
Chapter 9

A CO-EVOLUTIONARY FUZZY SYSTEM
FOR RESERVOIR WELL LOGS
INTERPRETATION

Tina Yu1 and Dave Wilkinson2

1Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada, 2Chevron Energy
Technology Company, San Ramon, CA 94583, USA

Abstract Well log data are routinely used for stratigraphic interpretation of the earth’s sub-
surface. This paper investigates using a co-evolutionary fuzzy system to generate
a well log interpreter that can automatically process well log data and interpret
reservoir permeability. The methodology consists of 3 steps: 1) transform well log
data into fuzzy symbols which maintain the character of the original log curves;
2) apply a co-evolutionary fuzzy system to generate a fuzzy rule set that classifies
permeability ranges; 3) use the fuzzy rule set to interpret well logs and infer the
permeability ranges. We present the developed techniques and test them on well
log data collected from oil fields in offshore West Africa. The generated fuzzy
rules give sensible interpretation. This result is encouraging in two respects. It
indicates that the developed well log transformation method preserves the in-
formation required for reservoir properties interpretation. It also suggests that
the developed co-evolutionary fuzzy system can be applied to generate well log
interpreters for other reservoir properties, such as lithology.

Keywords: reservoir modeling and characterization, fuzzy logic, co-operative co-evolution,
time series, well logs interpretation, genetic programming.

1. INTRODUCTION
In reservoir characterization, well log data are frequently used to interpret

physical rock properties such as lithology, porosity, pore geometry, depositional
facies and permeability. These properties are keys to the understanding of an
oil reservoir and can help determining hydrocarbon reserves and reservoir pro-
ducibility. Based on the information, decisions of where to complete a well,
how to stimulate a field, and where to drill next, can be made to maximize profit
and minimize risk.

T. Yu and D. Wilkinson: A Co-Evolutionary Fuzzy System for Reservoir Well Logs Interpretation, Studies in Computational
Intelligence (SCI) 88, 199–218 (2008)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

200 EVOLUTIONARY COMPUTATION IN PRACTICE

Well log data, ranging from conventional logs, such as spontaneous poten-
tial, gamma ray, and resistivity, to more advanced logging technology, such as
Nuclear Magnetic Resonance (NMR) logs, are sequence of curves indicating
the properties of layers within the earth’s subsurface. Figure 9-1 gives an exam-
ple of gamma ray, neutron and spontaneous potential (SP) logs. The interpreted
lithology is listed on the left-hand side.

Well log interpretation is a time-consuming process, since many different
types of logs from many different wells need to be processed simultaneously.
This paper investigates using a co-evolutionary fuzzy system to generate a well-
log interpreter that can process well log data and interpret reservoir permeability
automatically. The developed methodology has 3 steps:

Transform well log data into fuzzy symbols which maintain the character
of the original log curves.

Apply a co-evolutionary fuzzy system to generate a fuzzy rule set that
classifies permeability ranges.

Use the fuzzy rule set to interpret well logs and infer the permeability
ranges.

Similar to time series, well logs are sequential data, which are indexed by
the depth under earth’s surface where the data were collected. To interpret earth
properties, similar consecutive log data can be grouped into blocks, since rock
properties formation is frequently developed in layers. By examining blocked
wells logs across the same depth, geologists are able to detect earth properties
at that particular layer.

In this research, we developed a computer system to carry out the well log
blocking process. Additionally, the numerical data are transformed into fuzzy
symbols (Yu and Wilkinson, 2007). Fuzzy symbol representation has advan-
tages over its numerical counter-part in that it is easier for computers to ma-
nipulate and to carry out the interpretation task. Meanwhile, because fuzzy
symbols have no precise boundaries, they allows efficient interpretation under
the uncertainty embedded in the data sets.

The second step of the process uses a co-evolutionary fuzzy system to extract
fuzzy rule patterns in the transformed well logs fuzzy symbols to distinguish
different permeability ranges. Since permeability can be divided into more than
one ranges (3 in this study), the evolutionary system maintains multiple popu-
lations, each of which evolves rules that classify one permeability range from
others. These populations co-evolve to produce a combined fuzzy rule set that
can classify all possible permeability ranges. Once completed, this fuzzy rule
set can be used to interpret permeability of other wells with similar geological
characteristics.

