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This chapter presents an innovative approach for performing data mining
on documents, which serves as a basis for knowledge extraction in e-learning
environments. The approach is based on a radical model of text data that con-
siders phrasal features paramount in documents, and employs graph theory to
facilitate phrase representation and efficient matching. In the process of text
mining, a grouping (clustering) approach is also employed to identify groups
of documents such that each group represent a different topic in the underly-
ing document collection. Document groups are tagged with topic labels through
unsupervised keyphrase extraction from the document clusters. The approach
serves in solving some of the difficult problems in e-learning where the volume
of data could be overwhelming for the learner; such as automatically organizing
documents and articles based on topics, and providing summaries for documents
and groups of documents.

1 Introduction

Resources in learning environments are authored for the purpose of transferring
knowledge to the learner. The growth of learning repositories and the ease of
publishing and accessing information has created an environment where finding
and making efficient use of the available information can be overwhelming. It is
the job of data mining to help the learners digest large amounts of data by lever-
aging sophisticated techniques in data analysis, restructuring, and organization.

Learning resources are mainly found in textual form; e.g. text documents, web
documents, articles, and papers, among other forms. Due to the unstructured and
unrestricted nature of text documents, a special field in data mining was coined
the term “text mining”. It is the field studying the non-trivial extraction of
implicit, previously unknown and potentially useful and significant information
from text documents.

Text mining is generally considered more difficult than traditional data min-
ing. This is attributed to the fact that traditional databases have fixed and
known structure, while text documents are unstructured, or, as in the case of
web documents, semi-structured. Thus, text mining involves a series of steps for
data pre-processing and modeling in order to condition the data for structured
data mining.



Text mining can help in many tasks that otherwise would require large man-
ual effort. Common problems solved by text mining include, but not limited to,
searching through documents, organizing documents, comparing documents, ex-
tracting key information, and summarizing documents. Methods in information
retrieval, machine learning, information theory, and probability are employed to
solve those problems.

Information extraction through text mining deals with finding particular data
in text and web documents. The approaches used in this area include docu-
ment parsing, analysis, and restructuring. This allows for restructuring existing
learning material into current standards. Other approaches include identifying
and extracting significant semi-structured information, extracting keywords and
keyphrases from documents using phrase indexing and matching. These meth-
ods have high potential in e-learning due to their ability to automatically extract
useful information, and tag learning objects with certain meta-data extracted
from content.

Information organization through text mining provides an overview of the
topics in a large set of documents without having to read the contents of individ-
ual documents. This can be achieved through data clustering and classification
techniques. These techniques mainly rely on the analysis of keyword distribution
in the documents. They also make use of similarity calculation through word and
phrase matching. The end result is a more manageable grouping of documents
tagged with topics and subjects.

While data clustering techniques are mainly used for content organization, it
could be used to group learner profiles as well. In this case we can discover com-
mon interest groups of learners by judging the similarity between their profiles.

This chapter focuses on employing machine learning methods in finding re-
lationships between text documents through phrase-based document modeling,
similarity calculation, document clustering, and keyphrase extraction. Figure 1
illustrates the process of text mining in general, and refers to specific tasks as
it is presented in this chapter. In particular, a set of documents is pre-processed
through tokenization (identifying whole words and dropping punctuation sym-
bols), removing stop words (very freuquent words like ‘a’, ‘and’, ‘the’), and stem-
ming (reducing different forms of a word into a single form). Then a model of
the data is built using a graph-based representation of phrases in the documents.
Next, pattern analysis is applied to detect similarities between the documents
based on shared and significant phrases, followed by clustering the documents
to form groups of documents, where each group contains only similar documents
sharing the same topic. Finally, the process concludes by extracting keyphrases
from the clusters and identifying the topic of each cluster.

This chapter is organized as follows. Section 2 introduces the document model
used throughout the process. Section 3 presents the phrase matching capabil-
ity of the model and the phrase-based similarity measure. Section 4 presents
the document clustering algorithm. Section 5 presents the keyphrase extraction
algorithm. Finally, section 6 provides a summary and concluding remarks.
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Fig. 1. Text mining process

2 Phrase-based Document Model

A process of data modeling is required to convert the input data into a form that
is more suitable for processing by the data mining algorithm. In the case of text
mining, input data are mainly text documents that do not necessarily obey a
regular structure. The challenge is to convert the input space into feature space,
where the features of the documents are expected to follow a fixed structure
that can be manipulated by a text mining algorithm. The traditional document
representation model, as well as the phrase-based model are introduced in this
section.

2.1 Vector Space Model

By far the most common feature model in text mining is the vector space model,
originally proposed by Salton et al in 1975 [1–3]. In this model, document fea-



tures are the words in the document collection, and feature values come from
different term weighting schemes.

Each document is represented by a vector d, in the term space, such that
d = {w1, w2, . . . , wn}, where wi, i = 1, . . . , n, is the weight of term i in the doc-
ument. The weight of a term could be simply calculated as the frequency of the
term in that document (wi = tfi); i.e. how many times it appeared in the doc-
ument. A more popular term weighting scheme is TF×IDF (Term Frequency ×
Inverse Document Frequency), which takes into account the document frequency
of a term (dfi), the number of documents in which the term appears. A typical
inverse document frequency (idf) factor of this type is given by log(N/dfi). Thus
the TF×IDF weight of a term is wi = tfi × log(N/dfi). In other words, terms
that appear more frequently in a certain document but less frequently in other
documents are given higher weights in that document, since it has higher corre-
lation with that document than others. On the other hand, terms that appear
frequently in all documents are penalized in all documents since they have less
discrimination power.

To represent every document with the same set of terms, we have to extract
all the terms found in the documents and use them as our feature vector. To
keep the feature vector dimension reasonable, sometimes only terms with the
highest weights in all the documents are chosen as the features. Wong and Fu [4]
showed that they could reduce the number of representative terms by choosing
only the terms that have sufficient coverage over the document set.

Some algorithms [5, 4] refrain from using continuous term weights by using
a binary feature vector, where each term weight is either 1 or 0, depending on
whether it is present in the document or not, respectively. Wong and Fu [4]
argued that the average term frequency in web documents is below 2 (based on
statistical experiments), which does not indicate the actual importance of the
term, thus a binary weighting scheme would be more suitable to this problem
domain.

The simplicity of the model led to its wide adoption in the text mining
literature. However, the independence between the words in the representation
is one of its weaknesses. A more informed approach is to capture the phrase
structure and word sequences in the document, thus providing context when
comparing document features.

