
Designing Dispatching Rules to Minimize Total
Tardiness

Joc Cing Tay and Nhu Binh Ho

Evolutionary and Complex Systems Program (EvoCom)
Nanyang Technological University, School of Computer Engineering,
Blk N4 #2a-32 Nanyang Avenue, Singapore 639798

Summary. We approximate optimal solutions to the Flexible Job-Shop
Problem by using dispatching rules discovered through Genetic Program-
ming. While Simple Priority Rules have been widely applied in practice,
their efficacy remains poor due to lack of a global view. Composite Dis-
patching Rules have been shown to be more effective as they are con-
structed through human experience. In this work, we employ suitable pa-
rameter and operator spaces for evolving Composite Dispatching Rules
using Genetic Programming, with an aim towards greater scalability and
flexibility. Experimental results show that Composite Dispatching Rules
generated by our Genetic Programming framework outperforms the Single
and Composite Dispatching Rules selected from literature over large valida-
tion sets with respect to total tardiness. Further results on sensitivity to
changes (in coefficient values and terminals) among the evolved rules indi-
cate that their designs are optimal.

1 Introduction

In today’s highly competitive marketplace, a high level of delivery per-
formance has become necessary to satisfy customers. Due to market
trends, product orders of low volume, high variety types have been in-
creasing in demand. Hoitomt et al. [1] mentions that these products com-
prise between 50 to 75 % of all manufactured components, thereby making
schedule optimization an indispensable step in the overall manufacturing
process.

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

J.C. Tay and N.B. Ho: Designing Dispatching Rules to Minimize Total Tardiness, Studies in
Computational Intelligence (SCI) 49, 101–124 (2007)

The Job-Shop Scheduling Problem (JSP) is one of the most popular
manufacturing optimization models used in practice [2]. It has attracted
many researchers due to its wide applicability and inherent difficulty [3-6].
It is also well known that the JSP is NP-hard [7], hence general, determi-
nistic methods of search are inefficient as the problem size grows larger.
The n x m classical JSP involves n jobs and m machines. Each job is to be
processed on each machine in a pre-defined sequence, and each machine
processes only one job at a time. In practice, the shop-floor setup typically
consists of multiple copies of the most critical machines so that bottlenecks
due to long operations or busy machines can be reduced. As such, an op-
eration may be processed on more than one machine having the same func-

operations on each machine. In addition, for complex manufacturing sys-
tems, a job can typically visit a machine more than once (known as recir-
culation). These three features of the FJSP significantly increase the com-
plexity of finding even approximately optimal solutions [8].

search methods, such as Simulated Annealing [4], Tabu Search [5, 9, 10]
and Genetic Algorithms [11-14]. The reported results of applying them
show that good approximations of optimality can be found, albeit at the
expense of a huge computational cost, particularly when the problem size
is large. In practice, dispatching rules have been applied to avoid these
costs [15-17]. Although the quality of solutions produced by dispatching
rules are no better than the local search methods, they are the more fre-
quently applied technique due to their ease of implementation and their
low time complexity. Whenever a machine is available, a priority-based
dispatching rule inspects the waiting jobs and selects the job with the high-
est priority to be processed next. Recently, the introduction of composite
dispatching rules (CDR) have been increasingly investigated by the some
researchers [18, 19], but typically only for classical JSPs. These rules are
the heuristic combination of single dispatching rules that aim to inherit the
advantages of the former. The results show that, with careful combination,
the composite dispatching rules will perform better than the single ones
with regards to the quality of schedules.

In this paper, we investigate the potential use of GP for evolving effec-
tive composite dispatching rules for solving the FJSP, with the objective of
minimizing total tardiness. The purpose of this research is to find efficient
composite dispatching rules that perform better than the dispatching rules
presented in literature for solving the same problem. By using a wide train-
ing data set, we believe that the evolved CDRs can be applied directed in

102 J.C. Tay and N.B. Ho

assignment of an operation to an appropriate machine and sequencing the
Job Shop Scheduling Problem (FJSP). The extension involves two tasks;

The classical JSP and FJSP have been solved by many stochastic local

tion. This leads to a more complex problem known as the Flexible

practice without any modifications. Furthermore, the results of these CDRs
could be used as the input to other local search methods in solving FJSP
problems, such as Genetic Algorithms [13, 14].

The remainder of this paper is organized as follows. Section 2 gives the
formal definition of the FJSP. Section 3 reviews recent related works for
solving the JSP and FJSP using dispatching rules and a overview of GP.
Section 4 describes our proposed GP framework for evolving CDRs while
Section 5 analyzes the performance results of the CDRs obtained with GP.
Finally, Section 6 gives some concluding remarks and directions for future
work.

2 Problem definition

Similar to the classical JSP, solving the FJSP requires the optimal assign-
ment of each operation of each job to a machine with known starting and
ending times. However, the task is more challenging than the classical one
because it requires a proper selection of a machine from a set of machines
to process each operation of each job. Furthermore, if a job is allowed to
recirculate, this will significantly increase the complexity of the system
[20]. The FJSP is formulated as follows:

 Let J = {Ji}1 i n, indexed i, be a set of n jobs to be scheduled.
 Each job Ji consists of a predetermined sequence of operations. Let Oi,j be

operation j of Ji.
 Let M = {Mk}1 k m, indexed k, be a set of m machines.
 Each machine can process only one operation at a time.
 Each operation Oi,j can be processed without interruption on one of a set

of machines Mk in a given set i,j M with pi,j,k time units.
 Let Ci and di be the completion time and due date of job Ji respectively.

