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Summary. As mentioned elsewhere in this book, e-learning offers “a new 
context for education where large amounts of information describing the 
continuum of the teaching–learning interactions are endlessly generated 
and ubiquitously available”. But raw information by itself may be of no 
help to any of the e-learning actors. The use of Data Mining methods to 
extract knowledge from this information can, therefore, be an adequate 
approach to follow in order to use the obtained knowledge to fit the 
educational proposal to the students’ needs and requirements. This chapter 
provides a case study in which several advanced Data Mining techniques 
are employed to extract different types of knowledge from virtual campus 
data concerning students system usage behaviour. The diverse palette 
of Data Mining problems addressed here include data clustering and 
visualization, outlier detection, classification, feature selection, and rule 
extraction. They concern diverse e-learning problems, such as the charac-
terization of atypical students’ behaviour and the prediction of students’ 
performance. Different Data Mining techniques from the areas of Statis-
tical and Machine Learning; Fuzzy Logic, and Inductive Reasoning are 
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employed to tackle these problems. Strong emphasis is placed on the 
interpretability of the results, obtained through rule extraction, so that they 
can be fed back to the e-learning system in a practical an efficient manner. 

1 Introduction 

Any e-learning system is, by its own nature, likely to generate large 
amounts of information describing the continuum of the teaching-learning 
interactions almost in real time. All this information, gathered from diverse 
and usually heterogeneous sources, may be of no help by itself to any of 
the e-learning actors in its raw form. Actually, an excess of such infor-
mation can become a liability for e-learning tutors and managers unless it 
is processed according to reasonable goals. Data Mining can provide the 
adequate tools for such processing; obtaining actionable patterns from 
large data repositories. The use of Data Mining methods to extract know-
ledge from the e-learning system available information can, therefore, be 
an adequate approach to follow in order to use the obtained knowledge to 
fit the educational proposal to the students’ needs and requirements. 

Virtual campus environments, such as the one that is the subject of this 
case study, are fastly becoming a mainstream alternative to traditional 
distance higher education. The Internet medium they use to convey con-
tent, also allows the gathering of information on students’ online beha-
viour. Here, we focus on e-learning systems improvement through the 
analysis of the data generated by the virtual campus students, aiming to 
discover their system usage patterns.  

The amount of research concerned with the mining of data generated by 
the usage of e-learning systems is still somehow scarce on the ground (see 
Castro et al., this book). In this study, we address two main problems 
concerning virtual campus students’ behaviour: the characterization of 
atypical behaviour and the prediction of students’ performance. Several 
Data Mining problems are concerned, namely: students’ data clustering 
and visualization, behavioural outlier detection, students’ classification 
according to course marks, data feature selection, and rule extraction. The 
latter becomes of paramount importance as we aim to place a strong 
emphasis on the interpretability of the obtained results; no matter how 
accurate these might be: unless they are translated into practical and 
efficient rules that system managers and tutors can act upon, it will be 
extremely difficult to feed them back to the e-learning system. 

The rest of the chapter is structured as follows: First, in Sect. 2, we 
provide a detailed description of the data under analysis; they correspond to 
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students of a particular course of the Center of Studies in Communication 
and Educational Technologies (CECTE, as Spanish acronym) virtual 
campus. This is followed by successive sections devoted to the different 
problems at hand. Atypical student behaviour is analysed using the Gene-
rative Topographic Mapping (GTM) [1] model for data clustering and 
visualization. Students’ performance prediction and feature selection are 
dealt through Fuzzy Inductive Reasoning (FIR) [11] and Artificial Neural 
Networks. The models for rule extraction are Orthogonal Search-based 
Rule Extraction (OSRE) [4] and FIR. Finally, Sect. 5 concludes the study 
summarizing its findings. 

2 Data from the CECTE Virtual Campus 

CECTE is a partially virtual campus, offering postgraduate courses and 
continuous education (graduate, workshops and specific courses) to Latin-
American students. The CECTE is part of the international Latin-American 
Institute of Educative Communication (ILCE), whose main goal is to offer 
postgraduate courses.  

The ILCE was born in the General Conference of the United Nations 
Organization for Education Science and Culture, carried out in Uruguay in 
1954. Its aim was alleviating the educative needs of the Latin-American 
region through the use of audiovisual media and technological resources. 
From inception, the ILCE has tried to apply the most up-to-date tools and 
technologies (from phonographic records to the Internet) to deliver high-
quality distance courses. In February of 1979, ILCE obtained the status of 

autonomous administration. 
Throughout its 50 years of existence, ILCE has undergone structural and 

technologic changes in order to maintain the high quality of its educative 
services, taking advantage of the computer, multimedia and telecommuni-
cations methodological breakthroughs, and staying at the forefront of the 
evolution of the distance education field. Moreover, ILCE has signed 
collaborative agreements with the most prestigious institutions, public and 
private, offering distance education services around the world, including 
the British Broadcasting Corporation (BBC), the Open Learning Agency 
(OLA), the University of British Columbia (UBC), the Public Broad-
casting Service (PBS), and the Educational Management Group (EMG), to 
name just a few. 

As previously stated, CECTE is the part of ILCE offering postgraduate 
courses and continuous education, including master and graduate degrees, 

International Organization with juridical personality, its own patrimony and 
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workshops and specialized courses. At the moment, up to 2,000 students 
are registered in any of the offered programs. CECTE has developed 39 
specialized courses addressed to educative, public and governmental insti-
tutions. The most demanded CECTE courses follow a hybrid, semi-

advantage of digitalized satellite, optical fibre and telephony technologies. 
Through WCECTE, students can access the course materials and 
communicate and interact with each other through an e-mail system and a 
discussion forum. Moreover, all weekly TV sessions are available to all 
students through WCECTE. The environment also includes an agenda, a 
news system, virtual classrooms, a digital library, interactive tutorials, and 
other related tools. 

The educative model of CECTE comprises the interaction and com-
munication between all actors involved in the teaching-learning process: 
Students, branch coordinators, advisors and tutors, mainly. An important 
characteristic of the CECTE educative model is the activities calendar, 
consisting of a list of activities and learning suggestions made by the 
module advisor. 

Advisors are entrusted to deliver a specialized weekly session and 
interact, communicate, coordinate, and answer possible doubts from course 
tutors. Branch coordinators are entrusted to evaluate the branch activities 
and to check if students perform their assigned activities properly. The 
tutor is a very relevant actor, as he or she interacts directly with students, 
assigning learning activities, answering doubts, opening topics in discus-
sion forums, evaluating the activities performed by learners, and verifying 
that the teaching-learning process is adequate, taking advantage of all the 
tools provided by WCECTE. 

The evaluation process is based on a set of activities performed by the 
students, in both WCECTE and the physical branch. An important evalua-
tion element in the course analysed in this chapter is the students’ learning 
behaviour measured through the analysis of comments and homework 
posted by them to discussion forums. Two specialized discussion forums 
were used in the analysed course: general topics about the course and 
specific class plan topics comments. 