A Co-Evolutionary Fuzzy System for Reservoir Well Logs Interpretation 201

Figure 9-1. An example of gamma ray, neutron and spontaneous potential logs. The interpreted
lithology is listed on the left-hand side.

202 EVOLUTIONARY COMPUTATION IN PRACTICE

We have tested the developed method on well log data collected from oil fields
in offshore West Africa and the results are very encouraging. Based on this ini-
tial study, we are currently applying the system to develop a reservoir lithology
interpreter, which requires a more sophisticated co-evolutionary model to in-
terpret 5 different types of lithology. In this case, 4 populations are co-evolved
together to accomplish this task.

We organize the paper as follows. Section 2 presents the methodology to
transform well log data into fuzzy symbols. Information about the testing well
log data and the transformed results are given in Section 3. Section 4 introduces
the co-evolutionary fuzzy system developed to generate fuzzy rules. After that,
the experimental setup for fuzzy rule generation is given in Section 5. In Section
6, we report the experimental results. Analysis and discussion are then provided
in Section 7. Finally, Section 8 concludes the paper.

2. WELL LOG TRANSFORMATION
The fuzzy symbolic representation is an approximation of well logs data

that maintains the trend in the original data. The transformation process has
four steps: 1) segmentation of the numerical well log data; 2) determining the
number of segments; 3) symbol assignment; and 4) symbol fuzzification. These
steps are explained in the following sub-sections.

2.1 Segmentation
Well log segmentation involves partitioning log data into segments and using

the mean value of the data points falling within the segment to represent the
original data. In order to accurately represent the original data, each segment is
allowed to have arbitrary length. In this way, areas where data points have low
variation will be represented by a single segment while areas where data points
have high variation will have many segments.

The segmentation process starts by having one data point in each segment.
That is the number of segments is the same as the number of original data points.
Step-by-step, neighboring segments (data points) are gradually combined to
reduce the number of segments. This process stops when the number of segments
reaches the predetermined number.

At each step, the segments whose merging will lead to the least increase in
error are combined. The error of each segment is defined as:

errora =
∑n

i=1 (di − µa)2

where n is the number of data points in segment a, µa is the mean of segment
a, di is the ith data point in segment a.

This approach is similar to the Adaptive Piecewise Constant Approximation
proposed by (Keogh et al., 2001) and SAX (Lin et al., 2003). However, our

A Co-Evolutionary Fuzzy System for Reservoir Well Logs Interpretation 203

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

4

data sequence number

n
o
rm

a
li
z
e
d
 w

e
ll
 l
o
g
 d

a
ta

0.23915

−1.1974

0.99576

−0.80347

0.02389

−0.80396

1.5738

−0.24538

2.0014

0.18876

Figure 9-2. 10 segments.

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

4

data sequence number

n
o
rm

a
li
z
e
d
 w

e
ll
 l
o
g
 d

a
ta

0.40804

−0.11976

−1.1974

0.99576

−0.35708

−1.1021

−0.65261

0.86853

−0.5656

0.043683

−1.2366

−0.054499

−1.1594

1.5738

−0.29359

−0.19717

1.496

3.0121

−0.26563

0.60819

Figure 9-3. 20 segments.

method has an extra component that dynamically determines the number of
segments (see Section 2.2). Another similar work using a different approach to
determine the number of segments is reported in (Abonyi et al., 2005).

Figure 9-2 is an example of a well log with 189 data points, which are
partitioned into 10 segments. The same data are partitioned into 20 segments
in Figure 9-3. The average value of the data points within each segment is used
to represent the original data.

2.2 Number of Segments
Although a larger number of segments capture the data trend better, it is

also more difficult to interpret. Ideally, we want to use the smallest possible
number of segments to capture the trend of the log data. Unfortunately, these
two objectives are in conflict: the total error of all segments monotonically
increases as the number of segments decreases (see Figure 9-4). We therefore
devised a compromised solution where a penalty is paid for increasing the
number of segments. The new error criterion is now defined as the previous
total error plus the number of segments:

f = N +
N∑

i=1

errori where N is the number of segment.

During the segmentation process, the above f function is evaluated at each
step when 2 segments were combined. As long as this value f is decreasing, the
system continues to merge segments. Once f starts increasing, it indicates that
farther reducing the number of segments will sacrifice log character, hence the
segmentation process terminates. For the 189 data points in Figure 9-2, the final
number of segments is 50 (see Figure 9-5).