The tardiness of this job is calculated by the following formula:
max 0,i i iT C d

 The objective function T of this problem is to find a schedule that mini-
mizes the sum of tardiness of all jobs (total tardiness problem):

n

i
ii

n

i
i dCTT

11

},0max{minmin

Total tardiness is one of the major objectives in production scheduling. A job
that is late may penalize the company’s reputation and reduce customer
satisfaction. Hence, keeping the due dates of jobs under control is one of the most
important tasks faced by companies [19].

Designing Dispatching Rules to Minimize Total Tardiness 103

The FJSP can also be considered to be a Multi Purpose Machine (MPM) job-
shop [21]. Using the | | notation of [22], the problem we wish to solve can be
denoted by

J MPM | prec jr jd | jj
T

where J denotes job-shop problem, MPM denotes multi purpose machine, prec
represents a set of independent chains while rj and dj represents release date and

due date given to each job respectively; finally, jj
T represents total tardiness.

In this paper, we shall assume the following:
 All machines are available at time 0.

 Preemption of operations is not allowed.

 Each job has its own release date and due date.

The order of operations for each job is predefined and cannot modified.

3 Previous works

Dispatching rules have received much attention from researchers over the
past decades [15-17]. In general, whenever a machine is freed, a job with
the highest priority in the queue is selected to be processed on a machine
or work center. A comprehensive survey on dispatching rules is by Pan-
walkar and Wafik [15] and Blackstone et al. [16]. Depending on the speci-
fication of each rule, it can be classified [15] into:

 Simple Priority Rules
 CDRs
 Weighted Priority Indexes
 Heuristic Scheduling Rules

Simple Priority Rules (SPR) are usually based on a single objective

function. They usually involve only one model parameter, such as process-
ing time, due date, number of operations or arrival time. The Shortest
Processing Time (SPT) rule is an example of a SPR. It orders the jobs on
the queue in the order of increasing processing times. When a machine is
freed, the next job with the shortest time in the queue will be removed for
processing. SPT has been found to be the best rule for minimizing the
mean flow time and number of tardy jobs [17]. The Earliest Due Date
(EDD) rule is another example of a SPR where the next job to be proc-
essed is the one with the earliest due date. Unfortunately, no SPR performs
well across every performance measure such as tardiness or flow time

104 J.C. Tay and N.B. Ho

[23]. To overcome this limitation, CDRs have been studied to combine
good features from such SPRs.

There are two kinds of CDRs presented in literature; the first type in-
volves deploying a select number of SPRs at different machines or work
centers. Each machine or work center employs a single rule. When a job
enters a specific machine or work center, it is processed by the SPR that is
preselected for that machine or work center. For instance, Barman [23] ap-
plied three different SPRs to solve the flow shop problem corresponding to
three work centers. Experimental results show that it obtains better results
than a single SPR that is common to all three machines. However, this ap-
proach may not be suitable for a shop floor with large number of machines
or work centers; and the best independent distribution of single SPRs is
difficult to predetermine. Furthermore, it still has the limitation of a local-
ized view. The second type involves applying the composition of several
SPRs (otherwise known as a CDR) to evaluate the priorities of jobs on the
queue [17]. The latter type is executed similarly to SPRs; when a machine
is free, this CDR evaluates the queue and then selects the job with the
highest priority. For example, Oliver and Chandrasekharan [17] present
five CDRs for solving the JSP. Their results indicate that CDRs are more
effective compared to individual SPRs. CDRs inherit the simplicity of
SPRs while achieving some scalability as the number of machines in-
crease. Moreover, if well designed, CDRs can solve realistic problems
with multiple objectives [8]. However, the challenge is to find a good
combination of SPRs to apply to all machines or work centers.

Weighted priority index rules are the linear combination of SPRs with
computed weights [18, 19]. Depending on specific business domains, the
importance of a job determines it’s weight. For instance, consider n jobs
with different weights w, each job Ji is assigned weight wi. The sum of the
weighted tardiness as the objective function is given as follows:

n

i
iii

n

i
ii dCwTwT

11

},0max{minmin

In this paper, weighted priority rules are not considered as they are a
generalization of our current formulation of total tardiness where we have
assumed instead that all jobs have unit weights (or all jobs are equally im-
portant) (see Section 2).

Heuristic rules are rules that depend on the configuration of the system.
These rules are usually used together with previous rules, such as SPRs,
CDRs or weighted priority index rules. For instance, the heuristic rules
may use the expertise of human experience, such as inserting an operation
of a job into an idle time slot by visual inspection of a schedule [15].

Designing Dispatching Rules to Minimize Total Tardiness 105

The results from recent researchers [17, 23] show that CDRs outperform
individual SPRs in improving the efficiency of the shop floor. In this work,
we focus our attention on finding a computational method to build effec-
tive CDRs; one that is based on the composition of fundamental measures
rather than on the algebraic combination of SPRs. However, this may be
difficult to enumerate manually due to the large parameter and operator
space, hence we employ a GP framework.

Genetic programming (GP) [24] belongs to a family of evolutionary
computation methods. It is based on the Darwinian principle of reproduc-
tion and survival of the fittest. Given a set of functions and terminals and
an initial population of randomly generated syntax trees (representing pro-
grams), the programs are evolved through genetic recombination and natu-
ral selection. GP has been applied to many different problems; from classi-
cal tasks, such as function fitting or pattern recognition, to non-trivial tasks
that are competitive with significant human endeavours such as designing
electrical circuits [25] or antennas [26].