2.2 Graph Space Model

The model presented here for document representation is called the Document
Index Graph (DIG). This model indexes the documents while maintaining the
sentence structure in the original documents. This allows us to make use of more
informative phrase matching rather than individual words matching. Moreover,
DIG also captures the different levels of significance of the original sentences,
thus allowing us to make use of sentence significance. Suffix trees are the closest
structure to the proposed model, but they suffer from huge redundancy [6].
Apostolico [7] gives over 40 references on suffix trees, and Manber and Myers [8]
add more recent ones. However, the proposed DIG model is not just an extension



or an enhancement of suffix trees, it takes a different perspective of how to match
phrases efficiently, without the need for storing redundant information.

Phrasal indexing has been widely used in the information retrieval litera-
ture [9]. The work presented here takes it a step further toward an efficient way
of indexing phrases with emphasis on applying phrase-based similarity as a way
of clustering documents accurately.

DIG Structure Overview The DIG is a directed graph (digraph) G = (V, E)

where V : is a set of nodes {v1, v2, . . . , vn}, where each node v represents a unique
word in the entire document set; and

E: is a set of edges {e1, e2, . . . , em}, such that each edge e is an ordered
pair of nodes (vi, vj). Edge (vi, vj) is from vi to vj , and vj is adjacent
to vi. There will be an edge from vi to vj if, and only if, the word
vj appears successive to the word vi in any document. A set of edges
is said to be corresponding to a sentence in a document if they link
the nodes corresponding to the sentence in the same order the words
appeared in the sentence.

The above definition of the graph suggests that the number of nodes in the
graph is the number of unique words in the document set; i.e. the vocabulary of
the document set, since each node represents a single word in the whole document
set.

Nodes in the graph carry information about the documents they appeared in,
along with the sentence path information. Sentence structure is maintained by
recording the edge along which each sentence continues. This essentially creates
an inverted list of the documents, but with sentence information recorded in the
inverted list.

Assume a sentence of m words appearing in one document consists of the
following word sequence: {v1, v2, . . . , vm}. The sentence is represented in the
graph by a path from v1 to vm, such that (v1, v2)(v2, v3), . . . , (vm−1, vm) are
edges in the graph. Path information is stored in the vertices along the path
to uniquely identify each sentence. Sentences that share sub-phrases will have
shared parts of their paths in the graph that correspond to the shared sub-phrase.

To better illustrate the graph structure, Figure 2 presents a simple example
graph that represents three documents. Each document contains a number of
sentences with some overlap between the documents. As seen from the graph,
an edge is created between two nodes only if the words represented by the two
nodes appear successive in any document. Thus, sentences map into paths in
the graph. Dotted lines represent sentences from document 1, dash-dotted lines
represent sentences from document 2, and dashed lines represent sentences from
document 3. If a phrase appears more than once in a document, the frequency of
the individual words making up the phrase is increased, and the sentence infor-
mation in the nodes reflects the multiple occurrence of such phrase. As mentioned
earlier, matching phrases between documents becomes a task of finding shared
paths in the graph between different documents.
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Fig. 2. Example of the Document Index Graph

DIG Construction The DIG is built incrementally by processing one docu-
ment at a time. When a new document is introduced, it is scanned in sequential
fashion, and the graph is updated with the new sentence information as neces-
sary. New words are added to the graph as necessary and connected with other
nodes to reflect the sentence structure. The graph building process becomes less
memory demanding when no new words are introduced by a new document (or
very few new words are introduced.) At this point the graph becomes more sta-
ble, and the only operation needed is to update the sentence structure in the
graph to accommodate the new sentences introduced. It is very critical to note
that introducing a new document will only require the inspection (or addition)
of those words that appear in that document, and not every node in the graph.
This is where the efficiency of the model comes from. Along with indexing the
sentence structure, the level of significance of each sentence is also recorded in the
graph. This allows us to recall such information when we measure the similarity
with other documents.

Continuing from the example introduced earlier, the process of constructing
the graph that represents the three documents is illustrated in Figure 3. The
emphasis here is on the incremental construction process, where new nodes are
added and new edges are created incrementally upon introducing a new docu-
ment. We now define the incremental DIG construction process formally in terms
of graph properties and operations.

Document Subgraph. Each document di is mapped to a subgraph gi

that represents this document in a stand-alone manner (an example is the
first step in figure 3.) Each subgraph can be viewed as a detached subset
of the DIG that represents the corresponding document in terms of the
DIG properties: gi = {Vi, Ei}, where Vi is the set of nodes corresponding
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Fig. 3. Incremental construction of the Document Index Graph

to the unique words of di, and Ei is the set of edges representing the
sentence paths of di.

Cumulative DIG. Let the DIG representation of the documents pro-
cessed up to document di−1 be Gi−1, and that of the documents pro-
cessed up to document di be Gi. Computing Gi is done by merging Gi−1

with the subgraph gi:

Gi = Gi−1 ∪ gi (1)

Gi is said to be the Cumulative DIG of the documents processed up to
document di.

Phrase Matching. A list of matching phrases between document di

and dj is computed by intersecting the subgraphs of both documents,
gi and gj, respectively. Let Mij denote the such list, then:

Mij = gi ∩ gj (2)

A list of matching phrases between document di and all previously pro-
cessed documents is computed by intersecting the document subgraph
gi with the cumulative DIG Gi−1. Let Mi denote the such list, then:



Mi = gi ∩ Gi−1 (3)

Unlike traditional phrase matching techniques that are usually used in infor-
mation retrieval literature, DIG provides complete information about full phrase
matching between every pair of documents. While traditional phrase matching
methods are aimed at searching and retrieval of documents that have matching
phrases to a specific query, DIG is aimed at providing information about the
degree of overlap between every pair of documents. This information will help
in determining the degree of similarity between documents as will be explained
in section 3.2.

3 Document Similarity Using Phrase Matching

Upon introducing a new document, finding matching phrases from previously
seen documents becomes an easy task using DIG. Algorithm 1 describes the
process of both incremental graph building and phrase matching. Instead of
building document subgraphs and intersecting them with the cumulative DIG,
the algorithm incrementally incorporates new documents into DIG while collect-
ing matching phrases from previous documents at the same time.

3.1 Phrase Matching Using DIG

The procedure starts with a new document to process (line 1). Matching phrases
from previous documents is done by keeping a list M that holds an entry for
every previous document that shares a phrase with the current document di.
For each sentence (for loop at line 3) we process the words in the sentence
sequentially, adding new words (as new nodes) to the graph, and constructing a
path in the graph (by adding new edges if necessary) to represent the sentence
we are processing.

