
10

Evolving a Fuzzy Rulebase to Model Gene

Expression

Ricardo Linden1 and Amit Bhaya2

1 Faculdade Salesiana Maria Auxiliadora, CEPEL
rlinden@pobox.com

2 COPPE-UFRJ
amit@nacad.ufrj.br

Summary. This chapter describes the use of genetic programming to evolve a fuzzy
rule base to model gene expression. We describe the problem of genetic regulation in
details and offer some reasons as to why many computational methods have difficulties
in modeling it. We describe how a fuzzy rule base can be applied to this problem as
well as how genetic programming can be used to evolve a fuzzy rule base to extract
explanatory rules from microarray data obtained in the real experiments, which give us
data sets that have thousands of features, but only a limited number of measurements
in time. The algorithm allows for the insertion of prior knowledge, making it possible to
find sets of rules that include the relationships between genes that are already known.

10.1 Biological Introduction

Biology has expanded its knowledge of the gene regulation process and a full
description of known features of the regulation process would require a huge
compendium. In this section we will describe the main features of gene regulation
in order for the reader to understand the specific class of problems studied in
this chapter. We will also describe the main characteristics of the data sets used
in this problem.

10.1.1 Gene Regulation

All information necessary for the creation of the proteins that are necessary for
the cell is coded in DNA. This information is extracted in a multi-step path that
is called the central dogma of molecular biology that could be summarized as
DNA −→ RNA −→ Protein, meaning that cell response and differentiation steps
can be controlled in many different steps. This ability to respond to different
needs and the basic process of differentiation are fundamental to an organism.
No one would confuse a neuron with a liver or a heart cell, either based on
their shape or on their function. Nevertheless, this difference is not due to major
differences in their DNA sequence, but rather to differences in the expression level
of each gene. In every cell, at every time point, only a fraction of the total DNA
is expressed, that is, transcribed into mRNA, which is subsequently translated

Y. Jin and L. Wang (Eds.): Fuzzy Systems in Bio., STUDFUZZ 242, pp. 191–215.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

192 R. Linden and A. Bhaya

into protein. The amount of proteins and other elements produced is regulated
so that the necessary amounts are produced without depleting excessively the
energetic reserves of the cell.

At every given time, a gene may be expressed at different levels, including zero
(not expressed). Its expression level has a strong correlation to the amount of
mRNA in the cell that is coded by the gene. It is important to understand that
there are other control mechanisms in the cell, such as protein degradation speed,
RNA transport and localization control etc, but for most cells the initiation of
RNA transcription is the most important point of control [1]. Nevertheless, one
should understand that considering only transcriptional control in the reverse
engineering problem is a limitation of any method based on microarrays (see
Section 10.1.2 for further details).

A cell can change the expression level of its genes in response to external
signals. At any given time, the cell needs to inhibit or activate groups of genes
in response to changing organism and environment requirements. In order to
perform this regulation, cells have an elaborate mechanism that include several
control areas in every gene, the catalysis of gene expression by several other
substances and other mechanisms.

A gene can be regulated by several molecules and the ones it codes for can
regulate one or more other genes, creating a pleiotropic regulation network, which
occurs by the binding of molecules to gene control areas. Since many of these
molecules are proteins synthesized based on the mRNA of other genes, we can
say that one gene regulates another, even though DNA regions do not interact
directly.

10.1.2 Microarray Data Sets

Nowadays, the data available on gene expression is growing exponentially. The
creation of new tools has caused a genomics revolution, flooding scientists with
huge amounts of data. DNA microarray technology is one of the technologies
that has caused this huge impact in the biological sciences. It describes the state
of each cell by measuring the mRNA expression levels, which, according to the
central dogma, is a good approximation of protein levels. It is not precise how-
ever, because there are other mechanisms of control besides DNA transcription
control, but measurement techniques for other substances such as proteins are
not as accurate and widespread as microarrays.

A DNA array, or microarray, is defined as an orderly arrangement of tens
to hundreds of thousands of unique radioactive or fluorescent DNA molecules
(probes) of known sequence attached to a fixed surface. The DNA samples are
then presented to the microarray and bind to their complementary sequences
(hybridize), thus allowing for the determination of their sequence or their relative
abundance (expression level) [26].

Microarrays allow one to study expression levels in parallel thus providing
static information about gene expression (i.e., in which tissue(s) the gene is
expressed) and dynamic information (i.e., how the expression pattern of one
gene relates to those of others). The high degree of digital data extraction and

10 Evolving a Fuzzy Rulebase to Model Gene Expression 193

processing of these techniques supports a variety of samples or experimental con-
ditions [6]. Microarray technology, as a high throughput approach of differential
gene expression studies, efficiently generates massive amounts of gene regula-
tion data, facilitating rapid identification of gene candidates to follow up with
functional characterization.

There are, of course, some pitfalls when dealing with this technology that
a cautious experimenter must deal with. We will not describe the problems in
detail, for this is not the main goal of this chapter, but, in brief, the main
problems with this technology are:

• Differences among samples
• Measurement errors from CCD or radioactivity detectors
• Normalization methods
• Background noise elimination
• Stochastic binding effects

A cautious experimenter will try to ensure that these problems are dealt with and
that experiments are repeated in order to avoid the common errors associated
with microarrays.

Once these problems are dealt with, the main problem with a microarray data
set becomes its dimensions. Usually, thousands of genes are measured simulta-
neously for a small number of time steps. Given thousands of expression levels,
it is a complex task to identify the differentially expressed genes and under-
stand the myriad relationships that define the genetic regulation network. There
are several well known statistical techniques for this [12], but they all require
massive amounts of data. There are some techniques, such as those described
in [34] and [25] that try to minimize the number of experiments, by reducing
the dimensionality of the data, either with Fisher Discriminant Analysis (FDA),
singular value decomposition (SVD) or by Wilks Lambda Score. Nevertheless,
these techniques, even though they manage to reduce data dimensionality dras-
tically, still require a significant number of measurements (of the order of tens,
in both cases).

Unfortunately, given the high cost of experiments, this volume of data is not
available. Thus, it is necessary to propose new techniques that can cope with
lack of data and still mine the gene expression matrix for useful relationships.
There is, of course, a price for dealing with such a small data set. First, we
can point out to the loss of certainty, making it very difficult to make accurate
statements about relationships between genes. Second, we incur the “blessing of
dimensionality”. Given the high number of genes measured and the small number
of measurement points, we face a situation where there are many degrees of
freedom and few constraints, so that there are many possible “good fit” solutions.
Thus, it can be argued that any search method will stumble upon a reasonable
solution, and the key is how to differentiate between various solutions. Therefore,
any proposed method should be able to deal with both these problems.

194 R. Linden and A. Bhaya

10.2 Pros and Cons of Gene Regulatory Networks (GRN)
Models

In this section we discuss some methods that are successful and popular in other
fields of application but have inherent characteristics that make them less advis-
able in this specific application. This does not mean, of course, that these meth-
ods are of inferior quality or that it is impossible to obtain meaningful results with
them, but only that their inherent characteristics make it more difficult to achieve
good or reliable results when dealing with microarray data sets.

