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Summary. Tree induction algorithms use heuristic information to obtain decision
tree classification. However, there has been little research on how many rules are
appropriate for a given set of data, that is, how we can find the best structure
leading to desirable generalization performance. In this chapter, an evolutionary
multi-objective optimization approach with genetic programming will be applied
to the data classification problem in order to find the minimum error rate or the
best pattern classifier for each size of decision trees. As a result, we can evaluate
the classification performance under various structural complexity of decision trees.
Following structural risk minimization suggested by Vapnik, we can determine a
desirable number of rules with the best generalization performance. The suggested
method is compared with C4.5 application for machine learning data.

11.1 Introduction

The recognition of patterns and the discovery of decision rules from data
examples is one of the challenging problems in machine learning. When
data points with numerical attributes are involved, the continuous-valued at-
tributes should be discretized with threshold values. Decision tree induction
algorithms such as C4.5 build decision trees by recursively partitioning the
input attribute space [24]. Thus, a conjunctive rule is obtained by following
the tree traversal from the root node to each leaf node. Each internal node in
the decision tree has a splitting criterion or threshold for continuous-valued
attributes to partition a part of the input space, and each leaf represents a
class depending on the conditions of its parent nodes.

The creation of decision trees often relies on heuristic information such
as information gain measurement. Yet how many nodes are appropriate for a
given set of data has been an open question. Mitchell [22] showed the curve
of the accuracy rate of decision trees with respect to the number of nodes
over the independent test examples. There exists a peak point of the accuracy
rate in a certain size of decision trees; a larger size of decision trees can
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increase its classification performance on the training samples but reduces the
accuracy over the test samples which have not been seen before. This problem
is related to the overfitting problem to increase the generalization error1.
Many techniques such as tree growing with stopping criterion, tree prunning
or bagging [25, 21, 24, 5] have been studied to reduce the generalization error.
However, the methods are dependent upon a heuristic information or measure
to estimate the generalization error, and they do not explore every size of trees.

An evolutionary approach to decision trees has been studied to obtain op-
timal classification performance [16, 15, 4], since the decision tree based on
heuristics is not optimal in structure and performance. Freitas et al. [15] have
shown evolutionary multi-objective optimization to obtain both the minimum
error rate and minimum size of trees. Their method was based on the infor-
mation gain measurement; it followed the C4.5 splitting method and selected
the attributes with genetic algorithms. They were able to reduce the size of
decision trees, but had higher test error rates than C4.5 in some data sets.
Recently a genetic programming approach with evolutionary multi-objective
optimization (EMO) was applied to decision trees [4, 3]. A new representa-
tion of decision trees for genetic programming was introduced [3], where the
structure of decision trees is similar to linear regression trees [6]. Two ob-
jectives, tree size and accuracy rate in data classification, were considered in
the method. The method succeeded in reducing both error rates and size of
decision trees in some data sets. However, searching for the best structure of
decision trees has not been considered in their works.

It has been shown that EMO is very effective for optimization of multi-
objectives or constraints in continuous range [27, 7]. Also EMO is a useful
tool even when the best performance for each discrete genotype or structure
should be determined [19, 17]. The EMO approach was used to minimize the
training error and the tree size for decision tree classification [3, 8]. Also other
works using fitness and size or complexity as objectives have been reported
[2, 20]. Yet there has been no effort so far to find what is the best structure
of decision trees to have the minimal generalization error. Vapnik [26] showed
an analytic study to reduce the generalization error, and he suggested the
structural risk minimization to find the best structure. It can be achieved by
exploring the empirical error (training error) and generalization error (test
error) for various structure complexity. We will follow the approach and the
tree size will be the parameter to control the structure.

In this work, the EMO with genetic programming for two objectives, the
tree size and the training error, is first used to obtain the Pareto-optimal so-
lutions, that is, the minimum training error rate for each size of trees. Then
the best tree for each size will be examined to see the generalization perfor-
mance for a given set of test data. By observing the distribution of the test
error rates over the size of trees, we can pinpoint the best structure to mini-
mize the generalization error. In our EMO approach, a special elitism strategy

1 This is also called test error in this chapter.
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for discrete structures is applied. Genetic programming evolves decision trees
with variable thresholds and attributes, and an incremental evolution from
small to large structures with Pareto ranking is used. The suggested method
provides the accuracy rate of classification for each size of trees as well as the
best structure of decision trees. The approach will be compared with the tree
induction algorithm C4.5. A preliminary study of the approach was published
in [18].