As we continue along the sentence path, we update M by adding new match-
ing phrases and their respective document identifiers, and extending phrase
matches from the previous iteration (lines 14 to 16). We first consult the doc-
ument table of vk−1 for documents that have sentences that continue along
the edge ek. Those documents share at least two terms with the current sen-
tence under consideration. We examine the list M for any previous matching
phrases (from previous iterations) to extend the current two-term phrase match
(on edge ek). This allows the extension of previous matches, and can continue
for any-length phrase match. If there are no matching phrases at some point,
we just update the respective nodes of the graph to reflect the new sentence
path (line 19). After the whole document is processed, M will contain all the
matching phrases between the current document and any previous document
that shared at least one phrase with the new document. Finally we update Gi

to be the current cumulative DIG, and output M as the list of documents with
all the necessary information about the matching phrases, which will be used in
similarity calculation later.



Algorithm 1 DIG incremental construction and phrase matching

Require: Gi−1: cumulative graph up to document di−1

or G0 if no documents were processed previously
1: di ← Next Document
2: M ← Empty List {M is a list of matching phrases from previous documents}
3: for each sentence sij in di do
4: v1 ← tij1 {first word in sij}
5: if v1 is not in Gi−1 then
6: Add v1 to Gi−1

7: end if
8: for each term tijk ∈ sij , k = 2, . . . , lij do
9: vk ← tijk ; vk−1 ← tij(k−1) ; ek = (vk−1, vk)

10: if vk is not in Gi−1 then
11: Add vk to Gi−1

12: end if
13: if ek is an edge in Gi−1 then
14: Retrieve a list of document entries from vk−1 document table that have a

sentence on the edge ek

15: Extend previous matching phrases in M for phrases that continue along
edge ek

16: Add new matching phrases to M

17: else
18: Add edge ek to Gi−1

19: end if
20: Update sentence path in nodes vk−1 and vk

21: end for
22: end for
23: Gi ← Gi−1

24: Output matching phrases list M

The average number of the matching documents at any node tends to grow
slowly. The actual performance depends on how much overlap of phrases there
is in the document set; the more matching phrases the more time it takes to
process the whole set, but the more accuracy we get for similarity, and vice
versa. The trade-off is corpus-dependent, but in general for web documents it is
typically a balance between speed and accuracy.

This efficient performance of construction/phrase-matching lends itself to
online incremental processing, such as processing the results of a web search
engine retrieved list of documents. The algorithm processed 2000 news group
articles in as low as 44 seconds, while it processed 2340 moderate sized web
documents in a little over 5 minutes.

3.2 A Phrase-based Similarity Measure

As mentioned earlier, phrases convey local context information, which is essential
in determining an accurate similarity between documents. Towards this end we



devised a similarity measure based on matching phrases rather than individual
terms. This measure exploits the information extracted from the previous phrase
matching algorithm to better judge the similarity between the documents. This
is related to the work of Isaacs et al [10] who used a pair-wise probabilistic doc-
ument similarity measure based on Information Theory. Although they showed
it could improve on traditional similarity measures, but it is still fundamentally
based on the vector space model representation.

The phrase similarity between two documents is calculated based on the list
of matching phrases between the two documents. From an information theoretic
point of view, the similarity between two objects is regarded as how much they
share in common. The cosine and the Jaccard measures are indeed of such nature,
but they are essentially used as single-term based similarity measures. Lin [11]
gave a formal definition for any information theoretic similarity measure in the
form of:

sim(x,y) =
x ∩ y

x ∪ y
(4)

The basic assumption here is that the similarity between two documents is
based on the ratio of how much they overlap to their union, all in terms of
phrases. This definition still coincides with the major assumption of the cosine
and the Jaccard measures, and to Lin’s definition as well. This phrase-based
similarity measure is a function of four factors:

– The number of matching phrases P ,

– The lengthes of the matching phrases (li : i = 1, 2, . . . , P ),

– The frequencies of the matching phrases in both documents (f1i and f2i :
i = 1, 2, . . . , P ), and

– The levels of significance (weight) of the matching phrases in both document
(w1i and w2i : i = 1, 2, . . . , P ).

Frequency of phrases is an important factor in the similarity measure. The
more frequent the phrase appears in both documents, the more similar they
tend to be. Similarly, the level of significance of the matching phrase in both
documents should be taken into consideration.

The phrase similarity between two documents, d1 and d2, is calculated using
the following empirical equation:

simp(d1,d2) =

√

∑P

i=1
[g(li) · (f1iw1i + f2iw2i)]2

∑

j |s1j | · w1j +
∑

k |s2k| · w2k

(5)

where g(li) is a function that scores the matching phrase length, giving higher
score as the matching phrase length approaches the length of the original sen-
tence; |s1j | and |s2k| are the original sentence lengths from document d1 and
d2, respectively. The equation rewards longer phrase matches with higher level
of significance, and with higher frequency in both documents. The function g(li)
in the implemented system was used as:



g(li) = (li/|si|)
γ (6)

where |si| is the original phrase length, and γ is a sentence fragmentation
factor with values greater than or equal to 1. If γ is 1, two halves of a sen-
tence could be matched independently and would be treated as a whole sentence
match. However, by increasing γ we can avoid this situation, and score whole
sentence matches higher than fractions of sentences. A value of 1.2 for γ was
found to produce best results. he normalization by the length of the two docu-
ments in equation (5) is necessary to be able to compare the similarities from
other documents.

3.3 Combining Single-term and Phrase Similarities

If the similarity between documents is based solely on matching phrases, and
not single-terms at the same time, related documents could be judged as non-
similar if they do not share enough phrases (a typical case.) Shared phrases
provide important local context matching, but sometimes similarity based on
phrases only is not sufficient. To alleviate this problem, and to produce high
quality clusters, we combined single-term similarity measure with our phrase-
based similarity measure. Experimental results to justify this claim is given in
section 3.4. We used the cosine correlation similarity measure [1], with TF-IDF
(Term Frequency–Inverse Document Frequency) term weights, as the single-term
similarity measure. The cosine measure was chosen due to its wide use in the
document clustering literature, and since it is described as being able to capture
human categorization behavior well [12]. The TF-IDF weighting is also a widely
used term weighting scheme [13].