10.2.1 Boolean Networks

Perhaps the simplest model is the Boolean Network. Boolean networks were first
introduced by Kauffman in the late 60’s as an abstraction of genetic regulatory
networks: each gene is modeled as being either “ON” or “OFF”, and the state
of each gene at the next time step is determined by a Boolean function of its
inputs at the current time step [15].

Several papers use Boolean networks as a tool to model gene expression, either
regular [21] or probabilistic [27]. This model assumes that each gene can take
either 0 (not-expressed) or 1 (expressed) as its state value. This approach can
model some aspects of real regulation, as discussed in [29]. Nevertheless, since
gene regulation is gradual and varies with gene expression levels, the ability of
Boolean Networks to model real genetic regulation is limited.

10.2.2 Neural Networks

The data set available in a typical gene regulatory network problem generally con-
sists of hundreds to thousands of signals, usually measured for no more than twenty
time-steps. This paucity of data renders network models inferred from this data
statistically insignificant [31] and requires methods that can deal with this specific
situation to produce results that have real value to “wet lab” experiment design,
even though they may not be statistically significant for predictive purposes.

Artificial neural networks (ANN) are computational models that try to mimic,
in an extremely simple way, the way the human brain works. Just like the brain,
ANNs consist of a group of simple cells (artificial neurons) connected by synapses
that form a massively parallel and distributed processing system. The structure
of this system (connections and their weights) is formed during a training phase,
when the ANN is presented with data examples, actually acquiring knowledge
from its environment [18].

To perform this learning, neural networks rely on massive data sets to perform
their training process, so they cannot be trained correctly, using traditional
algorithms, in situations where data is scarce. Unfortunately, each experiment
has a non negligible cost, so that it is financially not practical for most labs to
perform a large number of experiments, which makes it impossible to generate
the amount of data a neural network would require. When presented with small
data sets, neural networks tend to simply memorize them, instead of actually
learning the underlying structure that generated them.

10 Evolving a Fuzzy Rulebase to Model Gene Expression 195

10.2.3 Association Rules

Creighton and Hanash [7] describe a technique that uses association rules to mine
for regulatory relationships among genes. The algorithm proposed uses data
binning (actual discretization) to overcome measurement errors and inherent
noise. The dangers associated with discretization are highlighted in [16] in which
it is also proposed to search for association rules, using planes to separate data.

In [7] all expression levels are set to three different states: up, down and
neither-up-nor-down, while in [5] all expression levels are transformed into a
boolean variable (over-expressed and under-expressed). An idea that might im-
prove these methods would be to adapt them to a fuzzy sets based approach,
allowing them to have multiple fuzzy sets that would correspond to, for instance,
highly expressed, very highly expressed, etc.

This technique suffers from being data intensive, because it needs several
microarray runs to create frequent itemsets and establish a pattern of co-
occurrences and, therefore, the cost limitations described above still apply. Using
a small number of data points may cause the frequent itemsets to be relatively
small, allowing for spurious effects (inherent to a multiply connected graph such
as the biological regulation one) to create rules that do not have real importance.

This method, in common with all others that rely on large data sets, will
improve as experimental costs begin to fall. As [16] points out, it is becoming
increasingly common to see data sets with tens of experiments. In the future,
when hundreds or even thousands of experiments become common, the ability
of methods based on association rules to model data will improve considerably.

10.2.4 Linear Regression

If gene regulation could be assumed to be linear, then linear regression would be
an effective tool to model it. However, there are commonly occurring biological
effects that make the linearity assumption fail:

1. Saturation: at a concentration that is specific to each binding site and sub-
strate, increasing the regulator concentration will not change the speed
and/or the amount of regulatee action.

2. Catalysis: the presence of certain enzymes will change the speed of the reac-
tion and this effect, together with saturation, will cause the reaction curve to
be S-shaped. A piecewise linear method, such as described in [9], may min-
imize this as well as he effect mentioned in the previous item, by creating
close linear approximations for each of the main function regions.

3. Inhibitory effects: The presence of certain substances will inhibit the regu-
lation process, either shutting it down completely, or making it extremely
inefficient. This effect can be modeled by combining a Boolean network with
a linear one, as done in [4].

Because of all these effects, any technique that is based on a linearity assumption
tends to yield poorer results. They can serve as a first approximation, but non-
linearity will always insidiously decrease the veracity of their results, an effect
that may be decreased if one combines a piecewise linear approach with Boolean
networks.

196 R. Linden and A. Bhaya

10.2.5 Perturbation Analysis

The idea behind such methods, described in papers such as [30] and [3], is that ad-
ditional information about a genetic network may be gleaned experimentally by
applying a directed perturbation to the network, and observing the steady-state
expression levels of every gene in the network in the presence of the perturbation.

The problem with this technique is similar to the one described for neural
networks: perturbation experiments may become expensive, especially if they
need to be repeated in order to eliminate spurious results. Another problem
with this approach lies in the fact that there seems to be some evidence that
nature rewards redundancy in the form of alternative pathways performing the
same function, so that there are backups in case that one pathway fails. Therefore
a knock-out experiment may not lead to the pathway being switched off, even
if a seemingly crucial component of a pathway was knocked out, since a backup
component is activated and takes over the function of the one knocked out.

Another issue is that in higher metazoa each gene is associated with an average
of ten different biological functions [2]. This means that perturbation studies may
disrupt several different pathways and cause unforeseen effects that may make
it very difficult for the analyst to understand what is really happening in the
single pathway he is studying.

10.2.6 Differential Equations

A genetic regulatory network can be understood as a dynamic system whose
states are defined by the expression levels as measured by microarray experi-
ments. As such, they could be described by differential or difference equation
based models, which at once can be seen as superior to Boolean networks, given
their ability to deal with intermediate expression levels.

The main problems with these models are the following:

• Discrete aspects: they cannot easily describe the discrete aspects of gene
regulation such as binding of a transcription factor to the DNA, which is
essentially an on/off event [4].

• Linear models vs Excessive data requirements: scientists tend to concentrate
on linear models because they require less data, but at the cost of placing
strong constraints on the nature of regulatory interactions in the cell that may
lead to less accuracy in the regulatory interaction description [15]. The use
of differential equations allows for the introduction of explicit rate constants
and one could go beyond the linear additive summation and include higher
order terms, the determination of the parameters of a network incorporating
higher-order terms would require much more data than is generally available
for these systems [32].

• If the algorithm uses time-series data, it must estimate the rates of change
of the transcripts (dx

dt) from the series. This can be problematic because
calculating the derivative can amplify the measurement errors (noise) in the
data [15].

10 Evolving a Fuzzy Rulebase to Model Gene Expression 197

This section has not made an exhaustive list of methods applied to the gene
regulation problem. Many other methods have been applied to this problem.
The reader may refer to [35], for instance, to learn about other computational
techniques to analyze genomic data.

10.3 Fuzzy Logic Applied to the Gene Regulation
Problem

Now that we have discussed what methods should not be used, we can proceed
to the discussion of the method proposed in this chapter. In this section we will
describe the fuzzy logic model used to deal with microarray data.