Two novel evaluation topics, not often used in e-learning environments, 
were incorporated in the course: co-evaluation and experience report. In 
co-evaluation, the advisor grades how well the student evaluates the class 

 

presential model, in which students take courses online through the  
Web CECTE (WCECTE) but also attend weekly TV sessions through 
the National System of Educative Television (EDUSAT), which takes 

plans of his/her course mates. The experience report is a student description 
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For the experiments in this chapter, a set of 722 students, enrolled in the 
“Didactic Planning” graduate course, was selected. The course is add-
ressed to second term high school teachers offering specialized subjects, 
namely Mathematics, Chemistry, Mexican History, Computer Science, 
English, as well as Reading and Writing, and Ethics and Values workshops. 
The students are meant to perform a set of activities throughout the course 
with the main purpose of learning new methods and strategies for planning 
the classes that they teach. This is the reason why these activities are centred 
on the so-called “class plan”. A class plan is a document where a set of 
strategies are suggested to develop a teaching–learning session, taking into 
account different factors that appear in the educational process, such as 
students’ characteristics, teaching style, teachers’ experience, etc. The data 
features available for this study are detailed on Table 1. 

3 Characterization of Atypical Virtual Campus Usage 

The detection of atypical behaviour in a virtual campus is a research goal 
on its own. There is much to be learnt from atypical behaviour online, as it 
can provide clues about what might be failing in the e-learning system, or 
about virtual campus facilities that might have not been considered. 

Here, we approach the discovery of atypical behaviour as a combination 
of data clustering and outlier detection. Unlike in classification problems 
(subject of coming sections of this chapter), in data clustering we are not 
interested in modelling a relation between a set of multivariate data items 
and a certain set of outcomes for each of them (being this in the form of 
class membership labels). Instead, we aim to discover and model the groups 
in which the data items are clustered, according to some item similarity 
measure. 

If a clustering model is used as a Data Mining tool to characterize the 
groups of online students, we would expect this model to provide a sen-
sible cluster structure despite the presence of data outliers. Outliers are 
loosely defined here as data items (corresponding to individual students) 
that are somehow removed from the most populated areas in data space. 
We assume that outlierness in this context corresponds to atypical student 
usage behaviours. 

 
 

of his/her perception of the course. It can be viewed as a self-evaluation
of the student’s own learning process. 
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Feature Alias Description 
Age of the student AGE Age of the student 
Area of expertise EXP Area of expertise of the student (mathematics, 

chemistry, Mexican history, etc.) 
Gender G Student’s gender 
Level of studies  STD Level of studies (graduate, master, Ph.D., etc.) 

Position of the 
student 

POS Position of the student as a teacher in his/her

 

school 
Percentage of the 
activities performed 
by the student 

ACT Percentage of the activities performed by the 
student with respect to the total activities of

 

the course 
Percentage of 
session assistance 

ASS Percentage of student’s session assistance 
with respect to the total number of sessions 
of the course 

Average mark of 
the e-mail 

MAIL Average mark obtained by the student in the 
activities sent by e-mail 

Average mark of 
the co-evaluation 

COEV Average mark of the co-evaluation performed
 

by the student of the class plan of other stud-
ents. The advisor grades how well the student

 

evaluates the class plans of his/her course mates 
Average mark of 
the forum 
participation 

F Average mark of the student’s forum partici-
pation (referring to topics related to the course) 

Average mark of 
the forum class plan 

FCP Average mark of the forum class plan (refer-
ring only to topics related to the class plan 
exclusively) 

Average mark of 
the final class plan 

FC Average mark obtained by the student in 
his/her final class plan 

Average mark of 
the initial class plan 

IC Average mark obtained by the student in 
his/her initial class plan 

Average mark of 
the experience 
report 

ER Average mark obtained by the student in the 
experience report. In this report the student

 

evaluates his/her learning process and descri-
bes the main concepts learned 

Average mark of the 
work in the branch 

BR Average mark of the work (activities) perfor-
med in the branch 

Final mark MARK Final mark obtained by the student in the 
course 

Table 1. Data features collected for the experiment 
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The model used in this study for simultaneous data clustering, visualization, 
and outlier detection, is called GTM [1], which is both a probabilistic 
alternative to the well-known Self-Organizing Maps (SOM) [8] (also 
referred to as Kohonen Maps) and a constrained mixture of Gaussians 
model. Gaussian mixture models are known to lack robustness in the pre-
sence of data outliers, and mixtures of multivariate Student t-distributions 
have been suggested as a more robust alternative [14]. In this study, the 
GTM is applied as a constrained mixture of Student t-distributions: the 
t-GTM [17], and used to detect atypical learning behaviour from the actions 
performed by the CECTE students. This outlier detection is part of a more 

One of the most important phases of a Data Mining process (and one 
that is usually neglected) is that of data exploration through visualization 
methods. The interpretability of the clustering results provided by the 
t-GTM, even in terms of this exploratory visualization, can be limited for 
data sets consisting of too large a number of features. This situation is not 
uncommon for a wide range of real-world problems concerning clustering 
methods. Principled methods of feature selection have for long been the 
preserve of supervised methods. In comparison, feature selection for unsu-
pervised learning has received far less attention. The interpretability of a 
clustering solution would be greatly improved by its description in terms 
of a reduced subset of relevant features. Recently, an important advance in 
feature selection for unsupervised model-based clustering was described in 
[10] for Gaussian mixture models and extended to GTM and t-GTM in 
[16, 18]. 

In this section, we first briefly introduce the GTM and its robust t-GTM 
variant. This is followed by the description of an unsupervised method 
for feature selection associated to it. Outlier detection, clustering, feature 

cussed. 

3.1 GTM in a Nutshell 

The GTM [1] was originally formulated both as a probabilistic clustering 
model alternative to the heuristic SOM [8] and as a constrained mixture of 
Gaussian distributions. It is precisely these constraints what enables it for 
cluster visualization, overcoming a common limitation of generic mixture 
models. The GTM can also be seen as a non-linear latent variable model 
that defines a mapping from a low-dimensional latent (non-observable) 
space onto the observed data space. The mapping is carried through by 

general clustering process that aims to group students with similar navi- 
gational behaviour. 

selection and visualization results are then, in turn, presented and dis-
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basis functions generating a (mixture) density distribution. The functional 
form of this mapping for each variable d can be expressed as 

(u,W) (u) ,
M

d m md
m

y wφ= ∑  (1) 

where Φ  are basis functions 1Φ(u) ( (u), , (u))Mφ φ= K  that introduce the 
non-linearity in the mapping; W  is the matrix of adaptive weights mdw  
that defines the mapping; and u  is a point in latent space. In order to 
provide an alternative to the visualization space defined by the 
characteristic SOM lattice, the latent space of the GTM is discretized as a 
regular grid of K latent points uk . The mixture density for a data point x , 
given Gaussian basis functions, can be written as 
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where the D elements of y are given by (1). This density allows for the 
definition of a model likelihood, and the well-known Expectation-
Maximization (EM: [2]) algorithm can be used to obtain the Maximum 
Likelihood estimates of the adaptive parameters ( W  and β ) of the model. 
See [1] for details on these calculations. 