Recall that the cosine measure calculates the cosine of the angle between the
two document vectors. Accordingly our term-based similarity measure (simt) is
given as:

simt(d1,d2) = cos(d1,d2) =
d1 · d2

‖d1‖‖d2‖
(7)

where the vectors d1 and d2 are represented as term weights calculated using
TF-IDF weighting scheme.

The combination of the term-based and the phrase-based similarity measures
is a weighted average of the two quantities from equations (5) and (7), and is
given by equation (8). The reason for separating single-terms and phrases in the
similarity equation, as opposed to treating a single-term as a one-word-phrase,
is to evaluate the blending factor between the two quantities, and see the effect
of phrases in similarity as opposed to single-terms.

sim(d1,d2) = α · simp(d1,d2) + (1 − α) · simt(d1,d2) (8)

where α is a value in the interval [0, 1] which determines the weight of the phrase
similarity measure, or, as we call it, the Similarity Blend Factor . According to
the experimental results discussed in section 3.4 we found that a value between
0.6 and 0.8 for α results in the maximum improvement in the clustering quality.



3.4 Effect of Phrase-based Similarity on Clustering Quality

The similarities calculated by our algorithm were used to construct a similarity
matrix between the documents. We elected to use three standard document
clustering techniques for testing the effect of phrase similarity on clustering [14]:
(1) Hierarchical Agglomerative Clustering (HAC), (2) Single Pass Clustering,
and (3) K-Nearest Neighbor Clustering (k -NN ). For each of the algorithms, we
constructed the similarity matrix and let the algorithm cluster the documents
based on the presented similarity matrix.

Table 1. Phrase-based clustering improvement

Single-Term Similarity Combined Similarity Improvement
F-measure Entropy F-measure Entropy

DS1 - UW-CAN

HAC 3 0.709 0.351 0.904 0.103 +19.5%F, -24.8%E

Single Pass 4 0.427 0.613 0.817 0.151 +39.0%F, -46.2%E

k-NN 5 0.228 0.173 0.834 0.082 +60.6%F, -9.1%E

DS2 - Yahoo! news
HAC 0.355 0.211 0.725 0.01 +37.0%F, -20.1%E

Single Pass 0.344 0.274 0.547 0.048 +20.3%F, -22.6%E
k-NN 0.453 0.163 0.733 0.022 +28.0%F, -14.1%E

DS3 - 20-newsgroups

HAC 0.17 0.347 0.463 0.069 +29.3%F, -27.8%E
Single Pass 0.284 0.684 0.358 0.138 +7.4%F, -54.6%E

k-NN 0.197 0.398 0.349 0.09 +15.2%F, 30.8%E

The results listed in Table 1 show the improvement in the clustering quality
using the combined similarity measure. We use the F-measure and Entropy evalu-
ation measures for judging the quality of clustering. Better clustering should have
higher F-measure and lower Entropy. The improvements shown were achieved
at a similarity blend factor between 70% and 80% (phrase similarity weight).
The parameters chosen for the different algorithms were the ones that produced
best results. The percentage of improvement ranges from 19.5% to 60.6% in-
crease in the F-measure quality, and 9.1% to 46.2% drop in Entropy (lower is
better for Entropy). It is obvious that the phrase based similarity plays an im-
portant role in accurately judging the relation between documents. It is known
that Single Pass clustering is very sensitive to noise; that is why it has the worst
performance. However, when the phrase similarity was introduced, the quality
of clusters produced was pushed close to that produced by HAC and k -NN .

In order to better understand the effect of the phrase similarity on the clus-
tering quality, we generated a clustering quality profile against the similarity
blend factor. Figure 4 illustrates the effect of introducing the phrase similarity
on the F-measure and the entropy of the resulting clusters. The alpha parame-
ter is the similarity blend factor presented in equation 8. It is obvious that the
phrase similarity enhances the quality of clustering until a certain point (around
a weight of 80%) and then its effect starts bringing down the quality. As we
mentioned in section 3.3 that phrases alone cannot capture all the similarity in-
formation between documents, the single-term similarity is still required, but to
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Fig. 5. DIG performance

a smaller degree. The results show that both evaluation measures are optimized
in the same trend with respect to the blend factor.

The performance of the model was closely examined to make sure that the
phrase matching algorithm is scalable enough for moderate to large data sets.
The experiments were performed on a Pentium 4, 2.0 GHz machine with 512MB
of main memory. The system was written in C++. Figure 5 shows the perfor-
mance of the graph construction and phrase matching algorithm for the two
different. In both cases the algorithm performed in a near-linear time. Although
the two data sets contain close number of documents, the Yahoo news data set
took about an order of magnitude more than the 20-newsgroup data set to build
the graph and complete the phrase matching. This is attributed to two factors:
(1) the Yahoo data set average words per document is almost twice that of 20-
newsgroups, so we match more phrases per document, and (2) the Yahoo data
set has a larger amount of shared phrases between documents on average than
the 20-newsgroups data set. News group articles rarely share a large amount of
phrases (except when someone quotes another post), so on average we do not
need to match large number of phrases per document.



4 Document Clustering Using Similarity Histograms

In this section we present a brief overview of incremental clustering algorithms,
and introduce the proposed algorithm, based on pair-wise document similarity,
and employ it as part of the whole web document clustering system.

The role of a document similarity measure is to provide judgement on the
closeness of documents to each other. However, it is up to the clustering method
how to make use of such similarity calculation. Steinbach et al [15] give a good
comparison of document clustering techniques. A large array of data clustering
methods can be also found in [14]. Beil et al [16] proposed a clustering algorithm
based on frequent terms that address the high dimensionality problem of text
data sets.

The idea here is to employ an incremental clustering method that will exploit
our similarity measure to produce clusters of high quality.

Incremental clustering is an essential strategy for online applications, where
time is a critical factor for usability. Incremental clustering algorithms work
by processing data objects one at a time, incrementally assigning data objects
to their respective clusters while they progress. The process is simple enough,
but faces several challenges. How to determine to which cluster the next object
should be assigned? How to deal with the problem of insertion order? Once an
object has been assigned to a cluster, should its assignment to the cluster be
frozen or is it allowed to be re-assigned to other clusters later on?

Usually a heuristic method is employed to deal with the above challenges.
A “good” incremental clustering algorithm has to find the respective cluster
for each newly introduced object without significantly sacrificing the accuracy
of clustering due to insertion order or fixed object-to-cluster assignment. We
will briefly discuss four incremental clustering methods in the light of the above
challenges, before we introduce our proposed method.