10.3.1 Beneficial Characteristics of a Fuzzy Model

Fuzzy rules model naturally ill-posed problems characterized by very little infor-
mation such as the one we are facing using a linguistic approach that is a form
of information useful to human experts. Therefore, they can be used to convey
imprecise information for experts that are available and can seed the systems
with a number of effective rules from the outset and verify the linguistic results
obtained [28]. Using this prior knowledge is a very interesting feature that we
explored in this work and that becomes very difficult to implement in numeric
methods, like differential equations and neural networks.

Whenever discovered knowledge is to be used to assist in decision-making by a
human user, it is important that it be comprehensible to the user [13]. Given the
discrepancy between data dimensions (high number of genes with small number
of points) we cannot arrive at a definitive model, no matter what method is used.
Therefore, the main purpose of purposing a fuzzy model is to create hypotheses
that can subsequently be tested in the biological workbench (“wet lab”). This
implies that simplicity of the rules is an essential feature.

Fuzzy rules also make it very easy to include delays in the model. It is enough
to include a parameter t in the rule, where t stands for the delay. For instance,
a rule with the format IF HighlyExpressed(f1(-1)) AND LowlyExpressed(f2(-2))
THEN HighlyExpressed(f3) means that if in the previous time step the substance
f1 had a high expression level and two time steps before substance f2 had a low
expression level, then the substrate f3 will have a calculated high expression
value. The default value for t will always be 1, meaning that we are referring
to the previous expression value available. Obviously, when we introduce this
feature we create more degrees of freedom and the model must be able to deal
with this issue.

10.3.2 Definition of the Fuzzy Sets

It is assumed that each gene may be associated with several fuzzy sets whose
universes of discourse will cover all the numeric space that its expression levels
can span.

198 R. Linden and A. Bhaya

In our work, the expression space of each feature is divided evenly, so that
each fuzzy set has the same support. The process consists of the following steps:

1. Choose the number of fuzzy sets for the gene of interest (nfuzzy);
2. The universe of discourse for the variable is defined by reading the interval

of expression values from the microarray data and expanding it a little (10%,
for instance) in each direction;

3. The universe of discourse is then divided in (nfuzzy − 1)parts;
4. Create the fuzzy sets using triangular functions, using the following scheme:

• The first half part is the support of the first descending function;
• The last half part is the support of the last ascending function;
• The nfuzzy−2 remaining parts are the supports of triangular membership

functions.

We could assign meaning to each fuzzy set. For instance, if we divide the space
into three fuzzy sets, they could be understood as representing Low expression
level, Medium expression level and High expression level. If we divide the space in
five fuzzy sets, we could interpret the fuzzy sets as meaning Very low expression
level, Low expression level, Medium expression level, High expression level and
Very high expression level.

There is overlapping among adjacent fuzzy sets, so that more than one rule
may be active for each expression value.

10.3.3 Using Fuzzy Rules to Calculate Expression Levels

Having defined the fuzzy sets and the fuzzy rule base, calculating next time step
expression levels is a simple matter of applying the current time step expression
levels to the rules and defuzzifying the results. There are many defuzzification
methods that could be used in this process and the choice of method is analogous
to that used in any other fuzzy application.

In this application, we applied the medium of maxima (MoM) defuzzification
method, expressed by the formula:

yj =
∑nfuzzy

i=1 μi ∗ ymax
i∑nfuzzy

i=1 μi

(10.1)

In this formula, nfuzzy stands for the number of fuzzy sets defined for the gene
of interest (see Section 10.3.2), μi is the calculated membership of the rule to
the fuzzy set i and ymax

i is the expression value where the membership function
of set i is at its maximum.

There may be rules that have zero support. In our experience, this may lead
to poorer results, and a minimum degree should be designated for each rule
before the defuzzification process. A small value, such as 0.05 will guarantee set
participation and allow the algorithm to achieve better results.

10.3.4 Rule Introduction by an Expert

Fuzzy logic offers an appealing method for describing phenomena by a set of
rules and data sets that are based on linguistic expressions very similar to the

10 Evolving a Fuzzy Rulebase to Model Gene Expression 199

ones we use daily to keep and transfer knowledge. These expressions include
“high level of expression”, “low level of expression” etc and the rules based on
those concepts express knowledge in approximately the same way that a human
expert would. An example of a fuzzy rule would be “if gene A is at a low level
of expression, then gene B is at a high level of expression”, which clearly means
that gene A is an inhibitor to gene B.

Experts are already aware of many regulatory pathways and ignoring this
prior knowledge is certainly wasteful, while exploiting it leads to a reduction in
the size of the search space, which is always desirable.

It is not easy for an expert to incorporate prior knowledge into certain meth-
ods, such as differential equation based and neural networks based methods,
which can be considered to be “numerically encoded”, thus requiring transla-
tion of qualitative knowledge into appropriate quantitative knowledge, usually
a difficult task. This is not the case with fuzzy systems. Since we have a rule
base that can have many rules applied to a single fuzzy variable, experts can
include their knowledge and this will be used together with the rules discovered
by any algorithm. Using this prior knowledge makes the method smarter and
also makes it possible for any tool created to become a hypothesis tester. In
the next section we will discuss rule insertion by experts when describing a full
genetic programming algorithm used to discover a fuzzy rule base.

10.4 Using Genetic Programming to Evolve a Fuzzy Rule
Base

The basic concepts of using a fuzzy rule base were described in the previous
section, but we still need an algorithm that can help us find what rules to use.
In this section we will describe the evolutionary algorithm we use to create the
fuzzy rule base that can best describe the gene regulation implicitly presented
in the (small) data set.

10.4.1 Basic Concepts

Evolutionary algorithms (EA) are inspired by Nature. The idea is to mimic
the natural evolution of the species using operators that simulate both sexual
reproduction and random mutation in order to create a new kind of search
technique that is robust and intelligently seeks solutions in a search space that
may be too big for conventional techniques [22]. EA spawns several different
techniques, including genetic algorithms (GA), genetic programming (GP) and
evolutionary programming (EP).

Genetic Programming is a branch of evolutionary algorithms that simulates
natural evolution to find complex structures such as programs and rules [19]. As
with other EAs, it uses the concept of a population that reproduces and suffers
mutation (as in natural, biological processes) and with high probability evolves
toward a better solution that fits better to real data available. It is a heuristic
that, although dependent on many probabilistic factors, tends to span much of

200 R. Linden and A. Bhaya

the solution space and is less affected by common data problems such as local
minima in an energy function.

All evolutionary algorithms use a population of competing solutions subjected
to random variation and selection for a specific purpose [10], which is to evolve
the population to one that contains a higher proportion of superior (fitter) indi-
viduals. The fitness of each individual in the population (its quality) is a measure
of how well that individual achieves the desired goal and is the main connec-
tion between the EA and the problem at hand. Therefore, the formulation must
contain all aspects of the problem, including constraints.