204 EVOLUTIONARY COMPUTATION IN PRACTICE

20406080100120140160180
0

50

100

150

200

number of segments

to
ta

l
e

rr
o

r

total error
number of segments

Figure 9-4. number of segments vs. total er-
ror.

20406080100120140160180
50

100

150

200

number of segments

to
ta

l
e
rr

o
r

+
 n

u
m

b
e
r

o
f
s
e
g
m

e
n
ts

total error + number of segments

Figure 9-5. a compromised solution.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

a b c d e

Figure 9-6. Using 4 breakpoints to produce 5 symbols with equal probability.

2.3 Symbol Assignment
Segmented well logs are represented as a set of numerical values, WL =

s1, s2, s3 . . ., where si is the mean value of the data within the ith segment. This
numerical representation is farther simplified using symbols. Unlike numerical
values, which are continuous, symbols are discrete and bounded. This makes it
easy for any subsequent computer interpretation scheme.

While converting the numerical values into symbols, it is desirable to pro-
duce symbols with equal-probability (Apostolico et al., 2002). This is easily
achieved since normalized sequence data have a Gaussian distribution (Larsen
and Marx, 1986). We therefore applied z-transform to normalize the data and
then determined the breakpoints that would produce n equal-sized areas under
the Gaussian curve, where n is the number of symbols. Figure 9-6 gives the
four breakpoints -0.84, -0.25, 0.25 and 0.84 that produce 5 symbols, a, b, c, d, e,
with equal probability. If only 3 symbols (a, b and c) are used, the breakpoints
are -0.43 and 0.43.

Once the number of symbols, hence the breakpoints have been decided, we
assign symbols to each segment of the well logs in the following manner: All
segments have mean values that are below the smallest breakpoint are mapped
to the symbol a; all segments have mean values that are greater than or equal to
the smallest breakpoint and less than the second smallest breakpoint are mapped

A Co-Evolutionary Fuzzy System for Reservoir Well Logs Interpretation 205

0 50 100 150 200
−3

−2

−1

0

1

2

3

4

data sequence number

no
rm

al
iz

e
w

el
l l

og
 d

at
a

d

a

c

a

d

e

a

c

a

b

a

b

d

b

c

b

d

a

c

a
a

e e

a

e

e

c

a

c

d

Figure 9-7. A well log transformed using 5 symbols.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

data value

d
e
g
re

e
 o

f
m

e
m

b
e
rs

h
ip

a b c d e

Figure 9-8. A segment with mean -0.9 is
transformed as a crisp symbol a.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

D
e

g
r
e

e
 o

f
M

e
m

b
e

r
s
h

ip

a b c d e

Figure 9-9. A segment with mean -0.9 is
transformed as fuzzy symbol a (80%) and
b (20%).

to the symbol b and so on. Figure 9-7 gives a well log that is transformed using
5 symbols.

2.4 Symbol Fuzzification
While some segments are clearly within the boundary of a particular symbol

region, others may not have such clear cut. For example, in Figure 9-7, there
are 3 segments that lie on the borderline of regions a and b. A crisp symbol,
either a or b, does not represent its true value. In contrast, fuzzy symbols use
membership function to express the segment can be interpreted as symbol a
and b with some possibility. As an example, with the crisp symbol approach, a
segment with mean -0.9 is assigned with symbol a with 100% possibility (see
Figure 9-8). Using fuzzy symbols designed by trapezoidal-shaped membership
functions, the segment is assigned with symbol a with 80% possibility and
symbol b with 20% possibility (see Figure 9-9). Fuzzy symbol representation
is more expressive in this case.

206 EVOLUTIONARY COMPUTATION IN PRACTICE

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

f1 f2

S1 S2

Figure 9-10. The 4 parameters, f1, f2, s1, s2, that define a trapezoidal-shaped membership
function.

In fuzzy logic, a membership function (MF) defines how each point in the
input space is mapped into a membership value (or degree of membership)
between 0 and 1. The input space consists of all possible input values. In our
case, z-normalized well log data have open-ended boundaries with mean 0.
When 5 symbols are used to represent a well-log, 5 membership functions are
defined, one for each of the 5 symbols.