Single-Pass Clustering [17, 18]. This algorithm basically processes docu-
ments sequentially, and compares each document to all existing clusters. If the
similarity between the document and any cluster is above a certain threshold,
then the document is added to the closest cluster; otherwise it forms its own
cluster. Usually the method for determining the similarity between a document
and a cluster is done by computing the average similarity of the document to all
documents in that cluster.

K -Nearest Neighbor Clustering [19, 18]. Although k -NN is mostly known
to be used for classification, it has also been used for clustering (example could
be found in [20].) For each new document, the algorithm computes its similarity
to every other document, and chooses the top k documents. The new document
is assigned to the cluster where the majority of the top k documents are assigned.

Suffix Tree Clustering (STC). Introduced by Zamir et al [21] in 1997,
the idea behind the STC algorithm is to build a tree of phrase suffixes shared
between multiple documents. The documents sharing a suffix are considered as
a base cluster. Base clusters are then combined together if they have a document
overlap of 50% or more. The algorithm has two drawbacks. First, although the
structure used is a compact tree, suffixes can appear multiple times if they are



part of larger shared suffixes. The other drawback is that the second phase of
the algorithm is not incremental. Combining base clusters into final clusters has
to be done in a non-incremental way. The algorithm deals properly with the
insertion order problem though, since any insertion order will lead to the same
result suffix tree.

DC-tree Clustering. The DC-tree incremental algorithm was introduced
by Wong et al [4] in 2000. The algorithm is based on the B+-tree structure. Un-
like the STC algorithm, this algorithm is based on vector space representation of
the documents. Most of the algorithm operations are borrowed from the B+-tree
operations. Each node in the tree is a representation of a cluster, where a cluster
is represented by the combined feature vectors of its individual documents. In-
serting a new document involves comparison of the document feature vector with
the cluster vectors at one level of the tree, and descending to the most similar
cluster. The algorithm defines several parameters and thresholds for the various
operations. The algorithm suffers from two problems though. Once a document
is assigned to a cluster it is not allowed to be re-assigned later to a newly created
cluster. Second, which is a consequence of the first drawback, clusters are not
allowed to overlap; i.e. a document can belong to only one cluster.

4.1 Similarity Histogram-based Incremental Clustering

The clustering approach proposed here is an incremental dynamic method of
building the clusters. We adopt an overlapped cluster model. The key concept
for the similarity histogram-based clustering method (referred to as SHC here-
after) is to keep each cluster at a high degree of coherency at any time. We
represent the coherency of a cluster with a new concept called Cluster Simi-
larity Histogram.

Cluster Similarity Histogram. A concise statistical representation
of the set of pair-wise document similarities distribution in the cluster.
A number of bins in the histogram correspond to fixed similarity value
intervals. Each bin contains the count of pair-wise document similarities
in the corresponding interval.

Our objective is to keep each cluster as coherent as possible. In terms of
the similarity histogram concept this translates to maximizing the number of
similarities in the high similarity intervals. To achieve this goal in an incremental
fashion, we judge the effect of adding a new document to a certain cluster.
If the document is going to degrade the distribution of the similarities in the
clusters very much, it should not be added, otherwise it is added. A much stricter
strategy would be to add documents that will enhance the similarity distribution.
However, this could create a problem with perfect clusters. The document will
be rejected by the cluster even if it has high similarity to most of the documents
to the cluster (because it is perfect).

We judge the quality of a similarity histogram (cluster cohesiveness) by cal-
culating the ratio of the count of similarities above a certain similarity threshold



ST to the total count of similarities. The higher this ratio, the more coherent is
the cluster.

Let nc be the number of the documents in a cluster. The number of pair-wise
similarities in the cluster is mc = nc(nc + 1)/2. Let S = {si : i = 1, . . . , mc}
be the set of similarities in the cluster. The histogram of the similarities in the
cluster is represented as:

H = {hi : i = 1, . . . , B} (9a)

hi = count(sk) sli ≤ sk < sui (9b)

where B: the number of histogram bins,
hi: the count of similarities in bin i,
sli: the lower similarity bound of bin i, and
sui: the upper similarity bound of bin i.

The histogram ratio (HR) of a cluster is the measure of cohesiveness of the
cluster as described above, and is calculated as:

HRc =

∑B

i=T hi
∑B

j=1
hj

(10a)

T = ⌊ST · B⌋ (10b)

where HRc: the histogram ratio of cluster c,
ST : the similarity threshold, and
T : the bin number corresponding to the similarity threshold.

Basically we would like to keep the histogram ratio of each cluster high.
However, since we allow documents that can degrade the histogram ratio to be
added, this could result in a chain effect of degrading the ratio to zero eventually.
To prevent this, we set a minimum histogram ratio HRmin that clusters should
maintain. We also do not allow adding a document that will bring down the
histogram ratio significantly (even if still above HRmin). This is to prevent a bad
document from severely bringing down cluster quality by one single document
addition.

We now present the incremental clustering algorithm based on the above
framework (Algorithm 2). The algorithm works incrementally by receiving a new
document, and for each cluster calculates the cluster histogram before and after
simulating the addition of the document (lines 4-6). The old and new histogram
ratios are compared and if the new ratio is greater than or equal to the old one,
the document is added to the cluster. If the new ratio is less than the old one
by no more than ε and still above HRmin, it is added (lines 7-9). Otherwise it is
not added. If after checking all clusters the document was not assigned to any
cluster, a new cluster is created and the document is added to it (lines 11-15).

In comparison with the criteria of single-pass clustering and k -NN clustering,
the similarity histogram ratio as a coherency measure provides a more represen-
tative measure of the tightness of the documents in the cluster, and how the



Algorithm 2 Similarity Histogram-based Incremental Document Clustering

1: L← Empty List {Cluster List}
2: for each document d do
3: for each cluster c in L do
4: HRold = HRc

5: Simulate adding d to c

6: HRnew = HRc

7: if (HRnew ≥ HRold) OR ((HRnew > HRmin) AND (HRold − HRnew < ε))
then

8: Add d to c

9: end if
10: end for
11: if d was not added to any cluster then
12: Create a new cluster c

13: ADD d to c

14: ADD c to L

15: end if
16: end for

external document would affect such tightness. On the other hand, single-pass
compares the external document to the average of the similarities in the clus-
ter, while the k -NN method takes into consideration only a few similarities that
might be outliers, and that is why we sometimes need to increase the value of
the parameter k to get better results from k -NN . This was the main reason for
devising such a concise cluster coherency measure and employing it in assessing
the effect of external documents on each cluster.