The variation and selection are usually based on two operators, the crossover
operator which combines two different individuals into a new one and the mu-
tation operator, which randomly changes parts of one individual in order to
increase diversity. Both are very important, representing two different aspects
of the natural search: exploitation (using current solutions information to derive
a new and possibly better solution), which is performed by the crossover oper-
ator, and exploration (venturing into new areas of the search space), which is
performed by the mutation operator.

An evolutionary algorithm could be described by the following pseudo-code:

Create Initial Population
While termination criteria not met

Select parents which will generate offspring from current population
Apply genetic operators to the selected parents and generate offspring
Select next population from current individuals and generated offspring

End While
Present best solution(s)

In this algorithm, termination is usually based on one or more of the following
criteria:

• time based: a number of generations has elapsed;
• quality based: a certain performance has been achieved;
• stagnation based: the set of best individuals has not improved for a certain

number of generations.

Parent selection must be done in a way so that best solutions have the big-
ger probability of reproducing, but not at the expense of preventing the worse
solutions from also doing so. The idea is that these worse solutions may have im-
portant information coded in their “genes” that would be missed if they did not
participate in the creation of new offspring. Therefore, a variation of a roulette
approach is usually used in which the parents with highest evaluation (“fittest”)
correspond to a bigger fraction of the roulette wheel when a random “spin” of
the wheel is performed.

Thus, in order to define an EA one must define the coding scheme (how each
individual will be represented in the computer), the operators (both mutation
and crossover and any other specific one that will be used), the evaluation or
fitness function (i.e., a measure of the quality of the current solutions to the

10 Evolving a Fuzzy Rulebase to Model Gene Expression 201

problem at hand), the termination criteria used, the parent selection scheme
and the next generation choice algorithm. We will discuss all these items applied
to the problem of gene regulation reverse engineering in the following sections.

10.4.2 Dealing with Microarray Data Characteristics

The use of GP methods is justified by their ability to generate and test a broad
spectrum of solutions, even from incomplete or insufficient data sets. As discussed
in Section 10.1.2, microarray data usually consists of hundreds or thousands of
genes whose expression levels are measured at only a few time points. This low
dimensionality generally implies that statistical methods are liable to generate
solutions of low statistical significance, but does not stop a GP method from
generating testable hypotheses for the biology lab.

The high number of degrees of freedom of the data set gives rise to a phe-
nomenon that we have called “the blessing of dimensionality”, which will cause
any search method to stumble upon a reasonable solution. The key is how to
differentiate between various spurious solutions and a possibly true regulatory
relationship. Since financial constraints make it very hard to conduct the ex-
periments that would generate the amount of data necessary to find a unique
optimally fitted network, this problem must be dealt with computationally.

Our approach is based on the assumption that genes that exhibit the same
behavior are under the same kind of control. This assumption seems to be bio-
logically sound, however, when we deal with a limited number of experiments,
we may be fooled into believing that two genes that display the same behavior
are part of the same regulatory pathway, since different strategies could generate
the same response over a limited window of observation and under a limited set
of conditions. Nevertheless, although this strategy could lead to false positives,
it should not, in principle, hide any meaningful relationships.

Therefore, it was decided to use a clustering algorithm that assumes that
genes that exhibit the same behavior are under the same kind of control, which
means that strongly correlated genes should be treated together in order to find
the single underlying regulation network that controls them all. It is important
to understand that this clustering approach may not be correct, but searching
for techniques that work in the entire cluster helps to eliminate many hypotheses
and helps limit the number of control mechanisms found by the algorithm. Since
the goal of this algorithm is to find testable hypotheses for the “wet lab”, this
helps to reduce the set of candidates.

One useful measure that indicates similarity between expression levels and
their changes is the Pearson Product-Moment Correlation Coefficient (correla-
tion coefficient for short) denoted ρ, which is a measure of the degree of linear
relationship between two variables, usually labeled X and Y . While in regression
the emphasis is on predicting one variable from the other, in correlation, on the
other hand, the emphasis is on the degree to which a linear model may describe
the relationship between two variables. In regression the interest is directional,
one variable is predicted and the other is the predictor; in correlation the interest
is non-directional, the linearity relationship is the critical aspect [12].

202 R. Linden and A. Bhaya

We calculate the correlation values for the gene of interest with every other
gene in the microarray and establish an arbitrary cutoff point (in our case, we
worked with a value of 0.95). Using only high correlation values is also interesting
because it may generate overlapping clusters. The fact that gene g1 is correlated
to a certain degree with gene g2 and the latter is correlated to the same certain
degree with gene g3 does not imply that gene g1 is also correlated with gene g3

to a degree above the cutting point. Therefore, we create one cluster for each
gene of interest, containing all the elements that are correlated to it.

Pearson correlation values are in the range [−1, 1], where −1 stands for perfect
anti-correlated (when gene g1 expression level rises, gene g2 expression level
lowers in the same proportion). We could include anti-correlation in our groups,
just arranging for a special processing of the trees that turns inhibition into
promotion and vice-versa, but we decided against it, because we do not need an
additional hypothesis to constrain the veracity of our results.

10.4.3 Chromosome Structure

In our algorithm, a rule is represented as a tree whose linear representation is
in reverse polish notation (RPN), where all operators precede their operands.
This tree representation has already been used, although somewhat differently,
in works such as [24, 8, 36].

In the model proposed, expressions are defined recursively by the following
syntax:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

< Expression >::= <Antecedent> <Consequent>;
< Antecedent >::= <BinOperator> <Expression> <Expression>
< Antecedent >::= NOT <Expression>;
< Antecedent >::= <FuzzySet>;
< BinOperator >::= AND | OR;
< FuzzySet >::= <set> <variable> <time>;
< Consequent >::= <set> <variable>.

In this syntax, <set> defines the fuzzy set used, <variable> is one of the many
genes whose expression levels were measured by the microarray and <time>
is an integer that represents the delay between measurement and control. This
delay is important because sometimes, due to kinetic energy in the molecules,
probabilistic effects or mere reaction times, the control performed by one gene
can occur later in time, especially if the interval between microarray measure-
ments is small enough. This delay can go from 1 (previous time step) to (n− 1),
where n is the number of measurements. It is important to understand that the
number of time steps used to match the data will be limited by the maximum
delay allowed (d). In this case, we will only have n−d instances of data, starting
at time step n − d + 1.

The use of past data is important in several genetic processes. For instance,
there is evidence that the phenomenon of cell memory is a prerequisite for the
creation of organized tissues and for the maintenance of stably differentiated cell
types [1]. In other cases, such as bacterial tryptophan control, only the immediate

10 Evolving a Fuzzy Rulebase to Model Gene Expression 203

availability of tryptophan is relevant. So, using the delay mechanism is a good
addition to the toolbox but will not necessarily be used in all problems we
might face.

This notation leads to a tree representation, where non-leaf nodes consist of
operators, either binary (AND ; OR) or unary (NOT) and leafs consist of the
fuzzy set, the variable and the time delay. An example can be seen in Figure 10.1.

