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Summary. We study the domain of competence of a set of popular classifiers, by
means of a methodology that relates the classifier’s behavior to problem complexity.
We find that the simplest classifiers, the nearest neighbor and the linear classifier,
have extreme behavior in the sense that they mostly behave either as the best
approach for certain types of problems or as the worst approach for other kinds of
problems. We also identify that the domain of competence of the nearest neighbor
is almost opposed to that of the linear classifier. Ensemble methods such as decision
forests are not outstanding in any particular set of problems but perform more
robustly in general. A by-product of this study is the identification of the most
relevant features for optimal classifier selection.
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1.1 Introduction

Research in machine learning and pattern recognition has yielded many competent
classifiers from different families, such as decision trees, decision forests, support
vector machines, neural networks, genetic algorithms, etc. Researchers have often
demonstrated their competence and robustness across different domains. Neverthe-
less, the practitioner may find it difficult to choose a particular classifier for a given
problem, due to the great variability of classifiers and a lack of knowledge on the
optimal classifier for the given problem. Many classifiers appear in close rivalry in
benchmark problems, which one can be selected? Many seem applicable to a wide
range of problems, but will they also be suitable to the given problem?

The analysis of data complexity sets a framework to characterize the problem
and identify domains of competence of classifiers. In [8] a methodology is introduced
by which classification problems are characterized by a set of complexity measures.



2 T.K. Ho and E. Bernadé-Mansilla

This characterization allowed to identify easy problems (close to linearly separable
problems) and difficult problems (close to random labeling) in the complexity mea-
surement space. Derivations of this study led to relate the behavior of classifiers to
problem complexity. The first attempt is made in [7], where two decision forests are
compared to identify for which problems each is preferable. Last chapter studied
the behavior of a particular classifier based on genetic algorithms called XCS. The
study identifies the domain of competence of XCS compared with a set of other
classifiers. In this paper, we extend this analysis to study the domain of competence
of different classifiers.

We investigate the domain of competence of six popular classifiers in the com-
plexity measurement space, and compare these domains to identify which classifiers
are optimal for certain classes of problems. We include classifiers as diverse as a
nearest neighbor, a linear classifier, an oblique decision tree, two types of decision
forests, and XCS. We also analyze whether different classifiers have opposed domains
of applicability or some of them perform similarly. Ensemble methods are shown to
outperform single classifiers, but we aim to establish if single classifiers are still suit-
able to certain types of problems. Along this analysis we will validate the current
measurement space and identify the set of complexity metrics most relevant for the
identification of optimal classifiers.

This paper is structured as follows. First, we describe the methodology that we
use to analyze the domain of competence of classifiers. Although this methodology
is essentially the same as that described in the last chapter, we summarize it here to
make the chapter self-contained. Section 1.3 analyzes where each classifier performs
optimally and poorly. Section 1.4 takes a different view and analyzes the problems
with a single dominant classifier and a single worst classifier. Section 1.5 discusses
limitations of the current study and directions to overcome them, and finally, we
summarize the paper and give the main conclusions.

1.2 Analysis Methodology

We characterize a classification problem by a set of complexity metrics. Table 1.1
summarizes the set of metrics used in our study. They are selected from [8] for being
the best representatives of problem complexity. They describe different geometri-
cal distributions of class boundaries, such as boundary, intra-inter, nonlin-NN,
nonlin-LP, pretop, as well as the discriminant power of attributes (fisher, max-eff
and volume-overlap). We include the ratio of the number of points to the number of
dimensions (npts-ndim) as an estimation of sparsity. All these metrics are computed
from the available training sets; therefore, they give measurements of the apparent
complexity of problems.
We study the domain of competence of six classifiers:

e a mnearest neighbor classifier (nn), with neighborhood set to 1 and Euclidian
distance [1].

e a linear classifier (1c) computed by linear programming using the AMPL soft-
ware [10].

e a decision tree (odt) using oblique hyperplanes [9]. The hyperplanes are derived
using a simplified Fisher’s method, as described in [6].

e 3 subspace decision forest (pdfc), which trains oblique trees on sampled feature
subsets and combines them by averaging the posterior leaf probabilities [6].
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Table 1.1. Complexity metrics used in this study

Measure Description

boundary percentage of points on boundary estimated by an MST
intra-inter ratio of average intra-inter class nearest neighbor distances
nonlin-NN nonlinearity of nearest neighbor

nonlin-LP nonlinearity of linear classifier

pretop percentage of points with maximal adherence subset retained
fisher maximum Fisher’s discriminant ratio

max-eff maximum individual feature efficiency

volume-overlap volume of overlap region of class bounding boxes

npts-ndim ratio of the number of points to the number of dimensions

e a subsample decision forest (bdfc), also known as bagged decision trees, which
trains oblique trees on sampled training subsets and then combines the result
by averaging the posterior leaf probabilities [5].

e XCS, an evolutionary learning classifier [11, 12].

They have been selected for representing different families of classifiers. The nearest
neighbor, the linear classifier and the single tree are traditional well-known classifiers.
The forests belong to the category of classifier combination. They train several
decision trees by subsampling either the training points (bdfc) or the features (pdfc).
They are known to outperform single trees. XCS evolves a set of rules by means of
a genetic algorithm. This particular selection allows to study if ensemble methods
are always preferable than individual classifiers or on the contrary, there are still
cases where single classifiers can be applied, and if so, where these cases are located
in the measurement space. We do not pretend to have a fully representative set of
classifiers. We rather want to try the methodology with an initial subset of classifiers
and enhance this study to other popular classifiers once the methodology becomes
mature.