The most important feature that makes GP different from the canonical
GA is it’s ability to vary the logical structure and size of evolved computer
programs dynamically. It can therefore solve more challenging problems
that have eluded the canonical GA due to the latter’s requirement of a
fixed-length chromosome. However, GP has rarely been applied to manu-
facturing optimization [27]; this is due to the direct permutation property
of scheduling where jobs and/or machines can be simply reordered (in the
case of JSP) to improve optimality. For instance, the chromosomes pre-
sented in [10-14] have fixed lengths, which can be evolved easily by direct
permutation. On the other hand, GP uses a tree-based encoding with dy-
namic length; making it difficult to encode the JSP (for that matter, a
FJSP) into a tree-based chromosome. Unlike previous approaches [17-19,
23] where a predefined set of SPRs were combined in advance by human
experience, we apply GP to find superior constructions of CDRs which are
composed of fundamental terminals (see Table 1). These discovered rules
are then used to solve the FJSP directly; the advantage being that the ob-
tained CDRs can solve the FJSPs in shorter computational time as com-
pared to genetic algorithms [10-14].

4 Design of the GP framework

In GP, an individual (ie, computer program) is composed of terminals and
functions. Therefore, when applying GP to solve a specific problem, they
should be well designed to satisfy the requirements of the current problem.

106 J.C. Tay and N.B. Ho

After evaluating many parameters related to the FJSP, the terminal set and
the function set that are used in our algorithm are described as follows.

4.1 Terminal set

In job-shop scheduling, there are many parameters that can effect the qual-
ity of results; potentially, all of them can be considered to comprise a dis-
patching rule. However, in order to create a short and meaningful dispatch-
ing rule, only a small and sufficient number of parameters should be
evaluated properly. They also help to reduce the search space and improve
the efficiency of the algorithm. Based upon the dispatching rules involving
due dates in [15-17] and our experimental works, the terminal set proposed
in this study is given in Table 1.

Table 1. Terminal Set

Terminal Meaning
ReleaseDate Release date of a job (RD)
DueDate Due date of a job (DD)

ProcessingTime Processing time of each operation (PT)
CurrentTime Current time (CT)
RemainingTime Remaining processing time of each job (RT)
numOfOperations Number of operations of each job (nOps)
avgTotalProcTime Average total processing time of each job

(aTPT)

In Table 1, CurrentTime represents the time when a particular machine

is free and starts to select a job to process on its queue. RemainingTime
corresponds to the elapsed time for the current job to finish. Some previous
dispatching rules use total processing time of each job as one of their pa-
rameters. However, in FJSP, as an operation of each job can be processed
on a set of machines, we normalize the average processing time of each
operation with the following formula:

,

, ,
()

,
,()

i j

i j k
n

i j
i j

p

p
n

where pi,j,k stands for processing time of operation Oi,j on machine Mk and
n(i,j) represents the number of machines that can process Oi,j.

Designing Dispatching Rules to Minimize Total Tardiness 107

4.2 Function set

Similar to other applications of GP [24-26] for solving optimization prob-
lems, we use four basic operators: addition, subtraction, multiplication, and
division for creating a CDR. Furthermore, we employ a well-known
Automatically Defined Function (ADF) (proposed by Koza [28]). The
ADF is sub-tree which can be used as a function in the main tree. The size
of the ADF is varied in the same manner as the main tree. It enables GP to
define useful and reusable subroutines dynamically during its run. The re-
sults from [28] indicate that GP using ADF outperforms GP without ADF
in solving the same optimization problem. The more parameters are used
in ADF, the more changes will be needed for GP to evolve good subrou-
tines. However, it can lead to a higher number of generations. We limit the
ADF used in our approach to two parameters. The operators used in the
ADF are also the four basic operators mentioned above. The operators of
the function set in our approach are given in Table 2.

Table 2. Terminal Set

Function Meaning
+ Addition
- Subtraction

* Multiplication
/ Division

ADF(x1, x2) Automatically Defined
Function

4.3 Encoding a CDR using a GP chromosome

The obtained results from each generation of GP are a set of computer
programs represented as trees. As mentioned in Section 2, the objective in
our study is to minimize the total tardiness of the FJSPs. Therefore, we
propose a method to form a CDR from the tree-based result of GP. This
CDR is then combined with the least waiting time assignment [13] to
evaluate the total tardiness of the FJSPs. These two processes are de-
scribed in detail as follows.

To find a suitable machine to process an operation Oi,j, we apply the
least waiting time assignment on the set of setting machines that can proc-
ess Oi,j. This rule is intended to reduce the workloads of the machines by
balancing operations to be assigned. It is calculated by summing all the
subsequent operations in the waiting list plus the remaining processing
time on each machine and the processing time of Oi,j. Therefore, it depends

108 J.C. Tay and N.B. Ho

on the total time this operation has to wait to be processed in the worst
case, not relying only on its own processing time.

Fig. 1. Example of a GP tree with defined functions and terminals

In determining the proper order of operations on the queue of a particu-
lar machine, we use the CDR generated by GP. When a machine is freed,
the generated rule is applied directly to the set of operations that are wait-
ing in the queue of the machine. The operation with the highest priority is
then selected to be processed on the machine. Figure 1 above gives an ex-
ample of a dispatching rule tree generated by GP. It shows the overall
structure of the generated tree that gives a possible CDR. The left child of
progn shows the function-defining branch (containing the defun). In this
case, the ADF function is defined by: ADF(x1,x2)=x1 x2. The right child
gives the result-producing branch. This CDR therefore represents the fol-
lowing formula:

(,)

DD CR

DD RD ADF PT nOps

Since ADF(x1,x2)=x1 x2, we obtain:

DD CR

DD RD PT nOps

Any tree in the genomic population of GP that contains our defined
functions and terminals can be interpreted as a CDR in the same way. The
obtained CDR is then applied to solve a FJSP problem to evaluate its total
tardiness.

values

defun

ADF x1 x2

x1 x2

prog

values

DD

+

nOp

CR ADF

DD RD PT

Designing Dispatching Rules to Minimize Total Tardiness 109

4.4 GP parameter settings

Through experimentation, the set of parameters used in our GP framework
is listed in Table 3.