11.2 Method

11.2.1 Decision Tree Classification

Decision tree learning is a popular induction algorithm. A decision tree clas-
sifies data samples by a set of decision classifiers; the classifiers are located
in the internal nodes of the tree and for each instance, the tree traversal de-
pending on the decision of the classifiers from the root node to some leaf node
determines the corresponding class. The decision trees can be easily repre-
sented as a set of decision rules (if-then rules) to assist the interpretation.
Inductive learning methods create such decision trees, often based on heustic
information or statistical probability.

One of the most popular learning algorithm is to construct decision trees
from the root node to leaf nodes with a top-down greedy method [25, 24].
Each data attribute (with appropriate threshold if the attribute is continuous-
valued) is evaluated using the information theory with entropy. This evalua-
tion decides which attribute or what threshold of the selected attribute clas-
sifies well a given set of instances. It has been shown that information gain
measure efficiently selects one of attribute vectors and its thresholds [23].

Let Y be the set of examples and let C be the set of k classes. Let p(Ci, Y )
be the probability of the examples in Y that belong to class Ci. The split
probability p(Yj) in a continuous-valued attribute among m partitions is given
as the probability of the examples that belong to the partition Yj when the
range of the attribute is divided into several regions.

Then the information gain of an attribute A over a collection of instances
Y is defined as

Gain(Y,A) =
E(Y ) −

∑m
i=1

|Yi|
|Y | E(Yi)∑m

j=1 p(Yj) log p(Yj)

where E(Y ) =
∑k

i=1 p(Ci, Y ) log p(Ci, Y ) is an entropy function, A has m
partitions, and Yj is one of m partitions for the attribute A.

For a given set of instances, each attribute A has its own threshold τi

that produces the greatest information gain. This threshold is automatically
selected by information gain measurement, and the threshold τi is one of the
best cut for the attribute A to make good decision boundaries. One decision
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Fig. 11.1. Relationship between training error and generalization error

boundary divides the parameter space into two non-overlapping subsets, de-
pending on τi; it has a dichotomy A > τi and A ≤ τi. However, multiple
intervals of the attribute can improve the classification [10].

With the above process of information gain measurement, the decision
tree algorithm finds the best attribute and its threshold. More sophisticated
algorithms to improve the classification have been developed, but the style of
tree induction is not much changed. In our experiments, C4.5 [24] will be used
for inductive tree classication.

11.2.2 Structural Risk Minimization

According to the statistical estimation theory by Vapnik [26], while the com-
plexity of a model over a given set of data increases, learning algorithms such
as decision trees and neural networks can reduce the approximation error
called bias but increase the variance of the model. Much research is concerned
with reducing the generalization error which is a combination of bias and vari-
ance terms [12, 14, 13]. The generalization error is the rate of errors caused
by the model when the model is tested on samples which have not been seen
before. Vapnik showed the general bounds for the variance and the generaliza-
tion error. The generalization error varies with respect to a control parameter
of the learning algorithm to model a given set of data; Vapnik [26] mentioned
this control parameter as VC (Vapnik-Chervonenkis) dimension. The VC di-
mension is a measure of the capacity of a set of classification functions.

The number of decision-tree nodes in induction trees can be a control
parameter to be related to the generalization error, because increasing the
number of nodes can decrease the bias and increases the variance in classifica-
tion problem. Fig. 11.1 shows the relationship between the training error and
generalization error. Here, we are interested in finding a tree structure with
minimal generalization error at the expense of increase in training error.
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In structural risk minimization, a hierarchical space of structures is enu-
merated and then the function to minimize the empirical risk (training error,
bias) for each structure space is found. Among a collection of those func-
tions, we can choose the best model function to minimize the generalization
error. The number of leaf nodes (rules) in decision trees corresponds to the
VC-dimension that Vapnik mentioned in the structural risk minimization [26].