4.2 Similarity Histogram-based Clustering Evaluation

The SHC method was evaluated using two document sets (DS1 and DS2). We
relied on the same evaluation measures F-measure and Entropy.

Table 2 shows the result of SHC against HAC, Single-Pass, and k -NN clus-
tering. For the first data set, the improvement was very significant, reaching over
20% improvement over k -NN (in terms of F-measure), 3% improvement over
HAC, and 29% improvement over Single-Pass. For the second data set an im-
provement between 10% to 18% was achieved over the other methods. However,
the absolute F-measure was not really high compared to the first data set. The
parameters chosen for the different algorithms were the ones that produced best
results.

By examining the actual documents in DS2 and their classification it turns
out that the documents do not have enough overlap in each individual class,
which makes it difficult to have an accurate similarity calculation between the
documents. However, we were able to push the quality of clustering further
by relying on accurate and robust phrase matching similarity calculation, and
achieve higher clustering quality.



Table 2. SHC Improvement

DS1 DS2
F-measure Entropy S6 F-measure Entropy S

SHC 0.931 0.119 0.504 0.682 0.156 0.497

HAC7 0.901 0.211 0.455 0.584 0.281 0.398

Single-Pass8 0.641 0.313 0.385 0.502 0.250 0.311

k-NN 9 0.727 0.173 0.367 0.522 0.161 0.452
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Fig. 6. SHC Clustering Performance

The time performance comparison of the different clustering algorithms is
illustrated in figure 6, showing the performance for both data sets. The perfor-
mance of SHC is comparable to single-pass and k -NN , while being much better
than HAC. The reason for the gain in performance over HAC is because HAC
spends so much time in recalculating the similarities between the newly merged
cluster and all other clusters during every iteration, which brings its performance
down significantly. On the other hand, SHC, single-pass, and k -NN share the
same general strategy for processing documents, without having to recalculate
similarities at each step. Thus, while the SHC algorithm generates better quality
clustering, it still exhibits the same, or better, performance as other incremental
algorithms in its class.

5 Keyphrase Extraction from Document Clusters

Document clusters are often represented as a membership matrix, where on
one dimension are the document identifiers and on the other dimension are the
cluster identifiers. An element in the membership matrix determines whether
the document belongs to a cluster or not (if binary membership is used), or the
degree of membership of the document to the cluster (if fuzzy membership is
used).

This kind of cluster representation is useful for testing the accuracy of clus-
tering, but not very useful for humans. A more easier representation for clusters
is to put labels to the clusters so that the end user can spot interesting clusters
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without having to look at individual documents in each cluster. That is where
keyphrase extraction comes into play.

In this section we present a highly accurate method for extracting keyphrases
from document clusters, with no prior knowledge about the documents; i.e. it
is domain-independent. The algorithm is called CorePhrase, and is based on
finding a set of core phrases that best describe a document cluster.

The algorithm leverages the DIG structure presented earlier to intersect every
pair of documents to extract their shared phrases. A list of candidate keyphrases
for the cluster is then generated by consolidating all shared phrases in a cluster.
The extracted candidate keyphrases are then analyzed for frequency, span over
the document set, and other features. Each phrase is assigned a score based on its
features, then the list is ranked and the top phrases are output as the descriptive
topic of the document cluster. Four scoring method variants are employed and
their performance is analyzed. Figure 7 illustrates the different components of
the keyphrase extraction system.

5.1 Extraction of Candidate Keyphrases

A candidate keyphrase that has the power to represent a set of documents in a
cluster (rather than a single document) would naturally lie at the intersection of
those documents. The CorePhrase algorithm works by first finding all possible
keyphrase candidates through matching document pairs together, extracting all
matching phrases between document pairs. A master list of candidate phrases for



the document cluster is then constructed from the pairwise document matching
lists by consolidating the individual lists to remove duplicates. The resulting list
contains all phrases that are shared by at least two documents.

This process of matching every pair of documents is inherently O(n2). How-
ever, by using a proven method of document phrase indexing graph structure,
known as the Document Index Graph (DIG), the algorithm can achieve this
goal in near-linear time [22]. In DIG, phrase matching is done in an incre-
mental fashion; all documents up to document di are represented by a graph
structure, and, upon introducing a new document di+1, the new document is
matched to the graph to extract matching phrases with all previous documents.
The new document is then added to the graph. This process produces complete
phrase-matching output between every pair of documents in near-linear time,
with arbitrary length phrases.

Figure 8 illustrates the process of phrase matching between two documents.
In the figure, the two subgraphs of two documents are matched to get the list of
phrases shared between them.
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Fig. 8. Phrase Matching Using Document Index Graph

When a matching phrase, pij , is found between documents di and dj , we
calculate its features with respect to each document, pi and pj , respectively,
according to section 5.2.

Since this method outputs matching phrases for each new document, it is
essential to keep a master list, M , of unique matched phrases, which will be
used as the list of candidate keyphrases. The following simple procedure keeps
this list updated:



Algorithm 3 Candidate Keyphrase Extraction

1: {calculate Mi for document di using (3)}
Mij = {pij : 1<j< i}: matching phrases between di and dj

Mi = {Mij}: matching phrases of di

2: for each phrase pij in Mi do
3: if phrase pij is in master list M then
4: add feature vector pi to pij in M

5: add feature vector pj to pij in M if not present
6: else
7: add pij to M

8: add feature vectors pi and pj to pij in M

9: end if
10: end for
11: for each unique phrase pk in M do
12: calculate averages of feature vectors associated with pk

13: end for

The set of matching phrases from all documents forms a pool of candidate
keyphrases. Each phrase in this pool is guaranteed to have been shared by at
least two documents.

It should be noted that using the matching phrases from multi-document sets
as candidate keyphrases saves us from problems often faced by single-document
keyphrase extraction, namely that of having to identify possible candidates us-
ing heuristic techniques, such as the case in the Kea [23] and Extractor [24]
algorithms.