Table 3. Choice of parameter values

Parameters Value
Population Size 100
Number of Generations 200

Creation Type Ramped half and
half

Maximum depth for creation 7
Maximum depth for crossover 17
Crossover Probability 100%
Swap Mutation Probability 3%
Shrink Mutation Probability 3%
Number of best rules copy to new generation 5

We implemented Ramped half and half to generate the initial population

of GP. This method was proposed by Koza [24] and it has been widely
used by previous researchers. It divides the initial population into two
parts; half of which contains the random generated trees with maximum
depth (in this experiment, this value is 7) and the remaining half contains
the random generated trees with depth values ranging from one to the
maximum depth. In order to keep the best trees that may be destroyed by
GP’s operators, we sort the current population and copy five of them to the
next generation.

5 Experimental results

This section reports and analyses the results of our computational experi-
ments. The system was implemented using C++, running on a 2 GHz PC
with 512 MB RAM. We will describe how to generate the test cases that
are used to evolve CDRs for minimizing total tardiness objective of FJSP
problems. The performance results of the evolved dispatching rules will be
compared to some commonly used dispatching rules in literature. Finally,
the evolved dispatching rules’ sensitive parameters will be discussed.

110 J.C. Tay and N.B. Ho

5.1 Test case generation

Various experiments were conducted to evaluate the efficiency of our pro-
posed algorithms. We categorized these experiments into three classes:
FJSP with 100% flexible (FJSP-100), FJSP with 50% of flexibility (FJSP-
50), and FJSP with 20% of flexibility (FJSP-20). The FJSP with c% of
flexibility means that less than or equal c% of total machines are selected
to process an operation. The processing times of each operation was drawn

fers to a uniform distribution. In practice, an operation can be processed on
any of a group of machines that constitute a work center. The variance of
these processing times is ideally zero or usually small. Therefore, in our
test cases, we set the maximum difference between two operations to be 5
unit times. The release date of each job depends on the number of jobs in a
particular test case. If the number of jobs is larger than 50, the release date
is drawn out of U[0,40], else it is taken from U[0,20]. Baker [29] proposed
a formula to estimate the due date of a job using the TWK-method:

1

in

i i ij
j

d r c p

where ri and di denote release and due dates of job i respectively. pij pre-
sents the processing time of operation Oij, and c denotes the tightness fac-
tor of the due date. The higher the value of c, the looser is the job’s due
date. We adapt this formula to generate due dates of jobs by replacing the
parameter iqp with iqp .

Depending on the tightness of the due date, we separate the samples of
each class FJSP-100, FJSP-50, or FJSP-20 into tight, moderate, or loose
due dates corresponding to values of c = 1.2, 1.5, and 2. We also generate
mixed samples where each sample contains 34% jobs with tight due dates,
33% of jobs with moderate due dates, and the remaining ones with loose
due dates. Specifically, the class FJSP-100 holds 9 samples of tight due
date, 9 samples of moderate due date, 9 samples of loose due date, and 9
samples of mix due date. Similarly for FJSP-50 and FJSP-20, with 36 sam-
ples each. Each training set contains three classes of 108 FJSP problems
with different number of jobs, machines and different tightness of jobs.
Another five validation sets (with 108x5 FJSP problems) of similar com-
positions were generated.

In order to understand how our GP framework can adapt to the different
conditions of the shop floors for evolving efficient dispatching rules, we
divide the experiments into two test samples:

 Test sample 1: varying both the number of jobs and number of machines.
Number of jobs and number of machines range from 10 to 200 and 5 to 15,

Designing Dispatching Rules to Minimize Total Tardiness 111

out of U((number of machines)/2, (number of machines) 2), where U re-

respectively. This test sample contains 108 training FJSP problems and
108x5 validating FJSP problems.

 Test sample 2: varying the number of jobs and fixing the number of ma-
chines. Number of jobs ranges from 20 to 200 and number of machines is
fixed at 10. This test sample contains 108 training FJSP problems and
108x5 validating FJSP problems.

The evolved dispatching rules obtained from the test sample 1 are aimed
to solve the FJSP problems in the general case of a varying number of jobs
and machines while the results of test sample 2 are aimed to solve FJSP
problems where the number of machines is unchanged. After training the
GP framework with the training set, five best rules were reported. The
mean total tardiness of these evolved rules after 500 runs on the validation
sets are then reported.

In order to compare the effectiveness of the evolved rules to the human-
made rules presented in literature, five frequently used single and compos-
ite dispatching rules were selected as benchmarks:

 FIFO (First In First Out): select the job with the earliest coming. This rule
is often used in practice since it is simple and easy to implement [16].

 SPT (Shortest Processing Time): select the job with the shortest processing
time. This rule is commonly used as a benchmark for minimizing mean
flow time and percent of tardy jobs [30].

 EDD (Earliest Due Date): select the job with the earliest due date. This rule
is the most popular due date based rule. It is known to be used as a bench-
mark for reducing maximum tardiness and variance of tardiness [30].