We must guarantee that we have at least one rule for each fuzzy set created for
our gene of interest. We could consider having only one rule per gene and joining
the various rules with an OR node, which would have the same effect in the de-
fuzzification process. Nevertheless, this idea leads to higher trees and we choose
to have several lower trees instead. This will cause only a minor impact on the
application of the crossover operator (see Section 10.4.4 for further information).
Therefore, our chromosome will consist of a “forest”, with at least nfuzzy trees,
where nfuzzy is the number of fuzzy sets created for our gene of interest.

Having more than one tree per fuzzy set can lead to having contradictory rules.
Wang and Mendel [33] suggest having only one rule: the one with the maximum
degree. We do not need to apply this rule because the OR interpretation in
our algorithm will already do that, with the added benefit of being adaptive,
meaning that in each different situation, a different rule may have the highest
degree and will be chosen for application.

10.4.4 Genetic Operators

In order to define completely the proposed GP, we need to define the muta-
tion and crossover operators. As is typical in evolutionary algorithms that use
competing operators, the GP proposed in this paper uses a roulette wheel and
assigns a time varying probability for the mutation and crossover operators.

Fig. 10.1. Example of the representation. Inner nodes are the operators, while outer
nodes represent a fuzzy set, a variable and a delay. In the figure, F1(A, 1) means that we
are going to use the membership value of expression level of variable A in the previous
time step (delay 1) to fuzzy set F1.

204 R. Linden and A. Bhaya

The probability variation is due to the fact that in the beginning of each run
we want to emphasize the exploitation aspect of the algorithm, by trying to al-
low the best characteristics in the population to propagate. This means that the
crossover operator should have a higher choice probability. In the final genera-
tions, genetic convergence tends to occur and the population tends to be filled
with similar individuals, which makes it more profitable for the GP to emphasize
the exploration aspect, giving the mutation operator a higher probability.

Some researchers prefer to emphasize the exploration aspect in the early stages
of the GA, but given the fact that the population is randomly initialized and
applying further randomness on the population tends to yield little gain. On the
other hand, giving the mutation operator higher probabilities in the later stages
helps the GA fight the convergence effect that usually affects populations.

Therefore, we start with a high preference for the crossover operator (90%
chance, for instance) and linearly decrease it with each successive generation.
There are other strategies to make this chance (namely, quadratic and step
decrease), but the choice of change mode does not seem to have a high impact
on the GP performance.

Crossover Operator

The main goal of the crossover operator is to exchange information between
two different individuals in a way similar to sexual reproduction, allowing the
EA to exploit the best characteristics of the current population and hopefully
transmitting it to the newly generated offspring.

The crossover operator used in this work is a version of the operator commonly
used in genetic programming [19], having a performance that is quite similar to
uniform crossover for genetic algorithms, both in its modus operandi and in the
number of schemes preserved.

The operator works by randomly choosing sub-trees to interchange between
the chosen parents, using the following algorithm:

For each parent do
node nc = tree root
initialize selection probability ps

While nc not equals to null do
Make a random draw with probability ps

If nc is chosen
Store node nc for the current parent
Exit while

Else
raise probability ps

End if
End While

End For
Create offspring by exchanging the selected sub-trees

10 Evolving a Fuzzy Rulebase to Model Gene Expression 205

Fig. 10.2. Example of crossover action in two random parents

An example of this operator can be seen in Fig. 10.2. This strategy preserves
the sub-expressions rooted at the selected nodes and therefore the crossover is
not too disruptive with regard to the current population, which is a common
problem with genetic programs.

Since there may be multiple rules per fuzzy set, there must be an additional
control mechanism to choose which rules will exchange sub-trees. In this case,
the crossover operator guarantees that the rules for a fuzzy set X in the first
parent (C1) only crosses with rules for the same fuzzy set in the second parent
(C2), even if there are more rules for this fuzzy set in one chromosome than in
another. This means that if chromosome C1 has two rules for fuzzy set X and
chromosome C2 has only one, the two rules from C1 will cross with the single
one from C2. If the situation is reversed and C1 has only one rule while has C2

two or more, the number of rules in the resulting chromosome will still be equal
to the number of rules in C1.

If both of them have more than one rule for fuzzy set X , a random choice will
be made between the alternative rules, only ensuring that each rule crosses at
least once. Obviously, crossover generates two rules per operation, which are done
applying the rules described here twice: first considering the order C1/C2 and
secondly, the order C1/C2. Therefore, children with the characteristic structure
of both parents will be generated.

We could create a multiple parent version of this crossover operator by al-
lowing multiple cutting points in each parent and creating a pool of selected
sub-trees that would be randomly selected to replace the cut branches of each
parent. This version would be more disruptive and should be used together with
an elitist operator and an increase in the number of generations per run.

206 R. Linden and A. Bhaya

Mutation Operator

The goal of the mutation operator is to insert random variation into the popula-
tion so that we can explore areas of the search space that have not yet been visited.
In order to perform this task, we create three different mutation operators:

1. rule mutation: The rule mutation randomly chooses one node in the rule tree
and prunes the whole branch. Following this, a new sub-tree is generated
using the same generator that created the initial population and the branch
is then replaced. The population generator in this specific case is instructed
to generate short trees (trees whose height is equal to or less than 3). An
example of its operation is described in shown in Figure 10.3.

2. insertion mutation: Insertion mutation randomly chooses a fuzzy set for
which to create a rule. The new rule is generated using the same random
rule generator that generates the initial population. It is reasonable to give
the inserted rules a high choice probability in this isolated creation, for we
cannot raise the probability with the number of selections, as we did in the
population initialization (see Section 10.4.7).

3. deletion mutation: Deletion mutation randomly chooses one rule to delete
in one of the fuzzy sets available. In order to keep the rule base efficient, we
cannot allow a fuzzy set to have zero rules, so the chosen rule will be deleted
if it is not the only rule for a fuzzy set. In this case we will perform the

Fig. 10.3. The mutation operator chooses randomly a sub-tree to cut (circled) and
replaces it with a newly generated short tree. The choice can be done algorithmically
by performing a draw at each node with increasing probability. If the draw fails, we
randomly choose to go to the left or right node and increase the probability in such a
way that at a leaf, the draw probability will be 1.

10 Evolving a Fuzzy Rulebase to Model Gene Expression 207

random selection again, but one must be careful not to get into an infinite
loop if all the fuzzy sets have exactly one rule, which can be avoided by
allowing only a maximum number of tries for this operator. One must also
be careful when excluding rules to verify whether the chosen tree is the only
one that contains a rule inserted by the user.

10.4.5 Evaluation Function

In order to evaluate the performance of the chromosome, we will consider mi-
croarray data as a trajectory with N steps. This trajectory represents the “real”
behavior of the network to be modeled, given the conditions it was submitted
to. There are one or more genes of interest in that network, whose regulatory
networks we intend to find.

In order to evaluate a proposed solution, the network it represents receives
the first state of each trajectory and the GA calculates the intermediate and
final steps for the genes of interest.

In order to calculate the expression levels at time t, one must decide whether
to use the real or calculated values at each time step. As stated in the previous
paragraph, the expression levels at time t = 2 are calculated using the real initial
conditions at time t = 1 (real1). But for every t > 2, how should we calculate
the genes expression value (calct)? Should we use the real value at time t − 1
(realt−1) or the previously calculated expression value at time t − 1 (calct−1)?