5.2 Phrase Features

In order to judge the quality of the candidate keyphrases, we need to differentiate
between them based on quantitative features. Each candidate keyphrase p is
assigned the following features:

df : document frequency; the number of documents in which the phrase ap-
peared, normalized by the total number of documents.

df =
| documents containing p |

| all documents |

w: average weight; the average weight of the phrase over all documents. The
weight of a phrase in a document is calculated using structural text cues.
Examples: title phrases have maximum weight, section headings are weighted
less, while body text is weighted lowest.

pf : average phrase frequency; the average number of times this phrase has
appeared in one document, normalized by the length of the document in
words.

pf = arg avg

[

| occurrences of p |

| words in document |

]



d: average phrase depth; the location of the first occurrence of the phrase in
the document.

d = arg avg

[

1 −
| words before first occurrence |

| words in document |

]

Those features will be used to rank the candidate phrases. In particular, we
want phrases that appear in more documents (high df), have higher weights
(high w), higher frequencies (high pf), and shallow depth10.

The df feature can be regarded as the support of the keyphrase; i.e. from a
frequent-set analysis point of view, df tells how many items (documents) support
the keyphrase. Since we are extracting keyphrases that are shared by at least two
documents, the minimum support is accordingly two. Although this may seem
unnecessarily low support value, when the keyphrases are ranked (as described
in the next section), the top ranking phrases usually exhibit high support.

5.3 Phrase Ranking

In single-document keyphrase extraction setting, the above phrase features will
be used as input vectors to a machine learning algorithm for training. The model
is then applied to unseen documents to extract the keyphrases. However, in our
case we are looking at discovering “good” keyphrases from multi-document data
sets or clusters. Thus, we will use the features to calculate a score for each
phrase, rank the phrases by score, and select a number of the top phrases as the
ones describing the topic of the cluster.

There are two phrase scoring formulas used, as well as two methods of as-
signing the score to the candidate phrases, for a total of four variants of the
CorePhrase algorithm.

First Scoring Formula. The score of each phrase p is calculated using the
following empirical formula:

score(p) = (w · pf) ×− log(1 − df) (11)

The equation is derived from the tf×idf term weighting measure; however,
we are rewarding phrases that appear in more documents (high df) rather than
punishing those phrases. Notice also that the first scoring formula does not take
the depth feature into account. We will refer to the variant of the algorithm that
uses this formula as CorePhrase-1.

Second Scoring Formula. By examining the distribution of the values of
each feature in a typical corpus, it was found that the weight and frequency

features usually have low values compared to the depth feature. To take this fact
into account, it was necessary to “expand” the weight and frequency features by

10 It might seem counter-intuitive to look for phrases with high df to readers familiar
with the tf-idf term weighting scheme. Remember that we are not scoring the phrase
with respect to a particular document, but rather with respect to the whole document
set. So the more common a phrase is across all documents the better.



taking their square root, and to “compact” the depth by squaring it. This helps
even out the feature distributions and prevents one feature from dominating the
score equation. The formula is given in equation 12.

score(p) = (
√

w · pf · d2) ×− log(1 − df) (12)

We will refer to the variant of the algorithm that uses this formula as
CorePhrase-2.

Word weight-based score assignment. A modified score assignment scheme
based on word weights is also used:

– First, assign initial scores to each phrase based on phrase scoring formulas
given above.

– Construct a list of unique individual words out of the candidate phrases.
– For each word: add up all the scores of the phrases in which this word

appeared to create a word weight.
– For each phrase: assign the final phrase score by adding the individual word

weights of the constituent words and average them.

We will refer to the variants of the algorithm that use this method as CorePhrase-
1M and CorePhrase-2M, based on the equation that was used to assign the initial
phrase scores.

5.4 Keyphrase Extraction Evaluation

For the evaluation of keyphrase extraction, in addition to subjective evaluation
of the extracted keyphrases, we relied on two other extrinsic evaluation measures
that quantitatively assess how well the extracted keyphrases relate to the topic
of the original class or cluster. The name of each class represents the reference
topic name against which the extracted keyphrases are compared for evaluation.

The first measure is called overlap, which measures the similarity between
each extracted keyphrase to the predefined topic phrase of the cluster. The sim-
ilarity is based on how many terms are shared between the two phrases. The
overlap between an extracted keyphrase pi and the topic phrase pt is defined as:

overlap(pi, pt) =
| pi ∩ pt |

| pi ∪ pt |
(13)

Evaluating each extracted keyphrase alone might not give a good idea of how
the whole set of top k phrases fit the topic. To evaluate the top k keyphrases as
a set, we take the average overlap of the whole set. This measure is essentially
telling us how well the top keyphrases, as a set, fit the reference topic.

The second evaluation measure is called precision11, which gives an indication
of how high the single keyphrase that best fits the topic is ranked. The best
keyphrase is defined as the first keyphrase, in the top k, that has maximum

11 This is not the same as the precision measure usually used in the information retrieval
literature.



overlap with the reference topic. Thus, the precision for the set of top k phrases
(pk) with respect to the reference topic pt is defined as:

precision(pk, pt) = overlap(pmax, pt) ·

[

1 −
rank(pmax) − 1

k

]

(14)

where pmax ∈ pk is the first phrase with maximum overlap in the top k
phrases; and rank(pmax) is its rank in the top k. In other words, precision tells
us how high in the ranking the best phrase appears. For example, if we get a
perfect overlap in the first rank, precision is maximum. The lower the best phrase
comes in the ranking, the lower the precision.

5.5 Keyphrase Extraction Results

We have applied the CorePhrase algorithm on ten clusters produced from two
data sets. The documents in each cluster were processed by the four variants of
the CorePhrase algorithm. The extracted keyphrases are ranked in descending
order according to their score, and the top 10 keyphrases were selected for output
by the algorithm. In addition, a keyword-based extraction algorithm was used
as a baseline for comparison. The algorithm extracts the centroid vector of a
cluster represented as a set of keywords and selects the top frequent keywords
in the cluster. This method is considered representative of most cluster labeling
methods.

Table 3 shows the results of keyphrase extraction by the CorePhrase algo-
rithm variants for three of the classes (two classes from the first data subset,
and one classe from the second subset.) The phrases in the results are shown
in stemmed form, with stop words removed. In a real system the output of the
algorithm would have to be in the original unstemmed form for presentation to
the end user.

The keyphrases extracted by the variants of the CorePhrase12 algorithm are
very close to the reference topic, which is a subjective verification of the algo-
rithm correctness. We leave it to the reader to judge the quality of the keyphrases.

A more concrete evaluation based on the quantitative measures, overlap and
precision, is illustrated in figure 5.5 (only CorePhrase-2 and CorePhrase-2M are
shown). For each of the four variants of the CorePhrase algorithm, in addition
to the baseline keyword centroid algorithm, we report the overlap and precision.
The average overlap is taken over the top 10 keyphrases/keywords of each cluster.