 MDD (Modified Due Date) (= max{CT+PTi, DDi}): process the jobs in
non-decreasing order of MDD. This rule is aimed to minimize total tardi-
ness of jobs [18].

 SL (Slack Time) (= DDi – CT – RTi): select the job with the minimum
slack time. This rule is also used to reduce total tardiness of jobs [17].

Blackstone et al. [16] mentions that the study of job shops by analytic
techniques, such as queuing theory, becomes extremely complex even for
small problems. Therefore, the use of simulation for analyzing dispatching
rules is unavoidable. Due to the same difficulty in examining the dispatch-
ing rules for solving FJSPs, we also rely on simulation to study the rules’
effectiveness. For comparative studies of algorithms in constrained prob-
lems, we adopt the approach of [31] in using a one way Analysis of Vari-
ances (ANOVA) [32]. The function of ANOVA is based on the ratio of
variations. It tests the differences between the means of two or more
groups. In this paper, it is used to compare the sample mean of a particular
objective for a evolved rule with other sample means (for other rules) that
overlap with the former’s confidence interval (CI). If an overlap exists, this

112 J.C. Tay and N.B. Ho

implies some uncertainty concerning the existance of a performance

5.2 Test sample 1

The best five dispatching rules that were selected from 5 runs times of GP
on the training set of test sample 1 are given in Table 4; where possible,
they were simplified algebraically.

Table 4. GP generated dispatching rules for test sample 1

Rule Expression
Rule_1 aTPT (CT +RD + PT 3)+ (CT PT + RD + nOps)

 (nOps PT + 2PT+CT+1)
Rule_2 (PT+ CT+ RD + 2) (RT+ PT + aTPT)

Rule_3 CT aTPT + 5nOps + 3RD
Rule_4 DD (RD + aTPT + RT + PT)
Rule_5 (aTPT + PT) (CT + RD) + (DD - RD)

Figure 2 below compares the results of the evolved rules in Table 4 and

the five selected dispatching rules for solving different FJSPs. The x-axis
represents the dispatching rules while the y-axis represents the average to-
tal tardiness of each rule after 500 runs on the five validation test sets.

Fig. 2. Performance of dispatching rules on validation test sets in test sample 1

Results from Figure 2 show that the FIFO rule performs poorly in com-
parison to the others. This is because the due date of jobs are ignored by

Designing Dispatching Rules to Minimize Total Tardiness 113

differential. The values of 99% CI for each sample mean are calculated
and presented.

0

10000

20000

30000

40000

50000

60000

70000

FIFO SL SPT MDD EDD Rule_1 Rule_2 Rule_3 Rule_4 Rule_5

Dispatching Rules

To
ta

l T
ar

di
ne

ss

FIFO, and therefore the rule does not focus on minimizing total tardiness.
The composite dispatching rule SL can obtain slightly better results than
FIFO but is still poor in comparison to the remaining rules. Figure 2 indi-
cates that MDD outperforms SL. From the definition of MDD and SL de-
scribed in Section 5.1, we observe that although these two composite rules
contain similar parameters (DD and CT), the gap between the results of the
two rules are quite large due to different algebraic combinations of the pa-
rameters. This emphasizes that the functions that combine the rules can
significantly affect the results. EDD is the best among five rules selected
from literature (FIFO, SPT, EDD, MDD, SL) for solving FJSP problems.
This could be explained by the presence of the parameter DD in its for-
mula. If the job on the queue is selected by EDD, it has more likely to fin-
ish on time since the job with the earliest due date will be selected. There-
fore, the total tardiness can be minimized. Although the other rules such as
SL or MDD also contain the parameter - due date (DD), EDD obtains al-
most 50% better results than these rules. This again demonstrates that if an
ineffective composite dispatching rule is applied to specific problems, it
may achieve worse results than the single ones.

We now compare the GP generated rules against the most effective rule
(EDD). Figure 3 gives box-plots of the data distribution of EDD and the
five GP evolved dispatching rules after 500 runs. For each rule in Figure 3,
the box represents the interquartile range which contains the 50% of val-
ues. A line across each box denotes the median. Two lines that extend
from the box gives the highest and lowest values while the circles denote
outliers.

114 J.C. Tay and N.B. Ho

Fig. 3. Data distribution of EDD and Rule_1 to Rule_5 after 500 runs

500500500500500500N =

Rule_5Rule_4Rule_3Rule_2Rule_1EDD

To
ta

l T
ar

di
ne

ss

32000

31900

31800

31700

31600

31500

31400

31300

31200

170265

30997147

8140

86309178

336

48711611

52394

46154

35525

Figure 4 shows in detail the mean total tardiness with 99% CI for each
rule. For each rule, the small square in the middle denotes the mean value
while two leaves in two sides denote the CI values. It indicates that the re-
sults of all evolved rules are much better than by the most effective hu-

Rule_2 ((PT+ CT+ RD + 2) (RT+ PT + aTPT)). This is statistically true since
its CI does not overlap with the others. It can be considered as the best rule
among them to solve total tardiness objective. Although the mean value of
total tardiness of Rule_4 (31432.42) is smaller than the one of Rule_1
(31442.20), we cannot conclude that Rule_4 is more effective than Rule_1
as their CIs are overlapping. In order to verify if Rule_4 is really better
than Rule_1 (or not), we apply ANOVA to analyze the data obtained by
these rules. Since F ratio = 75.26 is greater than Fcritical = 3.85, we reject
the null hypothesis that the samples are similar. Therefore, the difference
between Rule_4 and Rule_1 is statistically significant. Jayamohan and Ra-
jendran [30] mentions that the use of both due date information and proc-
essing time can lead to good results in minimizing total tardiness. Our five
evolved rules present evidence for this conclusion as their formulation
contains these parameters. Furthermore, we find that some parameters,
such as the total number of operations (nOps) and total processing time of
job (aTPT), are ignored or considered insignificant by previous researchers
but according to our results, they do contribute to reducing mean tardiness.
For example, the formula of Rule_3 suggests that jobs with fewer number
of operations have higher priority. In conclusion, the results from this test
sample show that the evolved dispatching rules which are formed by the
GP framework are very promising in solving the FJSP in general case.