The structure of decision trees can be specified by the number of leaf
nodes. Thus, we define a set of pattern classifiers as follows:

Sk = {F (x, β)|β ∈ Dk}

where x is a set of input-output vectors, F (x, β) is a pattern classifier with
parameter vector β, Dk is a set of decision trees with k terminal nodes and Sk

is a set of pattern classifiers formed by decision trees with k terminal nodes.
Then we have

S1 ⊂ S2 ⊂ · · · ⊂ Sn.

From the method of structural risk minimization [26], we can easily set the
VC dimension into the number of leaf nodes and the VC dimension of each
pattern classifier is finite. In this chapter, the training error for each set of
pattern classifiers, Sk, for k = 2, ..., n, is minimized with the EMO method
and then the generalization error for the selected pattern classifier is identified.
The best pattern classifier or the best structure of pattern classifiers is the
one with the minimum generalization error; in the experiments, 10-fold cross
validation will be used to estimate the generalization error.

When we wish to have a desirable set of rules over a given set of data,
we do not have a prior knowledge about what is the best number of rules to
minimize the generalization error. Thus, a two-phase algorithm with the EMO
method can be applied to general classification problems. First, we can apply
the EMO method to the whole training instances and obtain a set of rules
for each size of trees. Then the method of finding the best structure with 10-
fold cross validation or other validation process can be applied to the training
instances. From this information, we can decide the best VC-dimension, or
best size of trees among a collection of rule sets for the original data set. As a
result, we can obtain a desirable set of rules to avoid the overfitting problem.

11.2.3 Evolutionary Multiobjective Optimization

We use evolutionary multiobjective optimization to obtain Pareto-optimal
solutions which have minimal training error for each size of trees. In the sug-
gested evolutionary approach, a decision tree is encoded as a genotype chro-
mosome; each internal node specifies one attribute for training instances and
its threshold. The terminal node defines a class, depending on the conjunctive
conditions of its parent nodes through the tree traversal from the root node
to the leaf node. Unlike many genetic programming approaches, the current
method encodes only a binary tree classification; the only one function set is
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a comparison operator for a variable and its threshold, and the terminal set
consists of classes determined by decision rules.

The genetic pool in the evolutionary computation handles decision trees
as chromosomes. The chromosome size (tree size) is proportional to the num-
ber of leaf nodes in a decision tree, that is, the number of rules. Thus, the
number of rules will be considered as one objective to be optimized. While an
evolutionary algorithm creates a varying size of decision trees, each decision
tree will be tested on a given set of data for classification. The classification
error rate will be the second objective. The continuous-valued attributes re-
quire partitioning into a discrete set of intervals. For simple control of VC
dimension, we assume that the decision tree is a binary tree. Thus, the de-
cision tree will have a single threshold for every internal node to partition
the continuous-valued range into two intervals. The threshold is one of major
components to form a pattern classifier.

We are interested in minimizing two objectives, classification error rate
and tree size in a single evolutionary run. In the multi-objective optimization,
the rank cannot be linearly ordered. The Pareto scoring in EMO approach
has been popular and it is applied to maintain a diverse population over
the two objectives. A dominance rank is thus defined in the Pareto distri-
bution. A vector X = (x1, x2, ..., xm) for m objectives is said to dominate
Y = (y1, y2, ..., ym) (written as X ≺ Y ) if and only if X is partially less than
Y, that is,

(∀i ∈ 1, ...,m, xi ≤ yi) ∧ (∃i ∈ 1, ...,m, xi < yi)

A Pareto optimal set is said to be the set of vectors that are not dominated
by any other vector.

{X = (x1, ..., xm)|¬(∃Y = (y1, ..., ym), Y ≺ X)}

To obtain a Pareto optimal set, a dominating rank method [11] is applied
in this work. Individuals of rank 0 in a Pareto distribution are dominated by
no other members and individuals of rank n are dominated only by individuals
of rank k for k < n. The highest rank is zero, for an element which has no
dominator. Fig. 11.2 shows an example of dominating rank method.