To design a trapezoidal-shaped membership function, 4 parameters are re-
quired: f1 and f2 are used to locate the ‘feet’ of the trapezoid and s1 and s2

are used to locate the ‘shoulders’ (see Figure 9-10). These four parameters are
designed in the following way.

Let c1 and c2 be the breakpoints that define a symbol x and c2 > c1:

d =
c2 − c1

4
f1 = c1 − d; s1 = c1 + d; s2 = c2 − d; f2 = c2 + d

There are two exceptions: symbol a has f1 = c1 and symbol e has f2 = c2.
Table 9-1 gives the four parameters used to design the membership functions
for each symbol.

Once the 4 parameters are decided, the membership function f is defined as
follows:

f(x, f1, f2, s1, s2) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ f1,
x−f1

s1−f1
if f1 ≤ x ≤ s1.

1 if s1 ≤ x ≤ s2,
f2−x
f2−s2

if s2 ≤ x ≤ f2.
0 if f2 ≤ x,

Using the described fuzzy symbol scheme, the 10 segments lying between the
two symbol regions in Figure 9-7 were mapped into fuzzy symbols shown in
Figure 9-11.

A Co-Evolutionary Fuzzy System for Reservoir Well Logs Interpretation 207

Table 9-1. Parameters used to design the trapezoidal-shaped membership function for each
symbol.

data symbol f1 s1 s2 f2

well-log a -3 -3 -0.9875 -0.6925
b -0.9875 -0.6925 -0.3975 -0.1025
c -0.375 -0.125 0.125 0.375
d 0.1025 0.3975 0.6925 0.9875
e 0.6925 0.9875 3 3

perm a -3 -3 -0.645 -0.215
b -0.645 -0.215 0.215 0.645
c 0.215 0.645 3 3

0 50 100 150 200
−3

−2

−1

0

1

2

3

4

data sequence number

no
rm

al
iz

ed
 w

el
l l

og
 d

at
a

a(0.6),b(0.4)
a(0.87),b(0.13)

b(0.19),c(0.86)

d(0.36),e(0.64)

c(0.58),d(0.43)
c(0.5),d(0.5)

c(0.5),d(0.5)

a(0.3),b(0.7)

c(0.74),d(0.3)

d(0.6),e(0.4)

Figure 9-11. A well log represented with fuzzy symbols.

In most cases, a reservoir well has multiple logs. To carry out the described
transformation process, a reference log is first selected for segmentation. The
result is then used to segment the other logs in the same well. After that, fuzzy
symbols are assigned to each segmented data.

3. WELL LOG DATA
We tested the developed transformation method on 2 sets of well log data

collected from an offshore West Africa field. The first set is from Well A and
contains 227 data points while the second set is from Well B and contains 113
data points. Each well has 3 different logs: PHI (porosity), RhoB (density)
and DT (sonic log). Additionally, V-shale (Volume of shale) information has
been calculated previously (Yu et al., 2003). The core permeability data are
available and will be used to test the evolved fuzzy rules.

Since permeability is the interpreted target, it is chosen as the reference
log to perform segmentation described in Sections 2.1 and 2.2. For symbol

208 EVOLUTIONARY COMPUTATION IN PRACTICE

assignment, permeability has 3 possible symbols, a, b and c, representing low,
medium and high permeability. The 3 well logs and V-shale, however, have
5 possible symbols, a, b, c, d, e. This allows the evolved fuzzy rules to have
a finer granularity in interpreting well log data. Figures 9-12, 9-13, 9-14, 9-15
and 9-16 give the transformed logs in Well A. The resulting transformations
give sensible blocking and resemble the original log curves reasonably well.
Due to space constraint, the results of Well B, which have a similar pattern, are
not shown here.

0 50 100 150 200 250
−2

−1.5

−1

−0.5

0

0.5

1

1.5

data sequence number

co
re

 p
er

m
ea

bi
lit

y

Well A

Figure 9-12. The transformed core permeability (k).

0 50 100 150 200 250
−3

−2

−1

0

1

2

3

4

data sequence number

P
H

I (
po

ro
si

ty
)

Well A

Figure 9-13. The transformed PHI log.

0 50 100 150 200 250
−6

−4

−2

0

2

4

data sequence number

R
H

O
B

 (
de

ns
ity

)

Well A

Figure 9-14. The transformed RHOB log.