Designing Dispatching Rules to Minimize Total Tardiness 115

man-made rule EDD. The best performing rule is the generated rule-

5.3 Test sample 2

Table 5 below represents the best five dispatching rules that were selected
from 5 runs times of GP on the training set of test sample 2; where possi-
ble, they were simplified algebraically.

Table 5. GP generated dispatching rules for test sample 2

Rule Expression
Rule_6 3aTPT + (PT/aTPT + 1) * (RD+RT)
Rule_7 6nOps + PT+ CT*(PT+aTPT)
Rule_8 nOps + 9aTPT + 4PT
Rule_9 4aTPT - 2nOps + 3DD + 2PT
Rule_10 DD/aTPT + 2aTPT + PT + DD + RD

Similar to Section 5.2, we compare these evolved rules in Table 5 to

five selected rules from literature. The bars on the x-axis from left to right
denote FIFO, SL, SPT, MDD, EDD, SL, and Rule_6 to Rule_10 while the
y-axis represents total mean total tardiness after 500 runs. A visual inspec-
tion on Figure 5 again demonstrates that when the number of machines is
fixed (to 10), FIFO obtains the worst results while EDD obtains the best.
In this special case of FJSP customized for a particular shop floor with 10
machines, the order of the rules’ performances selected from literature

116 J.C. Tay and N.B. Ho

after 500 runs
Fig. 4. Mean total tardiness with 99% confidence interval of EDD and Rule_1 to Rule_5

500500500500500500N =

Rule_5Rule_4Rule_3Rule_2Rule_1EDD

99
%

 C
I T

ot
al

 T
ar

di
ne

ss

31900

31800

31700

31600

31500

31400

31300

31200

does not change (similar to the results in Figure 2). We conjecture that
even with larger validation sets of the types described in Test sample 1 and
Test sample 2, the performances of the rules selected from literature are
the same regardless of varying number of machines in FJSP problems.

Fig. 5. Performance of dispatching rules on validation test sets in test sample 2

The total tardiness values of the evolved dispatching rules fare better than
EDD. Figure 6 and Figure 7 gives the data distribution and the mean total
tardiness with 99% CI of EDD and five evolved dispatching rules in Table
5 after 500 runs respectively. The results in these two figures show that the
evolved dispatching rules outperform the most effective rule (EDD) among
the selected rules from literature. In Figure 7, since the CIs of all the rules
do not overlap, we can conclude that Rule_6 is the most effective rule. The
order of the evolved rules’ performances decreases from Rule_6 to
Rule_10. Similar to the CDRs represented in Table 4, the CDRs in Table 5
are also combined with the same parameters (RD, DD, PT, CT, RT, aTPT,
and nOps). The use of both due date information and processing time in
their formulas could lead to the effectiveness of the rules [30]. Especially,
we believe that the parameters nOps and aTPT contribute to the success of
the CDRs as well.

Designing Dispatching Rules to Minimize Total Tardiness 117

0

20000

40000

60000

80000

100000

120000

140000

FIFO SL
SPT

MDD
EDD

Rule
_6

Rule
_7

Rule
_8

Rule
_9

Rule
_1

0

To
ta

l T
ar

di
ne

ss

Fig. 6. Data distribution of EDD and Rule_6 to Rule_10 after 500 runs

Fig. 7. Mean total tardiness with 99% confidence interval of EDD and Rule_6 to Rule_10
after 500 runs

118 J.C. Tay and N.B. Ho

500500500500500500N =

Rule_10Rule_9Rule_8Rule_7Rule_6EDD

To
ta

l T
ar

di
ne

ss

75400

75200

75000

74800

74600

74400

74200

74000

73800

309335

424

6899

266

380

129362397

162
72

413370346

424

2225082

369216

500500500500500500N =

Rule_10Rule_9Rule_8Rule_7Rule_6EDD

99
%

 C
I T

ot
al

 T
ar

di
ne

ss

75400

75200

75000

74800

74600

74400

74200

74000

73800

5.4 Sensitivity of parameters

In order to understand why these evolved rules are effective in minimiz-
ing total tardiness, we now take a closer look at the combination of their
parameters. While single rules consider only one parameter of the shop,
the evolved rules employ almost all the important parameters. However,
the combination of these parameters plays an essential role to the success
of the rule. For instance, the composite rules SL and MDD combine the
parameter DD with other parameters CT, PT, and RT but they fail to get
better results than the EDD with just one parameter DD (see Figure 2). The
parameters aTPT and RD could also be important for solving the problem.
They are present in all the rules and contribute mainly to change the prior-
ity of one operation to be selected in a queue. For example, Rule_2 ((PT+

CT+ RD + 2) (RT+ PT + aTPT)) in Table 4 was constructed with these two
terms. The first term operates in favor of release date RD and processing
time PT while the second term runs in favor of average total processing
time aTPT and remaining time RT. When the release date of a job is small,
this means that the job is released early, the first term produces small re-
sults. Similarly, when the processing time of the operation is small, the
second term produces a small result. Both parameters help to decrease the
value of the ratio and assign a high priority to the job. Another example. It
is well known that the SPT rule is effective in minimizing the number of
tardy jobs [17]. Two terms of this rule also contains PT and aTPT that are
in favor of the SPT. Therefore, they also contribute to improve the efficacy
of the rule.