In the experiments, tournament selection of group size four is used for
Pareto optimization. The tournament selection initially partitions the whole
population into multiple groups for the fitness comparison; members in each
group are randomly chosen among the population. Inside the tournament
group, Pareto score of each member is compared each other and ranked. A
higher rank of genomes in the group have more probability of reproducing
themselves for the next generation. In our approach, a population is initialized
with a random size of tree chromosomes. For each group of four members, the
two best chromosomes using a dominating rank method are first selected in a
group and then they reproduce themselves; more than one chromosome may
have tie rank scores and in this case chromosomes will be randomly selected
among multiple non-dominated individuals. A subtree crossover over a copy



11 Minimizing Structural Risk on Decision Tree Classification 247

0

0

0

2

0

0

0

1

1

1

1

1

0

0

0

0

0

1

3

1

0

0

2
3

Fig. 11.2. Dominating rank method in a tournament selection of group size four
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since two objectives should be minimized.)
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Fig. 11.3. Crossover operator (arrows: crossover point)

of two best chromosomes, followed by a mutation operator, will produce two
new offspring. These new offspring replace the two worst chromosomes in
the group. The crossover operator swaps subtrees of two parent chromosomes
where the crossover point can be specified at an arbitrary branch – see Fig.
11.3.
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The mutation has five different operators as shown in Fig. 11.4. The first
operator deletes a subtree and creates a new random subtree. The subtree to
be replaced will be randomly chosen in a decision tree. The second operator
first picks up a random internal node and then changes the attribute or its
threshold. This keeps the parent tree and modifies only one node. The third
operator chooses a leaf node and then splits it into two nodes. This will as-
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sist incremental evolution by adding one more decision boundary. The fourth
operator selects a branch of a subtree and reduces it into a leaf node with
random class. It will have the effect of removing redundant subtrees. The fifth
operator sets a random attribute in a node and chooses one of the possible
candidate thresholds randomly. The candidate thresholds can be obtained at
boundary positions2 by sorting the instances according to the selected vari-
able (the threshold to maximize the information gain is also located at such
a boundary position [9]). The last operator has an effect of choosing desirable
boundaries based on information gain, but the random selection of the thresh-
olds avoids local optimization only based on information gain. Thus, the last
mutation operator3 accelerates a fast speed of convergence in classification
and the other four operators provide a variety of trees in a population. In this
work, crossover rate 0.6 and mutation rate 0.2 were used.

In the initialization of the population or the recombination of trees, we
have a limit for the tree size. The minimum size of leaf nodes is 2 and the
maximum size of leaf nodes is set to 35 or 25; some data set does not need the
exploration of as many nodes as 35, because a small number of leaf nodes are
sufficient. If the number of leaf nodes in a new tree exceeds the limit, a new
random subtree is generated until the limit condition is satisfied. A single run
of the EMO method over training examples will lead to the Pareto optimal
solutions over classification performance and the number of rules. Each non-
dominated solution in a discrete space of tree size represents the minimized
error fitness for each number of decision rules. The elitism strategy has been
significantly effective for EMO methods [27]. In this work, an elitist pool is
maintained, where each member is the best solution for every size of decision
trees under progress. For each generation, every member in the elitist pool
will be reproduced.

11.2.4 Variable-node C4.5

The well-known tree induction algorithm C4.5 efficiently generates decision
trees using information gain. The algorithm can produce a varying size of
decision trees by controlling the parameter of a minimum number of object
in the branches. When the minimum number of objects in the two branches
increases from two to one hundred or more sequentially, we can collect a set
of pairs (classification performance, tree size) for each parameter value. That
is, we have a collection of pattern classifiers each of which has a different size.
Then we extract the best performance as well as the best pattern classifier

2 We first try to find adjacent samples which generates different classification cate-
gories and then the middle point of the adjacent samples by the selected attribute
is taken as a candidate threshold.

3 There is a possibility of using only information gain splitting, but we use this
method instead to allow more diverse trees in structure and avoid local optimiza-
tion.
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for each size of trees from the database. We will call this method as variable-
node C4.5 to distinguish it from the conventional C4.5 method by default
parameter setting. With the variable-node C4.5, the best pattern classifiers
are obtained by heuristic measurement, while the EMO tries to find the best
classifier for a given size of trees using evolutionary search mechanism.

When the cross validation process is applied, we will estimate the average
performance over training set and test set with many trials. It is assumed that
the average performance over a given size of trees by variable-node C4.5 will
represent the estimation over all the best C4.5 decision trees obtained with a
given size of trees. In case that a certain size of trees may be missing by the
given splitting method, we calculate the average performance of classification
for available tree sizes.