There are good arguments for both alternatives. Using the calculated values
verifies if the network can model the entire trajectory, but allows errors to accu-
mulate. Using the real values at each time point to calculate the next expression
values verifies if the rules can, given a real value, predict the behavior of the
network at the next point. Both are valid alternatives, but in our work we opted
for the latter, because some experiments showed that some cumulative errors
influenced the ability of the network to behave like the real one, specially when
we use many fuzzy sets, causing them to have a small domain.

In order to avoid scale errors due to different expression levels at different
time steps, the mean absolute percentage error (MAPE) was used, instead of
using the absolute difference. This metric is defined by the following formula:

MAPE =
1
N

N∑

t=1

realt − calct

realt
(10.2)

We will use the inverse of this function because the smaller the error, the bigger
should be the evaluation function. We will also add 1 to the denominator in
order to avoid infinity with perfect fit solutions. Therefore, the first try for our
evaluation function will be:

F =
1

1 + MAPE
(10.3)

The first impression is that this function will capture easily the good solutions,
but there is a potential pitfall. In many situations a single outlier can make

208 R. Linden and A. Bhaya

Fig. 10.4. Example of the outlier effect. The solid line represents the real data and
there are two calculated solutions represented by the dotted and the traced lines. Even
though the dotted one models the underlying process better, it has an outlier at time
t=3 that makes it MAPE grow and may cause it to be considered worse than the traced
line whose behavior shows less resemblance to the real one.

the function obtain a low evaluation, even though it may correctly capture the
changes in expression levels with time. An example of this problem is shown in
Figure 10.4

In order to minimize this effect and reward those solutions that capture the
directional changes in the target genes, we created a directional coefficient, which
is given by the a function of the directional changes in the measured values (realt)
and the calculated values (calct), that is given by the following formula:

dc =

⎧
⎪⎪⎨

⎪⎪⎩

0.7, if (↑ realt∧ ↓ calct) ∨ (↓ realt∧ ↑ calct);
0.9, if (↑ realt∧ ↔ calct) ∨ (↓ realt∧ ↔ calct)

∨(↔ realt∧ ↓ calct) ∨ (↔ realt∧ ↑ calct);
1.1, if (↓ realt∧ ↓ calct) ∨ (↑ realt∧ ↑ calct).

(10.4)

In this formula, a ↑ means that the expression level has grown at time t. Con-
versely, a ↓ means that the expression level has diminished and a ↔ means that
the expression level has remained the same. An expression level is considered
constant if it varies less than ±1% from the previous time point. This evaluation
improves the capture of directional expressional movement in time. For instance,
if an expression value increases from time t to time t+1 and the calculated value
decreases in the same period of time, the error value at this time point may not
be very high, even as a percentage. Therefore, on adding this coefficient, every
chromosome that has a high evaluation will calculate a solution that has high
correlation with the function that maps real expression values changes over time.

The blessing of dimensionality, discussed above, may cause the GP to find an
over-specific rule that matches the numbers available without really uncovering
the underlying process that generated them. This will be reflected in “tall” trees
that should be discouraged by a reduction in their evaluation. This is achieved

10 Evolving a Fuzzy Rulebase to Model Gene Expression 209

by creating a coefficient c ≤ 1 to multiply the evaluation function we discussed
so far. The idea is that the higher the tree represented by the chromosome, the
smaller is the coefficient c. Therefore, in the case where there are two different
chromosomes with the same evaluation, the simpler and shorter one will be
preferred. This does not imply that nature necessarily rewards simplicity, but
rather that we have a small amount of data and should be cautious about over-
fitting it. This coefficient is given by the following formula, dependent on the
tree height h:

hc =
{

1, h ≤ 2;
1

h−1 , h > 2. (10.5)

The final formula is the multiplication of all three elements obtained in formulas
10.3, 10.4 and 10.5, creating the following evaluation function:

Eval(network) = hc ∗ dc ∗ F (10.6)

This evaluation function is quite resilient and searches for the underlying process,
not only achieving a data fitting, but also trying to avoid data over-fitting, by
simplifying the regulatory process found and being aware of the dangers of the
blessing of dimensionality.

10.4.6 Population Module and Execution Mechanism

In the GP proposed, we used an elitist population module and defined the fol-
lowing three different termination criteria:

• number of generations: no more than a predefined number of generations per
run;

• stagnation: stop the run if the best solution stagnates for the last 20 genera-
tions. It was not used in our work, but an alternative solution is to increase
the probability of the mutation operator, so that we give more emphasis to
the exploration effect in order to find new solutions that break the stagna-
tion. Of course, a fine control must be established so that the probability is
decreased when the GP starts to have a better performance;

• quality of the solution found: stop if the data was fit to a maximum error of
1%. This number is arbitrary and appropriate for this specific problem. We
know that the numbers obtained from microarrays are inherently imprecise
(see Section 10.1.2) and that given the blessing of dimensionality, any perfect
fit might consist of over-fitting. In other problems, the 1% rate of error might
be too high;

Usually, genetic programs are seeded with large populations that execute for
a large number of generations, because genetic programming operators tend to
be very destructive, which causes a long execution time. The destructive effect
can be minimized by using elitist strategies to preserve the best solutions and
by using operators that prioritize the lower tree levels when deciding where to
exchange material between genes.

210 R. Linden and A. Bhaya

In this work a different strategy was adopted. Ten independent runs with
initial random populations were executed and the top 2% of each execution was
used to seed the 11th run, whose initial population was completed randomly.
This allowed for a faster execution time with smaller stagnation effects in each
population, while allowing the best solutions found in different initial populations
(seeded randomly) to interact in order to find a better solution. It is even possible
to get an even bigger speed up by using a parallel execution of the algorithm,
using 10 different machines that will allow their best solutions to migrate at the
end of their execution.

10.4.7 Tree Processing

The rule generator used to initialize the population was created to guarantee that
some chromosomes would incorporate prior knowledge, expressed as a specific
set of rules defined by the user . This is an important advantage of fuzzy rules
that was enforced in this work.

This incorporation was done by creating a random draw for each sub-tree
generated to decide whether that sub-tree would be one of the rules inserted by
the user. Since we wish for their value to be used as entered, placing those rules
as descendants of a NOT node should be avoided. The probability assigned to
this draw increased linearly with the number of chromosomes, up to the point
where the rules were used or, in the final chromosome, the chance amounted to
100%, assuring rule usage.

A second passage was made through all generated chromosomes in order to
assure that rules that were considered as “forbidden” by the user were absent
from every chromosome. When cropping the tree to remove “forbidden” rules, a
new sub-tree was generated with the characteristic discussed above.

After every reproduction/mutation cycle, a full pass through the new pop-
ulation is performed in order to verify that required rules are still present in
the population and have not been disrupted by the genetic operators. If they
are not present anymore, a new incorporation is performed, as discussed in the
paragraph above.