A Co-Evolutionary Fuzzy System for Reservoir Well Logs Interpretation 209

0 50 100 150 200 250
−2

−1

0

1

2

3

data sequence number

D
T

 (
so

n
ic

 lo
g

)

Well A

Figure 9-15. The transformed DT log.

0 50 100 150 200 250
−1.5

−1

−0.5

0

0.5

1

1.5

data sequence number

v−
sh

al
e

Well A

Figure 9-16. The transformed V-shale data.

After the transformation process, all logs in Well A have 43 segments and
all logs in Well B have 15 segments. Among the 43 permeability segmentations
in Well A, 22 are low-permeability (symbol a), 9 are medium-permeability
(symbol b) and 12 are high-permeability (symbol c). The number of low, medium
and high permeability segments in Well B is 6, 2 and 7 respectively.

4. CO-EVOLUTIONARY FUZZY SYSTEM
Using the transformed well log data, we applied a co-evolutionary fuzzy

system to identify rule patterns that can interpret well logs having high, medium
or low permeability. The interpretation task is decomposed into two sub-tasks:
the first one separates one permeability range data from the rest of the data and
the second one distinguishes another permeability range data from the others.
By combining the two sub-solutions using an if-then-else construct, the final
solution is able to determine whether a well log segment has either high, medium
or low permeability.

We adopted a co-operative co-evolution approach to address these two sub-
problems (Potter and Jong, 1994; Potter and Jong, 2000). In this approach,
two populations are maintained, each of which is evolved toward one of the two

210 EVOLUTIONARY COMPUTATION IN PRACTICE

Figure 9-17. The co-operative co-evolution model.

different sub-goals. However, to encourage their co-operation to evolve the best
overall permeability interpreter, the fitness of an evolved rule is determined by
how well it collaborates with the rules evolved in the other population. In terms
of implementation, a rule from one population is combined with the best rule in
the other population and the performance of this combined rule-set defines the
fitness of the rule in the current population. Figure 9-17 illustrates the described
co-evolution mechanism.

There are other works using this co-evolutionary model to evolve fuzzy
rules. For example, fuzzy co-co (Pena-Reyes and Sipper, 2001) maintains two
populations: one evolves membership functions and the other evolves fuzzy
rules.

4.1 Fuzzy Rule Generation
The co-evolutionary system is implemented in a genetic programming(GP)

system called PolyGP (Yu, 2001), which has a type system to perform type
checking during rules evolution. In this way, the evolved rules (genotype and
phenotype) are always type checked prior to fitness evaluation. There are other
methods to evolve type-correct solutions (Yu and Bentley, 1998). For example,
(Bentley, 2000) mapped type-incorrect fuzzy rules to correct ones using a repair
method.

Table 9-2 gives the functions and terminals with their type signatures for the
GP system to evolve type-correct fuzzy rules. The 3 well logs (PHI,RHOB, DT)
and v-shale have a vector type of 5 values, each of which specifies the degree
of membership to the 5 symbols a, b, c, d and e. For example, a segment with
mean value 0.9 has a vector values [0.8, 0.2, 0, 0, 0]. The function is-a, is-b, is-c,
is-d and is-e take a vector as argument and returns the degree of membership
belongs to symbol a, b, c, d and e respectively. For example, is-a[0.8, 0.2, 0, 0,
0] = 0.8. Three fuzzy operators used to construct fuzzy rules are and, or and
not: and(x, y) = min(x, y), or(x, y) = max(x, y), not(x) = 1 − x. Figure
9-18 gives an evolved fuzzy rule example.

A Co-Evolutionary Fuzzy System for Reservoir Well Logs Interpretation 211

Table 9-2. Function and Terminal Sets
Function
Terminal Type

is-a [float,float,float,float,float]→float
is-b [float,float,float,float,float]→float
is-c [float,float,float,float,float]→float
is-d [float,float,float,float,float]→float
is-e [float,float,float,float,float]→float
and float→float→float
not float→float
or float→float→float

PHI [float,float,float,float,float]
RHOB [float,float,float,float,float]

DT [float,float,float,float,float]
v-shale [float,float,float,float,float]

and

is-a or

porosity is-b not

v-shale is-c

density

Figure 9-18. An evolved fuzzy rule example.