For evaluating how good dispatching rules are evolved under the GP

Table 5. Modified Dispatching Rules from Rule_2

Rule Expression Modification(s) from
Rule_2

Rule_2 (PT+ CT+ RD + 2) (RT+ PT + aTPT) Original Version
Rule_2_1 (PT+ RD+ 2)*(RT+ PT + aTPT) Removed CT
Rule_2_2 (PT+ CT+ RD + 2)*(PT + aTPT) Removed RT
Rule_2_3 (PT+ CT+ 20*RD + 2)*(RT+ PT + aTPT) Changed RD’s coefficient from 1

to 20
Rule_2_4 (PT+ CT+ RD + 2)*(RT+ PT + 20*aTPT) Changed aTPT’s coefficient from

1 to 20

Designing Dispatching Rules to Minimize Total Tardiness 119

co-efficients of some parameters. The modifications are listed in Table 5
below.

framework, we modify Rule_2 by eliminating or changing slightly the

In Table 5, Rule_2_1 and Rule_2_2 are obtained from Rule_2 by eliminat-
ing CT and RT respectively. By changing the coefficient of RD in Rule_2
from 1 to 20, we produce Rule_2_3. Similarly, Rule_2_4 is constructed by
changing the coefficient of aTPT in Rule_2 from 1 to 20. They are then
applied to solve the FJSP problems in test sample 1. Figure 8 below com-
pares their mean total tardiness with 99% CIs to Rule_2’s results after 500
runs.

Figure 8 indicates that although we made small modifications to a small
number of parameters of an evolved rule, the results from the obtained
rules are much worse than the original one. This implies that the evolved
dispatching rules from the GP framework are well designed. It also vali-
dates the importance of selecting proper parameters and of the proper al-
gebraic combination of these parameters to construct efficient CDRs. Any
changes on the evolved rules could lead to poorer results.

Fig. 8. Mean total tardiness with 99% confidence interval of Rule_2 and its modified dis-
patching rules after 500 runs

Generally, the overall experimental results indicate that the evolved rules
from our GP framework are more effective than the frequently used dis-
patching rules in literature. Furthermore, two parameters aTPT and nOps
that have received limited study from previous research were found to con-
tribute to the success of evolved CDRs. However, while the importance of
selecting proper parameters is one factor to consider when trying to design
effective CDRs. We have also proven experimentally that the way to com-
bine these parameters is also crucial. By investigating the potential use of

120 J.C. Tay and N.B. Ho

500500500500500N =

Rule_2_4Rule_2_3Rule_2_2Rule_2_1Rule_2

99
%

 C
I T

ot
al

 T
ar

di
ne

ss

34000

33000

32000

31000

GP for evolving effective CDRs, both parameters and their combination
have been explored.

6 Conclusions

In this paper, a GP-based approach for designing effective composite dis-
patching rules that minimizes total tardiness in the Flexible Job-Shop
model has been presented and analyzed.

CDRs have been studied widely by previous researchers [15-17]. How-
ever, all of them were constructed based on the experience of a human
scheduler. We employ a GP-framework to generate a CDR based on fun-
damental terminals that can effectively solve the FJSP (together with a
machine assignment rule) by minimizing total tardiness. Two large test
samples for training (under our GP framework) and validation were gener-
ated. Five evolved rules from each test sample that were most effective
were selected to be tested on the validation sets. These rules are based on
the combination of parameters such as processing time, release date, due
date, current time, number of operations, and average total processing time
of each job using basic arithmetical operators for combination. Five other
popular rules selected from literature were used as performance bench-
marks.

We observed that two composite dispatching rules MDD and SL contain
similar parameters (DD and CT), but the performance differential between
the results of the two rules were quite large due to use of different alge-
braic combinations of the parameters. Also, the single dispatching rule
EDD contains only one parameter (EDD) but was significantly better than
the other rules from literature. This implies that the way to combine the
rules can significantly affect the optimality of the schedules; ineffective
composite dispatching rules may achieve worse results than the single

mental results show that our evolved dispatching rules outperforms the
most effective human-made rule EDD. In particular, two parameters aTPT
and nOps that have received limited study from previous research was
found to contribute significantly to the effectiveness of evolved CDRs.
We have also proven statistically that our evolved CDRs are sufficiently
well-designed through the use of ANOVA (which analyzed the sensitivity
to changes in the coefficient values and terminal parameters). Finally, by
using a large training data set, we believe that our evolved CDRs can be
applied directed in practice without further modifications.

Designing Dispatching Rules to Minimize Total Tardiness 121

ones and hence the need for an automated design approach. The experi-

Several possible extensions of this study can be developed. Similar to
other applications of GP where the parameters are sensitive, denser termi-
nal sets and more varied ADRs should be investigated to improve the gen-
erated rules. The approach of this study can be applied to find the efficient
composite dispatching rules for other similar problems, such as a flow
shop or the classical job shop. The rules evolved from this GP framework
are still quite complex in structure. Therefore, an algebraic simplification
tool could be used to make the formula more meaningful. Consideration
could even be given to including the number of parameters used as a
measure for minimization.