11.3 Experiments

11.3.1 EMO with Artificial Data

The EMO method was first tested on a set of artificial data with some noise as
shown in Fig. 11.5; we will show an application of the EMO method to mini-
mize the training error, not generalization error to show how it works, and the
experiments minimizing the generalization error will be provided in section
3.2. The data set contains 150 samples with two classes. When the C4.5 tree
induction program was applied, it generated 3 rules as shown in Fig. 11.5(a).
It produced a 29.3 % training error rate (44 errors). For reference, a neural
network (seven nodes in a hidden layer) trained with the back-propagation al-
gorithm achieves a 14.7 % error rate (22 example misclassifications); however,
the performance could be improved with better parameter setting. Evolving
decision trees with 1000 generations and a population size of 200 by the EMO
approach produced Pareto trees. Fig. 11.6 shows an example of the best tree
chromosomes. With only two rules allowed, 43 examples were misclassified
(28.7 % error rate) as shown in Fig. 11.5(f), and it was better than the C4.5
method. Moreover, six rules was sufficient to obtain the same performance as
neural networks with seven hidden nodes. As the number of rules increases,
decision boundaries are added and the training error performance improves.

In many cases, the best boundaries evolved for a small number of rules
also belong to the classification boundaries for a large number of rules; new
boundaries can provide better solutions in some cases. A small number of rules
are relatively easily evolved, but a large number of rules needs a long time to
find the best trees since more rules have more parameters to be evolved. Large
trees tend to be evolved sequentially from the base of small trees or a small
number of rules. Thus, incremental evolution from small to large structures
of decision trees is operated with the EMO approach. We note that in Fig.
11.5, more rules improve the classification performance for the training data
by adding decision boundaries, but some rules support only a small number
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of samples. The rules may cause over-specialization problem to degrade the
generalization performance. This is the motivation of our work using structural
risk minimization.

11.3.2 Machine Learning Data

For the general case, the suggested evolutionary approach has been tested on
several sets of data4 (iris, wine, ionosphere, ecoli, pima, wpbc, glass, bupa)
in the UCI repository [1] and the artificial data in Fig. 11.5. These data sets
are mostly for machine learning experiments. Classification error rates are
estimated by running the complete 10-fold cross-validation ten times, and we
used variable-node C4.5 and the EMO approach as well as C4.5 by default
parameter setting. For each size of decision trees, 95% confidence intervals of
fitness (test error rate) are measured by assuming t-distribution. For the C4.5
run, both number of rules and error rate will be examined with t statistic. The
suggested EMO approach takes a population size of 500 and 1000 generations
with tournament selection of group size four for each experiment.

Evolutionary computation was able to attain a hierarchy of structure for
classification performance. There exists the best number of rules to show the
minimum generalization error as expected from the structural risk minimiza-
tion. Fig. 11.7(a)-(b) shows that the artificial data have four decision rules
as the best structure of decision trees and that the ionosphere data have six

4 Some sets of data include missing attribute values. In that case, the data sample
is removed.
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Fig. 11.7. Generalization performance with varying number of rules 1 (arrow: C4.5
with default parameters, *: C4.5 with varying number of nodes, �: EMO result
with 100 generations, ◦: EMO result with 1000 generations) (a) artificial data (b)
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Fig. 11.8. Comparison between C4.5 and EMO method (a) error rate in test data
with C4.5 and EMO (EMO 1 and EMO 2 represent the EMO running with 100
generations and 1000 generations, respectively) (b) the number of rules with C4.5
and EMO (the number of rules for EMO is determined by selecting the minimum
error rate)

rules. If the tree size is larger than the best tree size, then the generalization
performance degrades or has no improvement. More generations tend to show
a better curve for the best structure of trees. This test validation process can
easily determine a desirable number of rules. The EMO even with 100 gener-
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Table 11.1. Data classification errors in C4.5 and variable-node C4.5