3.2 Data Clustering and Visualization Using GTM 

Model interpretation usually requires a drastic reduction in the dimension-
ality of the data. Latent variable models can provide such interpretation 
through visualization, as they describe the data in intrinsically low-dimen-
sional latent spaces. Each of the latent points u k  in the latent visualization 
space – which in this study is a 2-dimensional space – is mapped, 
following (1), as y Φ(u )Wk k= . The y k  points are usually known as 
reference vectors or prototypes and their dimensionality, in the case of this 
study, is that of the original CECTE virtual campus data, described in 
Table 1. Each of the reference vector elements corresponds to one of the 
observed features, and their values over the latent visualization space can 
be colour-coded to produce reference maps that provide information on the 
behaviour of each variable and its influence on the clustering results. 

Each of the latent space points u k  can be considered by itself as a 
cluster representative (of a cluster containing the subset of course students 
assigned to it). For simplicity, we use for the GTM a cluster assignment 
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method akin to that of SOM, which is based on a winner-takes-all strategy: 
Each data observation (student) is assigned to the location in the latent 
space (cluster) where the mode of the corresponding posterior distribution 
is highest, i.e. mode

u
u arg max

k

n knr= , where knr  is the probability of student n 

belonging to cluster k, and it is obtained as part of the EM algorithm. 

3.3 Handling Outliers with t-GTM 

General Gaussian mixture models lack robustness in the presence of data 
outliers. For the Gaussian GTM, as a constrained mixture model, the pre-
sence of outliers is likely to negatively bias the estimation of parameters 
W  and β . To overcome this, several recent studies have suggested the 
use of multivariate Student t-distributions as a robust alternative to 
Gaussians. The GTM can equally be redefined as a constrained mixture of 
Student t-distributions: namely, the t-GTM [17]. Assuming now that the 
basis functions Φ  are t-distributions, the mixture density in (2) can be 
redefined as 
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where ( )⋅Γ  is the gamma function and the parameter ν  can be understood 
as a tuner that adapts the level of robustness (divergence from normality) 
for the mixture. Again, the parameters of this model can be estimated 
using the EM algorithm. Details can be found in [17]. As a result of 
replacing the Gaussians by t-distributions, the impact of outliers on the 
estimation of the model parameters is effectively minimized. 

3.4 Unsupervised Feature Selection with t-GTM 

The interpretation of the clustering results provided by the t-GTM can 
become extremely difficult – and even impractical – for high-dimensional 
data sets. Therefore, the development of a method for feature relevance 
determination (FRD) and a criterion for feature selection (FS) based on it 
should sensibly increase their interpretability. 

Recently, a method for FRD in unsupervised model-based clustering with 
mixture of Gaussians models was presented in [10] and extended to the 
t-GTM in [18]. This method calculates an unsupervised feature saliency as 
part of the EM algorithm. Such saliency measures the relevance of a feature 
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on the definition of the cluster structure yielded by the model. It could be 
argued that the presence of outliers in the data sample is likely to bias the 
estimation of this saliency: In Gaussian mixtures, too many mixture com-
ponents tend to fit the atypical data; as a result, those features which define 
what is atypical in the outliers might be attributed too high a saliency. The 
use of t-GTM should discount the negative effect of data outliers. 

Formally, the saliency of feature d (its relevance) is defined as dρ . A 
value of 1=dρ  indicates the full relevance of feature d. According to this 
definition, the mixture density in (3) can be rewritten as 

( ) ( ) ( ){ }
1 1

1(x | W, , ) u W , 1 .
DK

d d d d d
k d

p p x , , q x
K

β ν ρ β ν ρ λ
= =

= + −∑ ∏  (4) 

A feature d is irrelevant, with irrelevance ( )dρ−1 , if, for all the t-GTM 
mixture components, ( u, W, , ) ( )d d dp x q xβ ν λ= , where ( )d dq x λ  is a 
common density followed by feature d. Notice that this is tantamount to 
saying that the distribution for feature d does not follow the cluster 
structure defined by the model. 

Once again, we can estimate the model parameters (most importantly, 
the relevance dρ ) resorting again to Maximum Likelihood and the EM 
algorithm. Details can be found in [18]. 

3.5 Experimental Results and Discussion 

The first part of the experiments concerns the identification and charac-
terization of atypical (outlier) students. The t-GTM parameters W  and 0w  
are initialized to fixed values, following a standard procedure [1], that 
ensures the replicability of the results. The visualization grid of t-GTM 
latent centres is fixed to a square layout of 55×  nodes (i.e., 25 constrained 
mixture components). The corresponding grid of basis functions mφ  is 
fixed to a 33×  layout. 

Following Peel and McLachlan [14], a given data observation n will be 
considered to be an outlier if the value of 2y xn kn k n

k
r βΩ = −∑  is 

sufficiently large. Notice that knr , as previously mentioned, is the respon-
sibility assumed by a cluster k for data observation (student) n. A 
histogram for this statistic is provided in Fig. 1, showing a reasonably 
well-defined structure that evidences the difference between a majority of 
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students with low values of Ωn  and a minority with large values. The 
selection of a threshold to differentiate outliers from non-outliers depends 
on the restrictions of the analysis in a real context. In this study, for 
illustrative purposes, such threshold has been placed at 7Ω 1.75 10n = × , 
leaving 43 students (just below a 6%) as atypical cases or outliers. 

We are interested in characterizing these atypical students. For that, 
we first visualize how the data have been mapped onto the t-GTM 
visualization space in Fig. 2 (top-left plot). The relative size of each cluster 
(square) is an indicator of the ratio of data observations assigned to that 
specific cluster by the model. Such assignment, as described in Sect. 3.2, is 
based on the modes mode

u
u arg max

k

n knr= , which indicate which cluster 

bears maximum responsibility for a data point (student). The rather 
homogeneous cluster spread indicates that outliers do not dominate the 
mapping, which agrees with what is expected from the t-GTM definition. 
Instead, the mapping based on a Gaussian GTM (on the bottom plot) is 
clearly dominated by big clusters of students, restricted to a very specific 
area of the map and surrounded by small clusters corresponding to outliers. 

Also in Fig. 2 (top-right plot), we can visualize where the outliers 
(according to the threshold in Fig. 1) have been mapped onto. With few 
exceptions, they are mostly on the left-hand side of the map; in other 
words, they have been located by the t-GTM model in a very well-
delimited area. This localization simplifies their interpretation in terms of 
the t-GTM reference maps of Fig. 3. Let us focus on the four clusters on 
the top-left corner of the plot, which have a very strong outlier presence. 
Their interpretation according to the reference maps is quite straight-
forward: they are characterized by medium-to-very low values of all fea-
tures but AGE, which is medium-to-high. This means that the outlierness 
of these particular students has to do with their low involvement with the 
virtual campus activity, which seems to be characteristic of the most 
mature students. It is also worth noting that the distribution of the main 
outliers over the map, as seen on the top-right plot of Fig. 2, resembles 
quite closely the distribution in Fig. 3 of the low values for the variables 
MARK, FC, MAIL and of the high values for AGE. These results are 
coherent with the online teachers’ perception that the mature students lack 
expertise in the use of technology, at least at the beginning of the course. 
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Fig. 1. Histogram of statistic Ωn  for the 722 students. An illustrative threshold is 
represented as a dashed line 

The second part of the experiments concerns the estimation of the relative 
relevance of the data features. In this case, the values of the initial para-
meters are not fixed. 

