural
networks was improved by using the reduced training
data for the appendicitis data and the cancer data. How-
ever, the generalization ability wiis not improved for the
iris data and the wine data. It IS well-known that the
iris data and the wine data are not challenging as clas-
sification problems. That is, there are only small over-
laps between classes in the iris data and the wine data.
On the other hand, in the appendicitis data and the can-
cer data, two classes are overlapping with each other.

0-7803-7078-3/0V$l0.00 (C)U)ol IEEE. Page: 2105

In that case, higher generalization is obtained by using
simple classification boundaries than by using c.omp!ex
classification boundaries.

Table 2. Siriiulatioii results of neural n r / i ~ ~ o i ~ k s
using the 'original and reduced data set.$.

Data set 1 Original I Reduced
Data set I 1 70.2% I 70.0%
Data set I1 6 I .2% 64.3%

iris 94.5% 93.2%
83.9% appe 1 1 88.4%

cancer 68.8% 73.8%
wine 97.7% 95.8%

In our computer simulations, simple clahsification
boundaries were produced by trained neural networks
with the redued training data. To clearly demonstrate
this, we show the classification boundaries made by
trained neural networks in Fig. 2 and Fig. 3. In Fig.
2, we show the classification boundaries by the neural
networks by using the original training data (i.e., be-
fore the insrance and feature selection). On the other
hand, the classification boundaries by the reduced train-
ing data were shown in Fig. 3. From Fig. 2 and Fig.
3. we can see that simpler classification boundaries can
be obtained by using the reduced training data set. and
overtitting is ovservbed by using the original data set.
From these simulation results, we can say thar instance
and feature selection prevented the overtitting of neural
networks to training data.

XI

Figwe 2. Classification boundaries by using
the original data set.

To examine how the generalization ability of the trained
neural networks improves during the course of the
learning, we monitored the classification rates of the
trained neural networks for training data and test data.
Fig. 4 and Fig. 5 show the classification rates of the
trained neural networks by using the original training
data and the reduced training data, respectively. From
Fig. 4 and Fig. 5, we can see that the generalization

XI

Figure 3. Classification boundaries bw ~ i s i m ~
the reduced data set.

ability of the trained neural networks first increased in
the begginingofthe learning in the case of'both the orig-
inal training data and the reduccd training data. How-
ever, the generalization ability decreased after a certain
number of iteration of the learning in the case of the
original training data. On the contrary, we did not ob-
serve any degradation of the genoralization ability in the
case of the reduced training data. From Fig. 4 and Fig.
5, we can see that the neural networks were likely to
be overfit to the training data when we did not use the
reduced training data.

Figure 4. Classification iates by using the
original training data.

Another positive effect of using the reduced training
data is the decrease in the learning time of neural net-
works. In Table 3, we show the average CPU time for
training the neural networks wirh the original training
data and the reduced training data. From this table, we
can see that the CPU time for the learning was drasti-
cally decreased by the reduction of training data.

0-7803-7@78-3/0l/$10.00 (C)2001 IEEE. Page: 2106

g 100
v -

9 0 -
4 d

80:
0

Figure 5. Clussijication rates b y using the re-
duced data set.

- I - - - - - - - - - - - - - -

On training data
I
I
I

I -
I

Table 3. CPU time. (sec.)
Data set

Data set I
Data set I1

Iris
Appendicitis

1 Original I Reduced

Cancer 16.4 I .6
Wine 3.3

5. Conclusions

In this paper, we examined the effect of the instane and
feature selection on the generalization ability of trained
neural networks. We used a genetic-algorithm-based
inethod for selecting a small number of instances and
features. The reduced training data with a sriiall num-
ber of instances and features were used for the learning
of neural networks by the backpropagation algorithm.

Through the computer simulations on artificial and real-
world data sets, we showed that the generalization abil-
ity of trained neural networks were improved for diffi-
cult problems with large overlaps. On the other hand,
the generalization ability was not improved for simple
prohlems with small overlaps. Instance and feature se-
lection prevented the overfitting of neural networks to
training data on almost all data sets in our computer
simulations.

We also showed another positive effect of using reduced
training data. The learning time of neural networks
was shorter when we use the reduced training data than
when the original training data were used.

rion Theory. Vol. 13, 1967. pp. 21-27.

121 P. tlart, “’The condensed nearest neighbor rule”,
IEEE Trans. on Itlfortuatioii Theory, Vol. 14, 1968.
pp.5 15-5 16.

[3] B. V. Dasarathy, “Minimal consistent set (MCS)
identification for optimal nearest neighbor deci-
sion systems design”, IEEE Trans. oti Systems,
Mnti, and Cvbemetics, Vol. 24, I 994, pp. 5 1 1-5 17.

[4] D. Chaudhuri, C. A. Murthy, and B. B. Chaudhuri,
“Finding a subset of represcntative points in a data
set“, IEEE Trans. on Systeius, Man, and Cybernet-
ics, Vol. 24, 1994, pp. 14 16- 1424.

[5] H. Ishibuchi, T. Nakashima. and M. Nii. “Genetic-
algorithm-based instance and feature selection”,
Instance Selection and (’onstruction for Data
Mining, Norwell, MA, Kluwer Academic Publish-
ers, 2001,pp.95-112.

[6] W. Siedlecki, and J. Sklamky, “A note on genetic
algorithms for large-scale f’eature selection”, Pat-
ten1 Recognition Letters, Vol. IO, 1989, pp. 335-
347.

171 J. D. Kelly Jr., and L. Daw\. “Hybridizing the ge-
netic algorithms and the k nearest neighbors clas-
sification algorithm”, Pro<. of 4th International
Corrference on Genetic Alpwithnts, 199 1, pp. 377-
383.

[8] D. L. Wilson, “Asymptotic properties of nearest
neighbor rules using edited data”, IEEE Trans. on
Systems. Man, and Cybentctics, Vol. 2, 1972, pp.
408-420.

191 L. 1. Kuncheva, “Editing ft)r the k-nearest neigh-
bors rule by a genetic algorithm”. Partem Recog-
tiition Letters, Vol. 16, 1995, pp. 809-8 14.

[IO] L. 1. Kuncheva, “Fitness functions in editing IC.-
NN reference set by genetic algorithms”, Purteni
Recognition, Vol. 30, 1997. pp. IO4 I - 1049.

[1 I] D. E. Goldberg, Genetic. Algorithms in Search,
Optimization, and Machirre Learning, Reading,
MA, Addison-Wesley, 1989.

[121 D. E. Rumelhart, J. L. McClelland, and the PDP
Research Group, Parallel Ilistributed Processing,
MIT Press, Cambridge, USA, 1986.

[131 S . M. Weiss, and C. A. Kulikowski. Comput~r Sys-
tems that Leant, San Matco, CA, Morgan Kauf-
mann, 199 I .

References

[I] T. M. Cover, and P. E. Hart, “Nearest neighbor pat-
tern classification”, IEEE Transaction of hlforma-

0-7803-7078-3/0V$10~00 (C)zOOl IEEE. Page: 2107