The first observation is that CorePhrase performs consistently better than
the keyword centroid method. This is attributed to the keyphrases being in
greater overlap with the reference topic than the naturally-shorter keywords. An
interesting observation also is that CorePhrase-M, which is based on weighted
words for phrase-scoring, and the keyword centroid follow the same trend. This
is due to the link between the phrase scores and their constituent word scores.

12 Throughout this discussion the name CorePhrase will refer to both CorePhrase-
1 and CorePhrase-2, while CorePhrase-M will refer to both CorePhrase-1M and
CorePhrase-2M; unless otherwise specified.



Table 3. Keyphrase Extraction Results – Top 10 Keyphrases

CorePhrase-1 CorePhrase-2 CorePhrase-1M CorePhrase-2M

canada transporation

1 canada transport canada transport transport canada canada transport

2 panel recommend canada transport act canada transport transport canada

3 transport associ transport act road transport transport act

4 transport associ canada transport associ transport issu transport issu

5 associ canada panel recommend govern transport recommend transport

6 canada transport act unit state surfac transport transport polici canada transport
7 transport act transport associ canada tac public transport canadian transport

8 road transport associ canada tac transport public transport public

9 transport infrastructur canada tac transport infrastructur public transport

10 transport associ canada tac public privat sector transport passeng transport infrastructur

winter weather canada

1 winter storm sever weather new hampshir new environment assess environment

2 winter weather winter weather new jersei new program legisl

3 environ canada winter storm new mexico new program hunt

4 sever weather weather warn new hampshir new jersei new fund program
5 weather warn sever winter new jersei new mexico new environment link fund program

6 freez rain sever weather warn new hampshir new jersei new mexico environment assess environment link fund

7 new brunswick sever winter weather new hampshir environment link

8 heavi snowfal new brunswick hampshir new environment assess environment link

9 winter weather warn environ canada carolina new hampshir new assess environment
10 warn issu cold winter carolina new environment assess

campus network

1 campu network campu network network network network network
2 uw campu network uw campu network network uw network network level network

3 uw campu uw campu network level network network uw network

4 roger watt network connect uw network network subscrib network

5 roger watt ist level network network uw level network level network

6 watt ist high speed network subscrib network level network

7 ip address uw resnet network assign network network level
8 ip network connect uw network uw campu network network assign network

9 high speed area campu network network level extern network level network level network

10 request registr switch rout level network level network network level network rout

The second observation is that the variants of the algorithm that use the
depth feature (CorePhrase-2 and CorePhrase-2M) are consistently better than
those that do not use the depth feature (CorePhrase-1 and CorePhrase-1M) in
terms of both overlap and precision. This is attributed to the fact that some
common phrases usually appear at the end of each document (such as “last up-
dated”, “copyright”, the name of the web site maintainer). If depth information
is ignored, these phrases make their way up the rank (e.g. the phrase “roger
watt” in campus network cluster, which is the name of the network main-
tainer that appears at the end of each document.) If depth information is taken
into consideration, these phrases are penalized due to their appearance at the
end of the document.
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Another observation is that the four variants of the algorithm were able to
discover the topic of the cluster and rank it in the top 10 keyphrases, which can be
deduced from the maximum overlap value. CorePhrase is somewhat better than
its word-weighted counterpart (CorePhrase-M) in extracting the best phrase
and ranking it among the top 10, where it achieves 97% overlap on average for
the best phrase. The word-weighted variant achieves 83% maximum overlap on
average for the best phrase.

However, if we look at the set of the top 10 extracted phrases as a whole
and not just the best phrase, the word-weighted variant achieves better per-
formance in terms of average overlap (45% for CorePhrase-M against 40% for
CorePhrase). This is attributed to the fact that keyphrases extracted by the
word-weighted version will always contain heavily weighted words, which often
overlap with the reference topic.This means that CorePhrase-M will consistently
extract phrases containing words found in the reference topic, but which do not
necessarily constitute the best descriptive keyphrases. This drawback manifests
itself when there are few words which occur very frequently throughout the can-
didate phrases, but are not part of the reference topic. In this case the algorithm
will rank up irrelevant phrases which contain those words due to their heavy
weight. (An example is the winter weather canada cluster.)

A final observation is that CorePhrase consistently achieves better precision
than CorePhrase-M (79% for CorePhrase against 67% for CorePhrase-M.) This
means that CorePhrase does not only find the best keyphrase, but ranks it higher
than CorePhrase-M.

To summarize these findings: (a) CorePhrase is more accurate than keyword-
based algorithms; (b) using phrase depth information achieves better perfor-
mance; (c) using word-weights to rank phrases usually produces a better set of
top phrases; however, ignoring the word-weights usually produces the best de-
scriptive phrase and ranks it higher; and (d) in most cases, CorePhrase is able
to identify the reference topic in the top few keyphrases.

6 Summary and Conclusion

This chapter presented a framework for text mining based on a phrase graph
model of the underlying documents. The level of document representation and
manipulation is shifted to its constituent phrases rather than individual words.
Phrasal analysis of documents opened the door for more accurate representation,
similarity calculation, and eventually higher clustering quality. Achieving the
same results using traditional vector-space methods would be impractical.

The clustering framework is comprised of four components. The first com-
ponent is the DIG data structure; an efficient graph structure for representing
and indexing phrases in documents. This structure is the underlying foundation
upon which other components function.

The second component is the near-linear phrase matching algorithm, which
is capable of generating all matching phrases between every pair of documents in



near-linear time, with arbitrary-length phrases. The matching phrases are used
to construct a complete similarity matrix for use by various clustering algorithms.

The third component is an incremental clustering algorithm based on similar-
ity histogram distribution. The algorithm maintains tight clusters incrementally
by keeping the similarity distribution in each cluster coherent.

Finally, the fourth component is the CorePhrase keyphrase extraction algo-
rithm for labeling the generated clusters with keyphrases. The algorithm ac-
curately extracts the phrases that best describe each cluster using the DIG
structure to extract the candidate keyphrases, then rank the top representative
phrases.

This framework is coherent, robust, and efficient, as demonstrated by ex-
perimental results. The underlying model is flexible and could be extended or
enhanced to accommodate other phrase-based tasks for text mining.

The application of the model in e-learning environments provides a way to
automatically group learning resources based on content, which can be over-
whelming in very large learning repositories. Text mining can help reduce the
load on the learner by offering a digest of the data that is accurate enough to
acquire the desired information.
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