The feature saliency estimation results for the CECTE data are shown in 
Fig. 4. They neatly indicate that only one variable has consistently very high 
relevance: ACT. The average features (BR, F, FC and MAIL) and ASS have 
high but less consistent relevance. On the contrary, MARKS and, specially, 
AGE are clearly irrelevant in the definition of cluster structure. According to 
this, AGE influences cluster structure the least. With this new knowledge, 
we can now characterize the main outlier clusters described in previous 
paragraphs in a more parsimonious way: they are mainly defined by low to 
very low values of the average features, ACT, and ASS. 

All these results show that useful knowledge can be extracted from 
the t-GTM combination of outlier detection, FRD and data clustering and 
visualization [19]. This knowledge could be fed back into the e-learning 
system in order to provide students with personalized guidance, tailored to 
their inhomogeneous needs and requirements. As a software tool embed-
ded into the e-learning system, it would also help e-learning tutors to find 
patterns of student’s behaviour. 
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Fig. 2. Clustering of the 722 students on the t-GTM (top-left) and Gaussian GTM 
(bottom) 5  × 5 visualization spaces. On the top-right plot, only the t-GTM main 
outliers (43 students, according to Fig. 1) have been represented. For each plot, the 
size of the squares is proportional to the ratio of students assigned to the corres-
ponding clusters by the model; therefore, squares of the same size in different 
plots do not necessarily correspond to the same number of students 

 
Fig. 3. Each cluster k in the 5 × 5 visualization space is associated to a reference 
vector y (u )Wk kφ= . It consists of as many elements as features in Table 1. For 
brevity, only eight of them are displayed here: From top to bottom and left to 
right, reference maps for: MARK, ACT, ASS, AGE, BR, F, FC and MAIL. They 
are coded in grey-scale, from black (lowest values) to white (highest values). 
Given the correspondence between the layout of these maps and that of the 
clustering results in Fig. 2, the latter can be interpreted according to the former 
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Fig. 4. FRD-GTM estimated values (represented by their means, plus and minus 
ρ 

(see Sect. 3.4). Features with uncertain relevance (close to 0.5) show wider 
variations 

4 Prediction of CECTE Students’ Performance 

In classification problems, we usually aim to model the existing relation-
ships between a set of multivariate data items and a certain set of outcomes 
for each of them in the form of class membership labels. 

One of the most difficult and time consuming activities for teachers in 
distance education courses is the evaluation process, due to the fact that, in 
this kind of courses, the review process should be done using collaborative 
resources such as e-mail, discussion forums, chats, etc. Additional prob-
lems are the usually high number of features involved and the complexity 
to define their influence in the final mark. Therefore, it would be helpful to 
reduce the dimensionality of the problem by identifying highly relevant 
features. In this way, it would be possible for teachers to provide feedback 
to students regarding their learning activities online and in real time. 
Moreover, the students’ performance forecasting would become more 
interpretable. 

In this section, we aim to predict the final mark of the users of the 
CECTE virtual campus. This prediction is understood as a classification 
problem, in which marks are grouped by intervals, each identified as a 
class. As explained in the introduction, we pay preferential attention to the 

one standard deviation, over 20 runs of the algorithm) of the saliency vector 
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interpretability of the results, trying to translate them into practical and 
efficient rules that system actors could use. To this end, classification is 
here intertwined with supervised feature selection and rule extraction. 

4.1 Classification and Feature Selection with Fuzzy Inductive 
Reasoning 

The methodological approach used to address the classification task is that 
of FIR. The conceptualization of FIR arises from the General Systems 
Theory proposed by Klir [7]. This modelling and qualitative simulation 
methodology is based on systems behaviour rather that on structural know-
ledge. It is able to obtain good qualitative relations between the variables 
that compose the system and to infer the future behaviour of that system. It 
also has the ability to describe systems that cannot easily be described by 
classical mathematics (e.g. differential equations), i.e. systems for which 
the underlying physical laws are not well understood. FIR consists of four 
main processes, namely: fuzzification, qualitative model identification, 
fuzzy forecast and defuzzification. Figure 5 describes the structure of the 
FIR methodology as applied in this study. 

 
Fig. 5. Fuzzy Inductive Reasoning methodology 

The fuzzification process converts quantitative data stemming from the 
system into fuzzy data. The qualitative model identification process is res-
ponsible for finding causal and temporal relations between variables and 
therefore for obtaining the best model that represents the system. An FIR 
model is composed of a mask (model structure) and a pattern rule base 
(behaviour matrix). Once the FIR model is available, the prediction system 
can take place using the FIR inference engine. This process is called fuzzy 
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forecast. The FIR inference engine is a specialization of the k-nearest 
neighbour rule, commonly used in the pattern recognition field. 
Defuzzification is the inverse process of fuzzification. It allows converting 
the qualitative predicted output into quantitative values that can then be 
used as inputs to an external quantitative model. 

Figure 6 illustrates the process of fuzzification by means of an example. 
A quantitative value is fuzzified into a qualitative triple, consisting of the 
class, membership, and side values. The side value, which is specific of the 
FIR technique and not commonly used in fuzzy logic, is responsible for 
presserving, in the qualitative triple, the complete knowledge contained in 
the original quantitative value. 

Most fuzzy inference approaches preserve the total knowledge by 
associating multiple fuzzy rules consisting of tuples of class and member-
ship values with each quantitative data value. In the example of Fig. 6, 
these rules would represent the temperature of 23° centigrade as being 
“normal” with likelihood 0.755 and being “warm” with likelihood 0.20. 
The point where two neighbouring classes match with a membership value 
of 0.5 is named landmark. In the example, the membership function of the 
class Normal is defined by landmarks {13,27}, being this pair the 
temperature values that specify the limits between the class Normal and its 
adjacent classes, Fresh and Warm, respectively. 

 

 
Fig. 6. FIR fuzzification process 

 
The results of the fuzzification process are three matrices of identical size 
named qualitative data matrices, one containing the class values, the 
second containing the membership information, and the third containing 
the side values. 
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Let us now focus on how feature selection is embedded in the FIR 
methodology through the concept of masks. In FIR, a mask candidate 
matrix is the ensemble of all possible masks from which the best is chosen 
by either a mechanism of exhaustive search of exponential complexity, or 
by one of various suboptimal search strategies of polynomial complexity, 
as described in [6]. The mask candidate matrix contains elements of value 
−1 where the mask has a potential m-input, of value +1 where the mask 
has its m-output, and of value 0 to denote forbidden connections. A good 
mask candidate matrix to determine a predictive model for variable y1 in 
the example of Fig. 7 might be, for instance: 

  
        x 
t 

u1 u2 u3 u4 y1 y2 

t−2δt −1 −1 −1 −1 −1 −1 
t−δt −1 −1 −1 −1 −1 −1 
t −1 −1 −1 −1 +1    0 

 
Each of the possible masks is compared to the others with respect to its 
forecasting power, which is maximal when the associate entropy measure 
is minimal. The Shannon entropy measure is used to determine the 
uncertainty associated with forecasting a particular output state given any 
legal input state. The Shannon entropy relative to one input state is calcu-
lated as 

2( | ) log ( | ),i
o

H p o i p o i
∀

= ∑  (5) 

where p(o|i) is the conditional probability of a certain m-output state o to 
occur, given that the m-input state i has already occurred. It denotes the 
quotient of the observed frequency of a particular state divided by the 
highest possible frequency of that state. The overall entropy of the mask is 
then computed as the weighted sum of the entropy over all input states: 

( ) ,m i
i

H p i H
∀

= −∑  (6) 

where p(i) is the probability of that input state to occur. The highest 
possible entropy Hmax is obtained when all probabilities are equal, and zero 
entropy corresponds to totally deterministic relationships. A normalized 
overall entropy reduction Hr is defined as 

r
max

1.0 .mHH
H

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 

(7) 
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Hr is a real-valued number in the range between 0 and 1, where high values 
indicate an improved forecasting power. 