A rule simplifier was created that allows us to substitute some sub-trees for
simpler ones that still represent the same logical expression, allowing us to, for
example, reduce expressions such as A AND A to their simpler form (in this
case, A). The rules shown here have already gone through this simplification
process. This simplification decreases the computational time spent by the pro-
posed algorithm in the tree evaluation step, which is the longest one in the whole
search process, decreases average tree height and also allows the genetic material
exchanged between trees to be meaningful.

10.5 Results

The results obtained with the application of this algorithm to microarray data
sets are described in great details in [23]. We will highlight their most important
features in this section.

10 Evolving a Fuzzy Rulebase to Model Gene Expression 211

The data set tested was obtained from The Arabidopsis Internet Research
project (TAIR) and measures the reaction to cold of Arabidopsis thaliana, giving
the value of close to 8000 genes at seven data points. Because of this small number
of measurements it was not feasible to use the time dependence available in the
chromosomes. Therefore, every calculated value depends solely on the expression
values available at the previous time point.

A. thaliana, like many plants, increases its freezing tolerance when exposed
to low nonfreezing temperatures. This process of cold acclimation is a multi-
genic and quantitative trait that is associated with complex physiological and
biochemical changes [17].

The genes that are hypothesized to be responsible for the cold response are
16062 s at, 17520 s at and 16111 f at. The genes 13018 at and 13785 at are two
of the genes regulated by the above named ones. The algorithm was applied to
search for regulatory strategies for these last two genes, modeling correctly both
trajectories and giving us the following interesting results:

• In the rules discovered for 13018 at, the three known regulators were present
and a candidate regulator (17034 s at) that was considered interesting enough
by the biologists who provided the data to warrant further investigation in
the near future. Other genes that show high correlation with known regula-
tors were present in the rules, an effect that may be due to the small number
of points available in the data set.

• In the second case (13785 at, some prior knowledge was included and the
program was asked to include necessarily activation from 17520 s at and
preferentially an inhibition from 16111 s at. The resulting rules included the
required and the desirable relationships. Another interesting feature is the
presence of gene 17034 s at, which was also deemed interesting in the previous
set of rules.

• In both cases, the rules present a few genes that don’t seem to “belong”
in terms of previous knowledge. This kind of spurious control relationship
will always be present in any method and is a consequence of the blessing
of dimensionality previously mentioned and cannot be avoided with such a
small data set.

One can understand better those results by reviewing the best chromosome found
for element 13875 at, which is described by the following rules:

(a) IF AND Low Level of Expression(17413 s at)
NOT High Level of Expression(16111 f at)
THEN Low Level of Expression(13785 at)

(b) IF NOT Average Level of Expression (15714 at)
THEN Low Level of Expression(13785 at)

(c) IF NOT Average Level of Expression (17834 at)
THEN Low Level of Expression(13785 at)

(d) IF Low Level of Expression (17421 s at)
THEN Average Level of Expression(13785 at)

212 R. Linden and A. Bhaya

(e) IF Average Level of Expression (16062 s at)
THEN Average Level of Expression(13785 at)

(f) IF OR Low Level of Expression(17050 s at)
High Level of Expression(16062 s at)
THEN High Level of Expression(13785 at)

(g) IF Average Level of Expression (17034 s at)
THEN High Level of Expression(13785 at)

(h) IF NOT OR High Level of Expression(16062 s at)
Low Level of Expression(15140 s at)
THEN High Level of Expression(13785 at)

Those rules have the following features worthy of note:

• Rules (a), (e) e (f) show relationships to known regulators;
• Rule (g) presents a new regulator (17034 s at) that was considered promising

by A. thaliana researchers;
• Rules (f) e (h) show relationships with elements 15140 s at and 17050 s at

that are highly correlated to element 17520 s at, which is a known regulator
and is absent from the rules found. This situation is expected and is due to
the small amount of data points.

10.6 Conclusion

The algorithm described was applied to a data set with many degrees of freedom
and yielded interesting results. When applied to previously investigated regula-
tion models, the results generated are very similar to known results in biology.
This suggests that the algorithm may be a tool to uncover other regulation
processes, but must be used with caution. All results found by this algorithm
must be tested afterwards in a biological lab and all limitations associated with
microarray data sets must be taken into consideration. Besides, if data is not
scarce, other methods could be more effective, but, at the present time, obtaining
a large number of microarray measurements is not financially feasible.

The approach described in this chapter to model gene expression is a very
simplified view of the actual process, appropriate for exploratory data analysis.
In reality, gene expression is a complex process regulated at several stages in the
synthesis of proteins that also involves molecular movement and binding, which
is a probabilistic event.

Apart from the regulation of DNA transcription, the best-studied form of reg-
ulation, the expression of a gene may be controlled during RNA processing and
transport (in eukaryotes), RNA translation, and the post-translational modifi-
cation of proteins. The degradation of proteins and intermediate RNA products
can also be regulated in the cell, and the modeling of this process can be seen,
for example, in [11]. Regulatory molecules can control the concentration and
form of the product of each step. These regulators are usually fully-formed pro-
teins, but any of the intermediate products (RNA, polypeptides, or proteins)
also may act as regulators of gene expression. Reverse-engineering techniques

10 Evolving a Fuzzy Rulebase to Model Gene Expression 213

usually concentrate on protein transcription control, mainly because DNA mi-
croarray technology has become an abundant data source. Measuring peptide,
protein and metabolite regulators of gene expression is generally more difficult,
and such data are not often available [14].

In this situation, the model proposed here serves as a rough sketch of the
regulatory process, but it still must be considered as an initial step and must be
augmented in the direction of methods that can understand and model cellular
context, RNA translation and protein folding; thus understanding the network
as a whole.

It is important to understand that most large-scale data sets contain only
information from cells exposed to a single condition. The approach proposed
here does not attempt to analyze the dynamics of complex biological networks. In
order to carry out such an analysis of dynamics, we would have to deal with more
interaction data sets under different cellular conditions, and more importantly,
integrate with gene expression profile data under various conditions. The reader
interested in biological networks can refer to [37].

It is also important to understand that many different genetic networks can
generate the same phenotype, specially under data scarcity conditions, a phe-
nomenon called “gene elasticity” and discussed in detail in [20]. The approach
proposed here will not find many different possibilities for the same data in the
same run, but given the fact that there is a random initialization step in the GP,
it is possible to find different networks in different runs.

Besides incorporating the issues described above, a full model must also in-
corporate different regulatory mechanisms at different time points. For instance,
a gene may regulate another only at a certain time point, while remaining qui-
escent during the rest of the interval evaluated. A possible solution would be to
add, to each fuzzy rule in the base, an application condition that would determine
when to apply it. Many difficult issues arise from this idea: for example, ensuring
that at least one condition applies to a controlled gene at every time step and
determining how to submit these rules to a genetic operator. We are currently
studying the best way to represent these application conditions in our rules.