To work with this fuzzy rule tree representation, we employed four genetic
operators in this study: homologous crossover, and-crossover, or-crossover and
mutation. Homologous crossover selects common location in both parent trees
to carry out the crossover operation. The and-crossover combines two parent
rules into one rule using the and operator. The or-crossover combines two
parent rules into one rule using the or operator. The mutation operation can
perform sub-tree, function and terminal mutations, depending on the selected
mutation location.

4.2 Fuzzy Rules Evaluation
After evaluation, a fuzzy rule produces a numerical value between 0 and 1.

This value indicates the degree of membership the data belongs to the classified
permeability. We uses a simple defuzzification mechanism to interpret the result:

212 EVOLUTIONARY COMPUTATION IN PRACTICE

if the degree of membership is greater than or equal to 0.5, the data belongs to
the classified range.

To assign a fitness to the evaluated fuzzy rule, the rule is first combined with
the best rule in the other population using the following template:

if rule-1 ≥ 0.5
then high-permeability

else if rule-2 ≥ 0.5
then low-permeability

else medium-permeability.

where rule-1 is a rule from the first population and rule-2 is a rule from the
second population. If the evaluated rule is from the first population, the best
rule from the second population is used to complete the template. If the evaluated
rule is from the second population, the best rule from the first population is used
to complete the template. This combined if-then-else rule is then tested on the
training data and the interpretation results are compared with the transformed
permeability. If the if-then-else rule gives the correct interpretation, it is a hit.
The percentage of the hit among the training data is the fitness of the evaluated
rule. To promote shorter and more readable rules to be evolved, rules with length
more than 100 nodes are penalized. Also, the best rule in each population
is updated at the beginning of every generation, so that a good rule can be
immediately used to combine with rules in the other population and impact
evolution.

5. EXPERIMENTAL SETUP
Both Well A and B have a greater number of high and low permeability

data segments than medium-permeability data segments. We therefore used
one population to evolve rules that separate high-permeability data segments
and the other population to evolve rules that distinguish low-permeability data
segments. In this way, both populations have a balanced number of positive and
negative samples, which is important to train robust classifiers.

We used Well A data to train the fuzzy rules. The final best rule was then tested
on Well B data. The crossover rates used are as follows: 20% for homologous
crossover, 10% for and-crossover and 10% for or-crossover. Mutation rate is
50%. When no genetic operation is executed, an identical copy of one parent is
copied over to the next generation.

The selection scheme is a tournament with size 2. We set the population size
as 100 to run for 1,000 generations, where at each generation, the population is
100% replaced by the offspring except one copy of the elite (the best) which is
kept and carried over to the new generation.

By combining two rules from two populations, it is sufficient to classify
three permeability ranges. However, the order of their combination can effect

A Co-Evolutionary Fuzzy System for Reservoir Well Logs Interpretation 213

the classification accuracy. This is because rule-1 is evaluated first, according
to the rule template. Once rule-1 makes a wrong interpretation, rule-2 can
not correct it. Consequently, rule-1 has a stronger impact than rule-2 on the
performance of the combined rule.

To achieve a better interpretation accuracy, it is desirable to have the rule
which has better accuracy be rule-1. Unfortunately, we do not know in advance
which of the two rules will give better accuracy. We therefore made two sets
of experimental runs. In the first set, rule-1 is the rule that identifies high-
permeability data segments. In the second set, rule-1 is the rule that classifies
low-permeability data segments. Fifty runs were made for each of the two setups
and their final best rules were collected for evaluation.

6. RESULTS
Figure 9-19 gives the results of the two sets of runs. As shown, the fuzzy rules

which classify high-permeability first produce better results: the average fitness
of the best rule from the 50 runs is 0.83 on training data and 0.61 on testing
data. The rules that first identify low-permeability data have average fitness of
0.77 on training data and 0.6 on testing data. In both cases, there is a big gap
between the fitness on training data and the fitness on testing data. There can
be a couple of explanations. First, the two wells have very different geology.

0 5 10 15 20 25 30 35 40 45 50

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

run number

fit
n
e
ss

setup−2: best rule on testing data
setup−1: best rule on testing data
setup−2: best rule training data
setup−1: best rule on training data

Figure 9-19. Results of the two sets of runs.