From a statistical point of view, every state should be observed at least 
five times [9]. Therefore, an observation ratio, Or, is introduced as an 
additional contributor to the overall quality measure: 

5 4 3 2 1
r

leg

5 4 3 2 ,
5

x x x x xn n n n nO
n

+ + + +
=  (8) 

where nleg is the number of legal m-input states, n1x is the number of m-
input states observed only once, n2x is the number of m-inputs states 
observed twice, and so on. 

The overall quality of a mask, Q, is then defined as the product of its 
uncertainty reduction measure, Hr, and its observation ratio, Or: 

r r .Q H O=  (9) 

The optimal mask is the mask with the largest Q value. An example of 
mask corresponding to Fig. 7 is 

 

 
Each negative element in the mask is called an m-input (mask input). It 
denotes a causal relation with the output, i.e. it influences the output up to 
a certain degree. The enumeration of the m-inputs is immaterial and has no 
relevance. The single positive value denotes the output. The previous 
example mask contains five m-inputs. In position notation, it can be 
written as (6,7,9,11,14,17), enumerating the mask cells from top to bottom 
and from left to right. 

Let us now address the second issue. How is the pattern rule base 
obtained from the mask? This process is illustrated in Fig. 7. The example 
mask can be used to “flatten” dynamic relationships into pseudo-static 
relationships. The left-hand side of Fig. 7 shows an excerpt of the quail-
tative data matrix that stores the class values. It shows the numerical rather 
than the symbolic class values. In the example shown in Fig. 7, all the 
variables were discretized into three classes, with the exception of variable 
y1 that was discretized into two classes. The dashed box symbolizes the 
mask that is shifted downwards along the class value matrix. The round 

        x 
t 

u1 u2 u3 u4 y1 y2 

t−2δt −1 
t−δt 

t +1    0 

0 0 0 0 0 

−2 0 −3 −4 0 0 

0 −5 0 0 
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shaded “holes” in the mask denote the positions of the m-inputs, whereas 
the square shaded “hole” indicates the position of the m-output. The class 
values are read out from the class value matrix through the “holes” of the 
mask, and are placed next to each other in the behaviour matrix that is 
shown on the right-hand side of Fig. 7. 

 

 
Fig. 7. FIR qualitative model identification process 

Here, each row represents one position of the mask along the class value 
matrix. It is lined up with the bottom row of the mask. Each row of 
the behaviour matrix represents one pseudo-static qualitative state or 
qualitative rule (also called pattern rule). For example, the shaded rule of 
Fig. 7 can be read as follows: “If the first m-input, i1, has a value of 1 
(corresponding to high), the second m-input, i2, has a value of 2 (corres-
ponding to medium), etc., then the m-output, O1, assumes a value of 1 
(corresponding to high)”. 

The FIR inference engine computes a distance measure between the 
input pattern, for which the output prediction should be obtained, and all 
patterns stored in the behaviour matrix that match (with regard to the class 
value) the input pattern. The predicted output is then computed as a 
weighted mean of the outputs associated with the k-nearest neighbours, i.e. 
those neighbours that exhibit the smallest distance measure in the input 
space. For a deeper and more detailed insight into the FIR methodology, 
the reader is referred to [12]. 
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4.1.1 Experimental Results 

In accordance with the previous theoretical description, the aim of these 
experiments was twofold. On the one hand, we aimed to identify FIR 
models that were capable of predicting students’ performance. On the 
other hand, we were interested in determining which data features had the 
highest relevance from the students’ performance point of view. To this 
end, a first set of experiments was carried out using sevenfold cross-
validation. Each test set was composed of 122 data samples whereas the 
training sets contained 600 data samples. 

Before the model identification process of the FIR methodology can 
take place, it is necessary to provide the “number of classes” parameter for 
each system variable (see Fig. 5). In these experiments, due to the reduced 
size of the data set available, the minimum possible number of classes 
was chosen to discretize each data feature. Table 2 lists these parameters. 
The gender (G), area of expertise (EXP) and position (POS) are nominal 
variables and, therefore, the minimum representation corresponds to the 
number of values that each one can take. The rest of the variables were 
discretized into two or three classes. The dependent variable (the one to be 
predicted), final mark (MARK), was discretized into three classes to allow 
a better discrimination between bad, regular and good students. 

As described in Sect. 4.1, it is also necessary to define the membership 
function for each class of each system variable. This is accomplished by 
determining the landmarks associated to each class value. In these experi-
ments the landmarks of the non-nominal variables were given by the 
experts (the course advisors). 

Table 2. “Number of classes parameter for each feature 

AGE EXP G STD POS ACT ASS MAIL COEV F FCP FC IC ER BR MARK 
2 7 2 2 15 2 2 3 3 3 3 3 2 2 2 3 

 
The next step was the identification of the model. For the qualitative model 
identification process to take place, it is necessary to provide the mask 
candidate matrix. In this experiment, all features were considered. The 
candidate matrix proposed is of depth one (only one row), forbidding the 
creation of temporal relations between different samples, i.e. students. 
With the proposed initial mask, the qualitative model identification process 
computes the optimal and sub-optimal masks. The root mean square 
(RMS) error between the predicted output, ŷ, and the observed system 
output, y, was used to determine the validity of the model. This error is 
defined as 
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where N is the total number of data samples. We are now ready to validate 
the masks by allowing the fuzzy forecasting process of FIR methodology 
to predict the seven test data sets. The optimal mask encountered by FIR is 

 
t \ x AGE EXP G STD POS A C T ASS MAIL COEV F FCP FC IC E R BR MARK 
T 0 0 0 0 0 0 0 0 −1 0 0 0 −2 −3 0 +1 

 
Its associated quality measure has a value of 66.0=Q . This mask is then 
used to perform the prediction through the sevenfold cross-validation. The 
optimal mask reveals that the average marks of the co-evaluation (COEV), 
the initial class plan (IC), and the experience report (ER) are the most 
relevant features to predict the final mark of the course (MARK) for each 
student. The RMS errors obtained when using this mask to predict the 7 
test data sets previously mentioned are shown in Table 3. 