Acknowledgements

This research was funded in part by Nanyang Technological University
and CEI Contract Manufacturing Limited Company, Singapore.

References

[1] Hoitomt, D.J., Luh, P.B., Pattipati, K.R.: A Practical Approach to Job-Shop
Scheduling Problems. Ieee T Robotic Autom 9 (1993) 1-13

[2] Jain, A.S., Meeran, S.: Deterministic job-shop scheduling: Past, present and
future. Eur J Oper Res 113 (1999) 390-434

[3] Carlier, J., Pinson, E.: An Algorithm for Solving the Job-Shop Problem.
Manage Sci 35 (1989) 164-176

[4] Kolonko, M.: Some new results on simulated annealing applied to the job
shop scheduling problem. Eur J Oper Res 113 (1999) 123-136

[5] Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop
problem. Manage Sci 42 (1996) 797-813

[6] Yamada, T., Nakano, R.: A fusion of crossover and local search. Proceed-
ings of The IEEE International Conference on Industrial Technology
(1996) 426-430

[7] Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flow shop and
job-shop scheduling. Mathematics of Operations Research 1 (1976) 117-
129

[8] Pinedo, M., Chao, X.: Operations scheduling with applications in manufac-
turing and services. MCGraw- Hill chapter 3 (1999)

[9] Brandimarte, P.: Routing and scheduling in a flexible job shop by tabu
search. Annals of Operations Research (Historical Archive) 41 (1993) 157-
183

[10] Mastrolilli, M., Gambardella, L.M.: Effective Neighborhood Functions for
the Flexible Job Shop Problem. J Sched 3 (2000) 3-20

122 J.C. Tay and N.B. Ho

[11] Kacem, I., Hammadi, S., Borne, P.: Approach by localization and multiob-
jective evolutionary optimization for flexible job-shop scheduling prob-
lems. Ieee T Syst Man Cy C 32 (2002) 1-13

[12] Kacem, I., Hammadi, S., Borne, P.: Pareto-optimality approach for flexible
job-shop scheduling problems: hybridization of evolutionary algorithms
and fuzzy logic. Math Comput Simulat (2002) 245-276

[13] Ho, N.B., Tay, J.C.: GENACE: an efficient cultural algorithm for solving
the flexible job-shop problem. Proceedings of Congress on Evolutionary
Computation, Vol. 2 (2004) 1759-1766

[14] Tay, J.C., Wibowo, D.: An effective chromosome representation for evolv-
ing flexible job shop schedules. Proceedings of Genetic and Evolutionary
Computation (2004) 210-221

[15] Panwalkar, S.S., Iskander, W.: A Survey of Scheduling Rules. Oper Res
(1977) 45-61

[16] Blackstone, J.H., Phillips, D.T., Hogg, G.L.: A state-of-the-art survey of
dispatching rules for manufacturing job shop operations. Int J Prod Res
(1982) 27-45

[17] Holthaus, O., Rajendran, C.: Efficient dispatching rules for scheduling in a
job shop. Int J Prod Econ (1997) 87-105

[18] John, J.K., Xiaoming, L.: A Weighted Modified Due Date Rule for Se-

[19] Jayamohan, M.S., Rajendran, C.: Development and analysis of cost-based
dispatching rules for job shop scheduling. European Journal of Operational

[20] Pinedo, M.: Scheduling theory, algorithms, and system. Prentice Hall sec-
ond edition, chapter 2 (2002)

[21] Brucker, P., Jurisch, B., Krämer, A.: Complexity of scheduling problems
with multi-purpose machines. Ann Oper Res (1997) 57-73

[22] Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization
and approximation in deterministic sequencing and scheduling: A survey.
Annals of Discrete Mathematics (1979) 287-236

[23] Barman, S.: Simple Priority Rule Combinations: An Approach To Improve
Both Flow Time And Tardiness. Int J Prod Res (1997) 2857-2870

[24] Koza, J.: Genetic Programming: on the programming of computers by
means of natural selection. MIT Press, Cambrige, MA (1992)

[25] Koza, J.R., Bennett, F.H., Andre, D., Keane, M.A., Dunlap, F.: Automated
Synthesis of Analog Electrical Circuits by Means of Genetic Programming.
Ieee T Evolut Comput (1997) 109-128

[26] Lohn, J.D., Hornby, G.S., Linden, D.S.: An Evolved Antenna for Deploy-
ment on NASA s Space Technology 5 Mission. Proceedings of Genetic
Programming Theory Practice (2004)

[27] Dimopoulos, C., Zalzala, A.M.S.: Investigating the use of genetic pro-
gramming for a classic one-machine scheduling problem. Advances in En-
gineering Software (2001) 489-498

[28] Koza, J.: Genetic Programming II, Automatic Discovery of Resuable Pro-
grams, Chapter 4. MIT Press (1994)

Designing Dispatching Rules to Minimize Total Tardiness 123

quencing to Minimize Weighted Tardiness. J Sched (2004) 261-276

Research (2004) 307-321

’

[29] Baker, K.R.: Sequencing Rules and Due-Date Assignments in a Job Shop.
Manage Sci (1984) 1093-1104

[30] Jayamohan, M.S., Rajendran, C.: New dispatching rules for shop schedul-
ing: a step forward. Int J Prod Res (2000) 563-586

[31] Quek, H.C., Tay, J.C.: Issues in the Performance Measurement of Con-
straint Satisfaction Techniques. Artificial Intelligence in Engineering
(2000) 281-294

[32] Johnson, R.A.: Statistics: Principles and Methods. John Wiley (2001)

124 J.C. Tay and N.B. Ho