214 EVOLUTIONARY COMPUTATION IN PRACTICE

The fuzzy rules trained based on log data from Well A therefore do not work as
well on Well B. Another explanation is that Well B has a smaller number (15)
of data points. Consequently, even a small number of mis-classification (1 or 2)
will have strong impact on the classification accuracy. The accuracy measure
of Well B, therefore, is not sufficient to reflect the fuzzy rules’ performance.

To give a more detailed analysis of the performance of the fuzzy rules, we
selected the rule that had the best fitness (0.76) on testing data and plotted its
permeability interpretation on training data (Well A) and on testing data (Well
B). The results are given in Figure 9-20 and Figure 9-21.

As shown, the fuzzy rule gives permeability interpretations which are very
close to the transformed target permeability in both wells. In Well A, 8 out of the
43 segments were mis-classified; all of them have medium-permeability and the
fuzzy rule mis-classified them as either low-permeability or high-permeability.
The degree of ‘mistake’ is not too serious.

For Well B, the fuzzy rule mis-classified 4 out of the 15 segments. Among
them, 1 segment can be fuzzily interpreted as either medium or high permeabil-
ity according to the core permeability. The segmentation method transformed
it as c (high permeability) while the fuzzy rule interpreted it as medium perme-
ability. Once this segment is excluded, the number of mis-classification on Well
B becomes 3 and the classification accuracy improves to 0.8, which is close to
the accuracy on Well A (0.81). Based on this detailed analysis, the fuzzy rule
gives a reasonably accurate permeability interpretation for both Well A and
Well C. This is a very encouraging result.

0 50 100 150 200
−2

−1

0

1

2

3

4

5

data sequence number

co
re

 p
er

m
ea

bi
lit

y

core permeability

pe
rm

ea
bi

lit
y

by
 fu

zz
y

ru
le

0

1

2

3

4
transformed permeability
permeability by fuzzy rule

Figure 9-20. Well A permeability.

A Co-Evolutionary Fuzzy System for Reservoir Well Logs Interpretation 215

0 50 100 150
−2

−1

0

1

2

3

4

5

data sequence number

co
re

 p
er

m
ea

bi
lit

y

core permeability

pe
rm

ea
bi

lit
y

by
 fu

zz
y

ru
le

0

0.5

1

1.5

2

2.5

3

3.5

4
transformed permeability
permeability by fuzzy rule

Figure 9-21. Well B permeability.

7. ANALYSIS AND DISCUSSION
To understand why rules that classify high-permeability segments first have

produced better results, we calculated the average population fitness and the
fitness of the best solution for all runs. The averages of the 50 runs for each set
of experiments are plotted in Figure 9-22 and Figure 9-23.

When the first population is used to evolve rules that classify low-permeability
segments and the second population is used to evolve rules that classify high-
permeability data segments, Figure 9-22 shows that the co-evolution pressure
is biased toward the second population. Average fitness of the first population
is consistently lower than that of the second population. Using the worse of the
two rules (the one from the first population) as rule-1 to interpret permeability
has impaired the overall interpretation accuracy.

This bias, however, does not appear in the other experiment where the rules
that classify high-permeability were used as rule-1 to interpret permeability.
As shown in Figure 9-23, both populations co-evolve together with comparable
average fitness. This is a healthy co-evolutionary dynamics which has produced
combined if-then-else rule that give more accurate permeability interpretations
than that by the other experiment.

In both sets of experimental runs, the two populations improved very quickly
at the first 200 generations. After that, the improvement is not very visible. This
pattern also appears in the fitness improvement of the best combined overall
permeability interpreter, although to a lesser extend. One possible reason is

216 EVOLUTIONARY COMPUTATION IN PRACTICE

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 200 400 600 800 1000

fit
ne

ss

generation

pop-1 average

pop-2 average

best combined rule

Figure 9-22. Experimental results for runs where population 1 evolves rules to identify low-
permeability data.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 200 400 600 800 1000

fit
ne

ss

generation

pop-1 average

pop-2 average

best combined rule

Figure 9-23. Experimental results for runs where population 1 evolves rules to identify high-
permeability data.

A Co-Evolutionary Fuzzy System for Reservoir Well Logs Interpretation 217

that the best solution used to combine with individuals in the other population
for fitness evaluation is updated every generation. Such a greedy approach may
have reduced the population diversity necessary for continuous evolution. In our
future work, we plan to investigate using a less frequent updating scheme so
that the two populations only occasionally communicate with each other. This
asynchronous version of co-evolution model not only allows each population
to have a slower and more stable evolution pace but also is suited for a parallel
implementation in which each population is evolved on a separate processor.
Such parallel implementation is important for the efficient processing of a large
number of well logs simultaneously.