Table 3. RMS prediction errors for the 7 test data sets 

 
The mean error value of 0.5884 shows that the optimal mask identified by 
FIR is able to capture accurately the students’ performance using only the 
COEV, IC and ER variables. Figure 8 shows the best prediction signal 
obtained by FIR optimal mask (fold #5). Figure 9 shows the worst predi-
ction signal obtained with the same mask (fold #4). From these figures, it 
is clear that the predicted signals follow very well the real signals, being 
able to forecast quite accurately low and high marks. 

It is important to comment here that the three variables selected by the 
FIR modelling process (COEV, IC and ER), represent the 50% of the final 
mark evaluation (the weighted formula used to compute the final mark of the 
course is: MARK = 0.05*MAIL + 0.20*COEV + 0.05*F + 0.05*FCP + 0.20 
*FC + 0.10*IC + 0.20*ER + 0.15*BR). Notice that there are some varia-
bles such as the final class plan (FCP) and work in the branch (BR) that, 
by themselves, constitute 35% of the final mark, yet they have not been 
included in the optimal mask. This is a relevant and interesting result, as it 
suggests that the information included in these variables already exists in 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Mean 
0.6268 0.5239 0.5395 0.7038 0.4413 0.6743 0.6096 0.5884 



244       Alfredo Vellido et al.  

the selected ones (COEV, IC and ER). Therefore, these variables are some-
how redundant from the point of view of the final mark prediction. 

Fig. 8. Real and predicted signals of the MARK variable for fold #5 (RMS =  
0.4413) 

Fig. 9. Real and predicted signals of the MARK variable for fold #4 (RMS =  
0.7038) 

Another significant result is the selection of the co-evaluation variable as a 
relevant feature for the prediction of a student final mark. As described 
before, the advisor grades how well the student evaluates the class plans of 
his/her course mates. A student that is able to evaluate the work of other 
people is capable to evaluate correctly his/her own work and, therefore, to 
execute a good work or a good FCP. Therefore, the information conveyed 
by this feature is fundamental to predict the final performance of the student 
in the course. This conclusion has been corroborated by the 31 advisors 
responsible for the course, and previously published in [13]. It is also worth 
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pointing out that co-evaluation is not a feature commonly used in the e-
learning environment. However, its high level of predictive power is mani-
fested in our experiments. Moreover, all the advisors agree that co-evaluation 
provides valuable leverage to reduce the barriers of distance education. 

On the other hand, the experience report (ER) and the initial class plan 
(IC) also come up as relevant features for the prediction of the students’ 
final mark. The experience report can be viewed as a self-evaluation of 
his/her own learning process. The average mark of the initial class plan 
variable is a binary variable that has a value of 0 if the student did not 
present the initial class plan and a value of 10 if he/she did. Both variables 
help to predict the peaks of the final mark signal, due to the fact that they 
contain information not provided by the COEV feature. To some extent, 
these results can be used by the advisors to adjust the equation that com-
putes the final mark by modifying the weights of COEV and FC variables. 
At the very least, the data-based feature relevance results would help the 
course advisors to define a more accurate final mark equation. 

It is also interesting to note that the variables that describe the personal 
attributes of the student, i.e. AGE, EXP, G, STP and POS, are not selected 
by FIR as relevant to predict the final mark. This makes sense because the 
work carried out by the students in the course is much more relevant than 
their personal information. However, we were interested in finding out 
which of the personal attributes gave us relevant information related to 
final grades. To this end, a new experiment was carried out in which only 
the first five features, corresponding to the students’ personal attributes, 
were used in the mask candidate matrix with the main goal of predicting, 
again, the student final mark. In this case, FIR selected as relevant features 
the age of the student and his/her area of expertise. 

The prediction error (RMS) obtained using this model was 1.893 and the 
prediction signal was able to follow quite well the minimum and maximum 
peaks, i.e. the bad and good marks. Although it is not possible to provide a 
definitive conclusion, it is clear from this experiment that the age of the 
student, in the first place, and the area of expertise, in the second place, are 
important personal aspects that influence students’ performance. These 
results agree with some of the conclusions presented in Sect. 3 of this 
chapter, where GTM, a clustering model, was used to analyse atypical 
students’ behaviour. 

4.2 Rule Extraction from Classification Results 

The interpretability of the mark prediction results shown in Sect. 4.1.1 
would be improved by their description in terms of simple and actionable 
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rules. This is accomplished in this case study through the application of 
two different methodologies: OSRE, a novel overlapping rule extraction 
method [4], and, once again, FIR. 

4.2.1 OSRE 

OSRE: [4] is an algorithm that efficiently extracts comprehensible rules 
from smooth models, such as those created by neural networks that accu-
rately classify data. OSRE is a principled approach and is underpinned by a 
theoretical framework of continuous valued logic developed in [15]. In 
essence, the algorithm extracts rules by taking each data item, which the 
model predicts to be in a particular class, and searching in the direction of 
each variable to find the limits of the space regions for which the model 
prediction is in that class (Fig. 10, left). These regions form hyper-boxes that 
capture in-class data and they are converted to conjunctive rules in terms of 
the variables and their values (Fig. 10, right). The obtained set of rules is 
subjected to a number of refinement steps: removing repetitions; filtering 
rules of poor specificity and sensitivity; and removing rules that are subsets 
of other rules [3]. Specificity is defined as one minus the ratio of the number 
of out-of-class data records that the rule identifies to the total number of out-
of-class data. Sensitivity is the ratio of the number of in-class data that the 
rule identifies to the total number of in-class data. The rules are then ranked 
in terms of their sensitivity values to form a hierarchy describing the in-class 
data. Testing against benchmark datasets [4] has showed OSRE to be an 
accurate and efficient rule extraction algorithm. 

    
Fig. 10. Left: Illustration of orthogonal searching to find decision boundaries; 
Right: Hyper-boxes constructed from the search results 

4.2.2 OSRE Results 

The approach to the OSRE experiments was twofold: First, all data features 
from Table 1 were used in the classification task; second, only the three 
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features selected by FIR, as reported in Sect. 4.2, were used. Two-layered 
Multi-Layer Perceptrons (MLP) were trained using error back-propagation 
and weight decay to inhibit overtraining. The data were split into two sets of 
361 records, for training and testing the MLPs. In each case, the network 
parameters were selected by cross-validation and set, for the models using 
all the variables, to: Number of hidden nodes = 8; learning rate = 0.01; 
momentum = 0.9; weight decay = 0.01; for the models using the FIR 
selection of three features, all parameters but weight decay = 0.05 were the 
same. In all cases, the network weights were initialized with random values. 
Once the number of training epochs that minimized overtraining was 
determined, final networks were trained using all 722 data records. OSRE 
was used to produce a set of rules for each of the classes, shown in 
Tables 4–6. Each rule is a conjunction of the features and their values. 

Interestingly, in the experiments using all features, those selected as the 
most relevant by FIR, namely COEV, IC, and ER, all figure prominently in 
the main rules generated by OSRE, especially for classes 1 and 3 (the low 
and high marks). Therefore, the rule extraction results indirectly validate, at 
least partially, the FIR selection. Classes 1 and 3 are extremely well captured 
by their corresponding rules. The students that failed (MARK < 5) are 
defined in very simple terms through low values of ER, COEV, FC and BR. 
The OSRE results using only the three features selected by FIR are quite 
consistent with those obtained using all features, while providing the most 
parsimonious rule descriptions of the MARK classes that can be obtained 
without compromising too much of the classification accuracy. results were 
validated by educative experts from CECTE [5]. 