C4.5 variable node C4.5
data pattern attr. error (%) # rules error (%) # rules

artificial 150 2 33.3 ± 0.9 3.5 ± 0.3 34.0 ± 0.7 2
ionosphere 351 34 10.9 ± 0.7 14.3 ± 0.3 10.9 ± 0.6 16

iris 150 4 5.4 ± 0.8 4.8 ± 0.1 5.1 ± 0.7 4
wine 178 13 6.8 ± 1.0 5.4 ± 0.2 6.8 ± 1.0 9
ecoli 336 7 20.0 ± 0.9 24.4 ± 0.7 19.4 ± 0.7 12
pima 768 8 25.9 ± 1.0 25.4 ± 1.0 24.9 ± 0.5 13
wpbc 194 32 30.9 ± 2.0 13.1 ± 1.0 23.9 ± 0.3 2
glass 214 9 32.8 ± 1.6 25.0 ± 0.5 30.9 ± 1.3 9
bupa 345 6 34.0 ± 2.0 30.4 ± 1.9 33.1 ± 1.5 17

Table 11.2. Data classification errors in the EMO method

EMO (100 gen.) EMO (1000 gen.)
data error (%) # rules error (%) # rules

artificial 21.9 ± 1.1 4 22.1 ± 1.2 4
ionosphere 9.0 ± 0.9 9 7.4 ± 0.7 6

iris 3.5 ± 0.7 4 3.3 ± 0.4 4
wine 7.1 ± 1.2 8 6.3 ± 1.0 6
ecoli 18.3 ± 1.0 16 17.4 ± 1.2 6
pima 25.8 ± 1.0 19 25.2 ± 0.5 3
wpbc 24.0 ± 0.6 2 24.2 ± 0.7 2
glass 34.2 ± 1.4 27 29.5 ± 1.5 18
bupa 33.4 ± 1.1 3 31.9 ± 1.2 3

ations is better than the C4.5 induction tree in the test error rates for these
two sets of data, artificial and ionosphere data. Variable-node C4.5 does not
produce a V-shape curve (in Fig. 11.1) for generalization performance with
the VC-dimension, tree size, but instead irregular type of performance curve.
Its performance is significantly worse than the EMO performance in most of
cases. Fig. 11.7 shows that the variable-node C4.5 is mostly worse in perfor-
mance than the EMO method for each number of rules, and if we choose the
best structure to minimize structural risk, the EMO method outperforms the
variable-node C4.5 in generalization performance for all cases except pima
and wpbc data.

We collected the best model complexity and the corresponding perfor-
mance into Table 11.1-11.2. For reference, we showed the performance of C4.5
by default parameters. Variable-node C4.5 often finds better performance than
C4.5 by default parameter setting. Among the collection of varying sizes of
trees, there exists some tree better in performance than C4.5 result for most
of data sets.
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Fig. 11.9. Generalization performance with varying number of rules 2 (arrow: C4.5
with default parameter, ◦: EMO result with 1000 generations) (a) wpbc data (b)
pima data

In our experiments, the EMO with 100 generations outperforms C4.5 in
the test error rate for all the data except wine and glass. The EMO with
1000 generations improves both the error rate and the number of rules, and it
is better than C4.5 in the test error rate for all the data. Table 11.1-11.2 and
Fig. 11.8 show that the EMO is significantly better than C4.5 in error rate
with 95 % confidence levels for many experimental data. The EMO method
with wine and artificial data have a little higher number of rules, but it is
due to the fact that the EMO finds an integer number of rules in a discrete
space. The other data experiments show that the best number of rules in
decision trees by the EMO is significantly smaller than the number of rules
by C4.5 induction trees, which is determined by information gain. It confirms
that some rules from C4.5 are redundant and thus C4.5 may suffer from an
over-specialization problem. In some cases variable-node C4.5 finds a small
number of rules, but the rule set has much worse performance in classification
than the best rule set by the EMO.

An interesting result is obtained for the wpbc and pima data (see Fig. 11.9).
Two sets of data have a bad prediction performance, regardless of the number
of rules. The performance of C4.5 is worse than or similar to that of two or
three rules evolved. Investing longer training time on wpbc and pima data
does not improve validation performance. It is presumed that more consistent
data are required for the two sets of data.