8. CONCLUSIONS
Well log interpretation is a routine, but time-consuming task in oil companies.

With the increasing global energy demand, it is a natural trend to seek com-
puterized well log interpretation techniques to provide results more efficiently.
In this work, we have devised a co-evolutionary fuzzy system to generate a
well log interpreter to automatically process well log data and interpret reser-
voir permeability. The initial testing results show that the generated fuzzy rules
give a sensible permeability interpretation. Although the result is preliminary,
it provides initial evidence of the potential of the developed method. We plan
to continue the work by extending the system in two areas:

the capability to evolve fuzzy rule interpreters for other reservoir prop-
erties, such as lithology.

a less frequent rule updating scheme between the two populations, hence
the possibility of parallel implementation of the co-evolutionary fuzzy
system.

Acknowledgments
I would like to thank Julian Squires for porting the PolyGP system from

Haskell to Java. The data set is provided by Chevron Energy Technology
Company.

References
Abonyi, J., Feil, B., Nemeth, S., and Arva, P. (2005). Modified gath-geva clus-

tering for fuzzy segmentation of multivariate time-series. Fuzzy Sets and
Systems, 149:39–56.

Apostolico, A., Bock, M. E., and Lonardi, S. (2002). Monotony of surprise and
large-scale quest for unusual words. In Proceedings of the 6th International
Conference on Research in Computational Molecular Biology, pages 22–31.

218 EVOLUTIONARY COMPUTATION IN PRACTICE

Bentley, Peter J. (2000). “Evolutionary, my dear watson” investigating
committee-based evolution of fuzzy rules for the detection of suspicious
insurance claims. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO-2000), pages 702–709. Morgan Kaufmann.

Keogh, Eamonn, Chakrabarti, Kaushik, Mehrotra, Sharad, and Pazzani, Michael
(2001). Locally adaptive dimensionality reduction for indexing large time se-
ries databases. In Proceedings of ACM SIGMOD Conference on Management
of Data, pages 151–162.

Larsen, R. J. and Marx, M. L. (1986). An Introduction to Mathematical Statistics
and Its Applications,2nd Edition. Prentice Hall, Englewood.

Lin, J., Keogh, E., Lonardi, S., and Chiu, B. (2003). A symbolic representation
of time series, with implications for streaming algorithms. In Proceedings
of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery.

Pena-Reyes, Carlos Andres and Sipper, Moshe (2001). Fuzzy coco: A coop-
erative coevolutionary approach to fuzzy modeling. IEEE Transactions on
Fuzzy Systems, 9(5):727–737.

Potter, Mitchell A. and Jong, Kenneth A. De (1994). A cooperative coevolu-
tionary approach to function optimization. In Parallel Problem Solving from
Nature – PPSN III, pages 249–257, Berlin. Springer.

Potter, Mitchell A. and Jong, Kenneth A. De (2000). Cooperative coevolution:
An architecture for evolving coadapted subcomponents. Evolutionary Com-
putation, 8(1):1–29.

Yu, Tina (2001). Hierachical processing for evolving recursive and modular
programs using higher order functions and lambda abstractions. Genetic
Programming and Evolvable Machines, 2(4):345–380.

Yu, Tina and Bentley, Peter (1998). Methods to evolve legal phenotypes. In
Parallel Problem Solving from Nature – PPSN V, pages 280–291, Berlin.
Springer.

Yu, Tina and Wilkinson, Dave (2007). A fuzzy symbolic representation for
intelligent reservoir well log interpretation. In “Hybrid Intelligent Systems
using Soft Computing” of the Series on Computational Intelligence, Springer
Verlag Edited by, O. Castillo, P. Melin, W. Pedrycz, and J. Kacprzyk.

Yu, Tina, Wilkinson, Dave, and Xie, Deyi (2003). A hybrid GP-fuzzy approach
for reservoir characterization. In Riolo, Rick L. and Worzel, Bill, editors, Ge-
netic Programming Theory and Practise, chapter 17, pages 271–290. Kluwer.