Table 4. OSRE rules for Class 1 (MARK < 5). Spec stands for Specificity; Sens for 
Sensitivity; PPV is the Positive Predictive Value: the ratio of the number of in-class 
data that the rule predicts to the total number of data the rule predicts. Top table: 
Results for the full set of features. Bottom table: results for FIR feature selection 

CLASS 1 (all features) For this rule only For disjunction of ALL rules 
up to row n 

n RULE Spec Sens PPV Spec Sens PPV 
1 (0 ≤ ER ≤ 6) ∧  

(0 ≤ COEV ≤ 6) 0.99 0.82 0.85 0.99 0.82 0.85 

2 0 ≤ FC ≤ 4 0.99 0.82 0.87 0.98 0.92 0.78 

3 (0 ≤ BR ≤ 3) ∧  
(0 ≤ ER ≤ 3) 1 0.1 1 0.98 0.96 0.78 

CLASS 1 (FIR feat. selection) For this rule only For disjunction of ALL rules 
up to row n 

n RULE Spec Sens PPV Spec Sens PPV 
1 0 ≤ COEV ≤ 5 0.96 0.94 0.66 0.96 0.94 0.66 
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Table 5. OSRE rules for Class 2 (5 ≤ MARK < 8). Spec, Sens and PPV as in 
table 5. Top and bottom tables as in table 4 

CLASS 2 (all features) For this rule only For disjunction of ALL rules 
up to row n 

n RULE Spec Sens PPV Spec Sens PPV 
1 (0 ≤ FCP ≤ 7) ∧  

(IC = 0) 0.96 0.35 0.64 0.96 0.35 0.64 

2 
(63.4 ≤ ACT ≤ 65.5) ∧  
(69.7 ≤ ASS ≤ 100) ∧  

(0 ≤ FCP ≤ 8) ∧ ER = 0 
0.99 0.82 0.87 0.98 0.92 0.78 

CLASS 2 (FIR feat. Selection) For this rule only For disjunction of ALL rules 
up to row n 

N RULE Spec Sens PPV Spec Sens PPV 
1 IC = 0 0.94 0.43 0.66 0.94 0.43 0.66 

2 (4 ≤ COEV ≤ 10) 
∧ (0 ≤ ER ≤ 2) 0.99 0.33 0.93 0.94 0.66 0.69 

4.2.3 Rule Extraction Using FIR 

Starting from the description of FIR in Sect. 4.1, we now explain how rule 
extraction can be implemented as part of this methodology. 

Table 6. OSRE rules for Class 3 (8 ≤ MARK < 10). Spec, Sens and PPV as in 
table 3. Top and bottom tables as in Table 4 

CLASS 3 (all features) For this rule only For disjunction of ALL 
rules up to row n 

N RULE Spec Sens PPV Spec Sens PPV 

1 
(8 ≤ BR ≤ 10) ∧  (3 ≤ F ≤ 10) ∧  

(1 ≤ FCP ≤ 10) ∧  IC = 10 ∧  
(7 ≤ ER ≤ 10) ∧  (8 ≤ COEV ≤ 10) 

1 0.86 1 1 0.86 1 

2 (8 ≤ BR ≤ 10) ∧  (1 ≤ MAIL ≤ 10) ∧  
(9 ≤ ER ≤ 10) ∧  (9 ≤ COEV ≤ 10) 

1 0.65 1 1 0.91 1 

3 

(7 ≤ BR ≤ 10) ∧  (7 ≤ F ≤ 10) ∧  
(5 ≤ MAIL ≤ 10) ∧  IC = 10 ∧  

(7 ≤ FC ≤ 10) ∧  (7 ≤ ER ≤ 10) ∧  
(5 ≤ COEV ≤ 10) 

1 0.7 1 1 0.94 1 

4 
(6 ≤ FCP ≤ 10) ∧  (2 ≤ MAIL ≤ 10) ∧  

FC = 10 ∧  (9 ≤ ER ≤ 10) ∧  
(9 ≤ COEV ≤ 10) 

1 0.47 1 1 0.95 1 

5 BR = 10 ∧  IC = 10 ∧  FC = 10 ∧  
(8 ≤ ER ≤ 10) ∧  (6 ≤ COEV ≤ 10) 

1 0.49 1 1 0.97 1 

CLASS 3 (FIR feat. selection) For this rule only For disjunction of ALL 
rules up to row n 

N RULE Spec Sens PPV Spec Sens PPV 
1 (9 ≤ ER ≤ 10) ∧  (9 ≤ COEV ≤ 10) 0.91 0.73 0.96 0.91 0.73 0.96 
2 IC = 10 ∧  (4 ≤ ER ≤ 9) ∧  (7 ≤ COEV ≤ 10) 0.91 0.39 0.94 0.82 0.95 0.95 
3 IC = 10 ∧  (9 ≤ ER ≤ 10) ∧  (5 ≤ COEV ≤ 9) 0.93 0.35 0.94 0.82 0.99 z 
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rule base identified by FIR. On the one hand, we aim to obtain interpretable, 
realistic and efficient behavioural rules, describing students’ learning beha-
viour. On the other hand, we want to compact the rule base pattern in order 
to make more parsimonious and, therefore, speed up the prediction process. 
In order to preserve a model that is congruent with those previously identi-
fied by FIR, the proposed algorithm is based on its initial discretization, 
using only the mask features and the pattern rule base obtained (see 
Sect. 4.1). Therefore, the rules will maintain the landmarks initially defined. 

The model can be summarized as a set of ordered steps: 

1. Basic compactation. This is an iterative step that evaluates, one at a 
time, all the rules in a pattern rule base. The pattern rule base, R, is 
compacted on the basis of the “knowledge” obtained by FIR. A subset 
of rules Rc can be compacted in the form of a single rule rc, when all 
premises P but one (Pa), as well as the consequence C share the same 
values. Premises, in this context, represent the input features, whereas 
consequence is the output feature in a rule. If the subset contains all 
legal values LVa of Pa, all these rules can be replaced by a single rule, rc, 
that has a value of −1 in the premise Pa. When more than one −1 value, 
Pni, is present in a compacted rule rc, it is compulsory to evaluate the 
existence of conflicts by expanding all Pni to all their legal values LVa, 
and comparing the resultant rules Xr with the original rules R. If 
conflicts, Cf, exist, the compacted rule rc is rejected, and otherwise 
accepted. In the latter case, the previous subset, Rc is replaced by the 
compacted one rc. Conflicts occur when one or more extended rules, Xr 
have the same values in all its premises, P, but different values in the 
consequence C. 