11.4 Discussion

We evaluated generalization performance under various model complexities,
with the pattern classifiers found by the EMO method. An algorithm of min-
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imizing structural risk was applied to the Pareto sets of (performance, struc-
ture). For the comparison with C4.5, we tried to provide a variety of model
complexities using variable-node C4.5, that is, by controlling the parameter of
a minimum number of objects in the branches. The performance of C4.5 with
varying number of nodes is shown in Fig. 11.7; it is mostly worse than our
method in classification performance. With the parameter control, a specific
number of decision rules can be missing. Generally it is hard to generate a
consecutive number of leaf nodes or a large size of trees with C4.5. It would
be a better comparison with the suggested approach if more sophisticated
tree induction method with pruning or stopping growing can be tested. As
an alternative, other tree induction algorithms that grow trees by one node
can be tested and compared with the EMO method. We leave the comparison
between the suggested approach and other methods under the same model
complexities to future work.

Given any arbitrary data set for future prediction, we can apply the cross-
validation process to find the best pattern classifier minimizing structural
risk. The data set is divided into training and test set randomly and then the
suggested EMO can be applied to the training data. This procedure can be
repeated with many trials to obtain the average generalization error. The gen-
eralization performance under a variety of structure complexity can determine
the best structure or best size of trees. The above method was applied to each
training set in the 10-fold cross validation, and the best structure followed
the result in Table 11.2 in most of cases. In our approach, the evolved de-
cision trees have axis-parallel decision boundaries. The pattern classification
may have a limitation of fitting nonlinear sample patterns, although we can
find the best number of classifiers. Applying our EMO approach to linear re-
gression trees or neural network classifiers would produce better classification
performance.

If one of the objectives in EMO is discrete, elitism can be easily applied
to evolutionary computation by keeping a pool of the best solutions for each
discrete genotype. In the EMO approach, all members in the elitist pool were
reproduced every generation, where each member corresponds to each size
of trees. If chromosomes are linearly ranked by only error rate performance
instead of Pareto dominating rank, it fails to produce uniform Pareto-optimal
solutions, since the evolutionary run sticks to an one-objective solution. When
we tested varying number of members in the elitist pool for reproduction in
a new population, we found more members reproduced in the elite pool can
significantly improve training performance.

We showed the performance of the EMO with different number of gener-
ations, 100 and 1000. In some case, 100 generations are sufficient to find the
best model structure. Yet more generations often produce the result that the
best model structure shifts to a smaller size of trees. It is believed that better
training performance of the EMO can find better model structure to minimize
structural risk, but it is still an open question how much training we need for
desirable generalization performance.
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The computing time of evolutionary computation requires much more time
than C4.5. For example, a single EMO run with a population size of 500 and
100 generations over pima data takes about 22 seconds while a single run of
C4.5 application takes only 0.1 second (Pentium computer). A single EMO
run for iris, wine, ionosphere, ecoli, wpbc, glass, and bupa took roughly 3
seconds, 6 seconds, 28 seconds, 8 seconds, 12 seconds, 7 seconds, 8 seconds,
respectively. Generally the EMO needs much more computing time to find the
best performance for every size of trees, but it can improve the classification
performance significantly in most of the data sets.

11.5 Conclusions

In this chapter, we introduced an evolutionary multiobjective optimization
with two objectives, classification performance and tree size (number of rules),
for decision tree classification. The proposed EMO approach searches for the
best accuracy rate of classification for each different size of trees. By structural
risk minimization, we can find a desirable number of rules for a given error
bound. The performance of the best rule set is better than that of C4.5 or
variable-node C4.5, although it takes more computing time. In particular, it
can reduce the model complexity, the size of trees dramatically. It can also
help to evaluate how difficult it is to classify a given set of data examples.
Many researchers have used pima and wpbc in their experiments, but the
distribution of error rates over the size of trees implies that these data cannot
expect prediction. In addition, we can indirectly determine if a given set of
data requires more consistent data or whether it includes many noisy samples.

For future study, the suggested method can be compared with the bagging
method [5], which is one of the promising methods to obtain good accuracy
rates. The bagging process may also be applied to the best rules obtained
from the proposed method. The decision tree evolved in the present work has
the simple form of a binary tree. The EMO approach can be extended to more
complex trees such as trees with multiple thresholds or linear regression trees.
The result can also be compared with that obtained from neural networks.
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