References

1. Alberts, B., Johnson, A., Lewis, J., et al.: Molecular biology of the cell, 5th edn.
Garland Science (2007)

2. Arnone, M.I., Davidson, E.H.: The hardwiring of development: organization and
function of genomic regulatory systems. Development 124, 1851–1864 (1997)

3. Bansal, M., della Gatta, G., di Bernardo, D.: Inference of gene regulatory net-
works and compound mode of action from time course gene expression profiles.
Bioinformatics 22(7), 815–822 (2006)

4. Brazma, A., Rukliza, D., Viksna, J.: Reconstruction of gene regulatory networks
under the finite state linear model. Genome Informatics 16(2), 225–236 (2005)

5. Carmona-Saez, P., Chagoyen, M., Rodriguez, R., et al.: Integrated analysis of gene
expression by association rules discovery. BMC Bioinformatics 7(54) (2006)

6. Chen, J.J., Chen, C.-H.: Encyclopedia of biopharmaceutical statistics. In: Microar-
ray Gene Expression, pp. 599–613. Informa Healthcare (2003)

214 R. Linden and A. Bhaya

7. Creighton, C., Hanash, S.: Mining gene expression databases for association rules.
Bioinformatics 19(1), 79–86 (2003)

8. Dasgupta, D., Gomes, J.: Evolving fuzzy classifiers for intrusion detection. In:
Proceedings of the 2002 IEEE Workshop on Information Assurance, US Military
Academy (2002)

9. De Jong, H., Gouze, J.L., Hernandez, C., et al.: Qualitative simulation of genetic
regulation models using piecewise-linear models. Bulletion of Mathematical Biol-
ogy 66(2), 301–340 (2004)

10. Fogel, G.B., Corne, D.W.: Evolutionary computation in bioinformatics. Morgan
Kaufmann, San Francisco (2003)

11. Foteinu, P., Yang, E., Saharidis, G.K., et al.: A mixed-integer optimization frame-
work for the synthesis and analysis of regulatory networks. Journal of Global Op-
timization (online) (2007)

12. Freedman, D., Pisani, R., Purves, R.: Statistics, 4th edn. W. W. Norton Publisher
(2007)

13. Freitas, A.A.: A survey of evolutionary algorithms for data mining and knowledge
discovery. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computation,
pp. 819–845. Springer, Heidelberg (2003)

14. Gardner, T.S., Fainth, J.J.: Reverse-engineering transcription control networks.
Physics of Life Reviews 2(1), 65–88 (2005)

15. Gardner, T.S., Faith, J.J.: Reverse-engineering transcription control networks.
Physics of Life Reviews 2(65), 88 (2005)

16. Georgii, E., Richter, L., Ruckert, U., Kramer, S.: Analyzing microarray data using
quantitative association rules. Bioinformatics 21(suppl. 21), ii123–ii129 (2005)

17. Hannah, M.A., Heyer, A.G., Hincha, D.K.: A global survey of gene regulation
during cold acclimation in Arabidopis thaliana. PLoS Genet. 1(2), 26–43 (2005)

18. Heaton, J.T.: Introduction to neural networks with java, 1st edn. Heaton Research,
Inc. (2005)

19. Koza, J.R., Keane, M.A., Streeter, M.J., et al.: Genetic programming iv: Routine
human-competitive machine intelligence (genetic programming), 1st edn. Springer,
Heidelberg (2005)

20. Krishnan, A., Giuliani, A., Tomita, M.: Indeterminacy of reverse engineering of
gene regulatory networks: The curse of gene elasticity. PLOS One (6), e652 (2007)

21. Laubenbacher, R., Stigler, B.: A computational algebra approach to the reverse
engineering of gene regulatory networks. Journal of Theoretical Biology (229),
523–537 (2004)

22. Linden, R.: Algoritmos geneticos (genetic algorithms). Brasport (2006)
23. Linden, R., Bhaya, A.: Evolving fuzzy rules to model gene expression. BioSys-

tems 88(1), 76–91 (2007)
24. Martinek, D.: A tree representation of fuzzy inference rules. In: Proceedings of

40th Spring International Conference MOSIS 2006, Prerov, CZ, p. 6 (2006)
25. Mistra, J., Schmitt, W., et al.: Iterative explorations of microarray gene expression

patterns in a reduced dimensional space. Genome Research, 1112–1120 (2002)
26. Nuber, U. (ed.): DNA microarrays, 1st edn. Advanced Methods Series. Taylor and

Francis, Inc., Abington (2005)
27. Pal, R., Datta, A., Bittner, M.L., Dougherty, E.: Intervention in context-sensitive

probabilistic boolean networks. Bioinformatics 21(7), 1211–1218 (2005)
28. Ross, T.H.: Fuzzy logic with engineering applications. Wiley, Chichester (2004)
29. Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modelling.

BMC Bioinformatics 8(suppl. 6), 9 (2007)

10 Evolving a Fuzzy Rulebase to Model Gene Expression 215

30. Tegner, J., Yeung, M.K.S., Hasty, J., Collins, J.J.: Reverse engineering gene net-
works: Integrating genetic perturbations with dynamical modeling. PNAS 100(10),
5944–5949 (2003)

31. Van Someren, E.P., Wessels, L.F.A., Reinders, M.J.T.: Linear modeling of genetic
networks from experimental data. In: Proceedings of the Eighth International Con-
ference on Intelligent Systems for Molecular Biology, pp. 355–366. AAAI Press,
Menlo Park (2000)

32. Wahde, M., Hertz, J.: Coarse-grained reverse engineering of genetic regulatory
networks. BioSystems 55(1), 129–136 (2000)

33. Wang, L., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE
Transactions on Systems, Man and Cybernetics 22(6), 1414–1427 (1992)

34. Wang, Y., Tetko, I.V., Hall, M.V., et al.: Gene selection from microarray data
for cancer classification–a machine learning approach. Computational Biology and
Chemistry 29(1), 37–46 (2005)

35. Wehrli, A.V., Grzegorczyk, M., Husmeier, D.: Comparative evaluation of reverse
engineering gene regulatory networks with relevance networks, graphical gaussian
models and bayesian networks. Bioinformatics 22(20), 2523–2531 (2006)

36. Yang, Z.R., Thomson, R., et al.: Searching for discrimination rules in protease
proteolytic cleavage activity using genetic programming with a min-max scoring
function. BioSystems 72, 159–176 (2003)

37. Zhu, X., Gerstein, M., Snyder, M.: Getting connected: analysis and principles of
biological networks. Genes and Dev. 21, 1010–1024 (2007)

	Evolving a Fuzzy Rulebase to Model Gene Expression
	Biological Introduction
	Gene Regulation
	Microarray Data Sets

	Pros and Cons of Gene Regulatory Networks (GRN) Models
	Boolean Networks
	Neural Networks
	Association Rules
	Linear Regression
	Perturbation Analysis
	Differential Equations

	Fuzzy Logic Applied to the Gene Regulation Problem
	Beneficial Characteristics of a Fuzzy Model
	Definition of the Fuzzy Sets
	Using Fuzzy Rules to Calculate Expression Levels
	Rule Introduction by an Expert

	Using Genetic Programming to Evolve a Fuzzy Rule Base
	Basic Concepts
	Dealing with Microarray Data Characteristics
	Chromosome Structure
	Genetic Operators
	Evaluation Function
	Population Module and Execution Mechanism
	Tree Processing

	Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