2. Improved compactation. Whereas the previous step only structures the 
available knowledge and represents it in a more compact form, the 
improved compactation step extends the knowledge base R to cases that 
have not been previously used to build the model: Rb. Thus, whereas 
step 1 leads to a compacted data base that only contains knowledge, the 
enhanced algorithm contains undisputed knowledge and uncontested 
belief. Two options are studied: In the first one, using the compacted 
rule base R’ obtained in step 1, all input features P (premises) are visited 
once more in all the rules r that have non-negative vales (not compact-
ted), and their values are replaced by −1. An expansion to all possible 
full sets of rules Xr and their comparison with the original rules R are 
carried out. If no conflicts Cf are found, the compacted rule, rc , is 
accepted, and otherwise, rejected. The second option is an extension of 
the basic compactation, where a consistent and reasonable minimal 

The proposed method is an iterative process that compacts the pattern 
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ratio, MR, of the legal values LVa should be present in the candidate 
subset Rc, in order to compact it in the form of a single rule rc. This 
latter option seems sensible because, although a reasonable ratio was 
used to compact Rc in a single rule rc, the assumed beliefs are minimal 
and do not compromise the model previously identified by FIR Instead, 
in option 1, beliefs are assumed to be consistent with the original rules; 
nevertheless, this could compromise the agreement with model identi-
fied, specially when the training data are poor and do not describe well 
all possible behaviours. 

 
The obtained set of rules is subjected to a number of refinement steps: 
removal of duplicate rules and conflicting rules; unification of similar 
rules; evaluation of the obtained rules and removal of rules with low 
specificity and positive predictive value (PPV: see Sect. 4.2.2). 

4.2.4 Experimental Rule Extraction Results Using FIR 

The main goal of the rule extraction algorithm described is to endow FIR 
with a method to describe the analysed system using logical rules that are 
more comprehensive, readable, and which provide explanations (not only 
assumptions) that may be validated by domain experts, increasing confi-
dence in the analysis. The experimental results obtained using the rule 
extraction algorithm described in the previous section are presented in 
Table 7. 

We can see that the specificity and the positive predicted value reaches 
reasonable values for most rules separately, as well as for the whole set of 
rules. However, the sensitivity is quite low throughout. Only the sensitivity 
of rule 7 (highlighted in Table 7) is reasonably high, describing a very 
common pattern in the analysed data. The best results in this experiment 
correspond to the second option of the Improved Compactation method. 

Although both of the rule extraction methods used in this section resort 
to the same evaluation metrics, they differ in the way results are presented. 
Whereas OSRE provides cumulative results for each class, the FIR experi-
mental rule extraction method provides results for all classes together, for 
each individual rule and for the whole set of rules. 

Notwithstanding the inherent difficulty of comparison, the rule extrac-
tion results obtained by the experimental FIR extension are, at least globally, 
not too different from those obtained by OSRE when only the features 
selected by FIR are used. 

FIR obtains a set of seven rules based on its own feature selection. 
Looking more closely to the rules obtained by FIR and OSRE (with FIR 
feature selection), it seems that OSRE has a higher compactation capacity, 
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at least for class 1. OSRE models class 1 by a unique rule with a single 
premise, whereas FIR needs two rules, with two and three premises, 
respectively. Comparing the set of rules obtained with both methodologies 
using specificity, sensitivity and positive predictive value metrics, it can be 
seen that for class 1, FIR rules have a higher specificity and PPV, whereas 
OSRE rule has a better sensitivity. The three metrics have similar values 
for both OSRE and FIR rules defining class 2. On the contrary, the OSRE 
rules obtain higher values in all the metrics for class 3.  

The learning behaviour rules obtained by both algorithms were analysed 
and validated by educative experts of CECTE. They agreed that the 
obtained results were intuitive, realistic, and mostly consistent with their 
own perception of the CECTE course students’ learning behaviour. 

Table 7. Experimental rule extraction results using FIR for both training and test 
data sets. Spec stands for Specificity; Sens for Sensitivity; and PPV is the Positive 
Predictive Value: the ratio of the number of in-class data that the rule predicts to 
the total number of data the rule predicts 

TRAIN TEST RULE Out 
Class Spec Sens PPV Spec Sens PPV 

IF 0<=IC<=5.1 AND 4.9<=COEV<=10 
THEN  4.9<=MARK<= 7.9 

 2 0.96 0.38 0.7 0.95 0.37 0.71 

IF   5.1<=IC<=10 AND 0<=ER<= 8.1 
THEN 0<=MARK<= 7.9 

 1–2 0.84 0.51 0.57 0.84 0.43 0.55 

IF 0<=COEV<=4.9 AND 8.1<=ER<=10 
THEN 0<=MARK<= 4.9 

 1 1 0.11 0.78 0.97 0.08 0.2 

IF 0<=COEV<= 4.9 AND 0<=IC<=5.1 
AND 0<=ER<=8.1 THEN 

0<=MARK<=4.9 

 
 

1 1 0.07 1 1 0.08 1 

IF 4.9<=COEV<= 7.9 AND 
5.1<=IC<=10 THEN 7.9<=MARK<=10 

 3 0.95 0.03 0.58 0.87 0.04 0.42 

IF 7.9<=COEV<=10 AND 
8.1<=ER<=10 THEN 

7.9<=MARK<=10 

 
 

3 0.75 0.81 0.88 0.83 0.81 0.91 

IF 7.9<=COEV<=10 AND 5.1<=IC<=10 
AND 0<=ER<=8.1 THEN 

7.9<=MARK<=10 

 
 

3 0.78 0.16 0.63 0.8 0.15 0.62 

TOTAL RULES 0.93 0.34 0.76 0.92 0.33 0.74 

5 Conclusions 

The possibility of tracking user behaviour in virtual campus e-learning 
environments makes possible the mining of the resulting data bases. This 
opens new possibilities for the pedagogical and instructional designers 
who create and organize the learning contents. 

The presence of outliers in a data set can distort the results obtained from 
its analysis. Therefore, the data analyst should benefit from models that 
behave robustly in their presence. One such model, the t-GTM, has been 
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introduced. It simultaneously provides robust data clustering and visuali-
zation of the results, which become intuitively interpretable. It also 
neutralizes the negative effects of outliers. Moreover, this model provides a 
method to assess the unsupervised relative relevance of the data features. 
Data from the CECTE virtual campus, corresponding to the students of a 
“Didactic Planning” graduate course, have been analysed using the 
proposed model. Students with atypical online behaviours (outliers) have 
been identified and characterized, using the extension of t-GTM for FRD. 
The results have shown that useful knowledge can be extracted from the 
t-GTM combination of outlier detection, FRD and data clustering and 
visualization. This knowledge could be fed back into the e-learning system 
in order to provide students with personalized guidance, tailored to their 
inhomogeneous needs and requirements. As a software tool embedded in 
the e-learning system, it would also help teachers to find patterns of 
student’s behaviour. 

In this case study, we have also addressed the problem of students’ 
marks prediction, using the FIR methodology. The characterization of the 
students’ online behaviour would benefit from a method capable of deter-
mining the relevance of the features involved in the analysed data set in 
terms of this prediction. One such method is also provided by FIR. The 
experimental results have shown that FIR was able to identify a good 
model to predict students’ final marks and to determine the relevant 
features involved in the evaluation process. This knowledge could be used 
for real time student personalization guidance, and to help teachers in 
finding patterns of student behaviour. For this knowledge to have an 
intuitive and useful form, results have been described in terms of rules. 
The novel OSRE methodology and an extension of FIR have been applied 
here to obtain simple sets of rules describing the diverse levels of the 
students’ performance. 
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