We evaluate each classifier in a set of 392 two-class problems, extracted from
the UCI repository [4], as explained in the previous chapter. For each problem, we
estimate its complexity by computing each of the complexity metrics on the whole
available dataset. We run each classifier using a ten-pass two-fold crossvalidation
test and identify the best and worst classifier for each problem. Then, we compare
each classifier against them respectively. Details are as follows:

1. Each dataset is randomly permuted ten times.

2. Each time, the dataset is divided in two disjoints sets. Then each classifier is
trained in each of these two sets and tested on the other one. The classifier’s
error rate for this particular permutation is estimated as the sum of the errors
on each test set, divided by the dataset size.

3. Thus, for each dataset there are ten error estimates, one for each permutation.
The final classifier’s error on the dataset is the average of its ten error rates.

4. For each problem, we identify the classifier with the lowest mean error. Then,
we use its ten error estimates as the basis for comparison with the other classi-
fiers, using a paired t-test with a 95% confidence level. Thus, we identify which
classifiers are equivalent to the best method or worse than the best method.
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5. The same procedure is used to identify the worst classifier for each problem and
test the remaining classifiers against it, so that we identify classifiers equivalent
to the worst method or better than the worst method.

We will approach the domains of competence of classifiers from two different
views. The first one, taken in section 1.3, will estimate the domain of competence
of each classifier. We analyze where each classifier performs as the best method,
and as the worst method, trying to identify types of problems where the classifier is
well suited and poorly suited. The second approach, taken in section 1.4, analyzes,
for each problem, the set of classifiers that are well suited and poorly suited. Al-
though the views are similar, here we will distinguish the problems where there is
a single dominant best classifier, from problems where more that one classifiers are
optimal. Thus, we will try to determine if there are differences between these types
of problems. We will also study the problems where a single classifier performs sig-
nificantly worst from those problems where several classifiers are equivalently poor.
This approach was already taken in [3] where the domains of dominant competence
were succinctly identified. This study is enhanced here with the addition of the
first approach. Both views are necessary to help choose an optimal classifier given a
problem with computed complexity metrics. The results obtained herein are tied to
the particular choice of classifiers, so other choices or the inclusion of new classifiers
may lead to different results.

1.3 On the Domains of Competence of Classifiers

We analyze where each classifier performs as one of the best methods and as one of
the worst methods. We try to relate this to the complexity measurement space so
that we can identify domains of competence of classifiers.

We will show different projections of the complexity measurement space and
plot the classifier’'s membership to three categories: best, worst, or none of them.
We use a circle when the classifier is equivalent to the best method (i.e., it is the
best method or its performance is equivalent to the best method considering a paired
t-test with a 95% confidence level). We use a cross when the classifier is equivalent
to the worst method (which means it is the worst classifier or its performance is
found equivalent to that of the worst classifier). The rest of the problems, where the
classifier is neither best nor worst, are shown with a small plus sign.

Nearest Neighbor

Fig. 1.1 shows the domain of competence of the nearest neighbor classifier. We
find that most of the problems where nn performs optimally belong to very low
percentage of points in boundary and low nonlinearities (see Fig. 1(a)). They also
tend to be placed in low intra-interclass nearest neighbor distances, as shown in
Fig. 1(b), although other problems with low values in this metric do not correspond
to an optimal nn’s behavior. The remaining metrics do not influence the classifier’s
behavior significantly. The pretopological measure on the percentage of retained
adherence subsets is not very significant to set the nn’s behavior, as it is shown in Fig.
1(c). The discriminant power of the attributes is neither significant for determining
the nn’s behavior; see for example the maximum’s Fisher discriminant ratio in Fig.
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Table 1.2. Percentage of problems where each classifier is equivalent to the best
method, equivalent to the worst method, and none of them.

Best(%) Worst (%) Avg. (%)
nn 54 34 12
lc 33 40 27
odt 3 70 27
pdfc 12 10 78
bdfc 20 11 69
xcs 19 17 64

1(b). Analyzing npts-ndim it seems that almost all the problems where the nn is
optimal correspond to high ratios of npts-ndim (about 100). But this is just a
coincidence because almost all problems located in this value belong to the letter
problem, which all have the same relation of the number of points over the number
of dimensions. The problems do not present a uniform distribution over this metric,
so it is difficult to extrapolate observations from it. We note that the nn is optimal
for the easiest problems; observe that in these cases, the nn’s error is very low. We
also verified that these problems also correspond to low errors from the remaining
classifiers.

Table 1.2 summarizes the number of problems where each classifier is best, worst
and average. We identify that the nearest neighbor has the extreme behavior of either
behaving mostly like the best classifier (54% of the problems) or like the worst
classifier (34% of the problems). There is a greater tendency to behave optimally
although this may be biased by the current selection of problems. Only in 12% of
the problems, the nn is an average classifier.

Linear Classifier

The linear classifier has a behavior almost contrary to that of the nearest neighbor.
Fig. 1.2 shows that for very low percentage of points in boundary (less than 10%)
it performs as the worst method, while it works as the best method for a number
of problems with boundary values between 10% and 70%. Nevertheless, there are
also some few problems with percentage of points in boundary inside this range
(10%-70%) where the linear classifier performs as the worst method or as an aver-
age method. Tracing the 1c’s behavior along the different projections of complexity,
we identify that the 1c performs best for high boundary values, high intra-interclass
nearest neighbor distances, and high nonlinearities of both the linear classifier and
nearest neighbor. But there are also some problems (although in fewer proportions)
that are placed in similar regions of the measurement space, where the linear clas-
sifier performs as the worst method.

The general tendency is that the linear classifier performs optimally when the
problems are more difficult. For very easy problems (few points in boundary, low
nonlinearities, etc) the linear classifier, although having a low error, is the worst
method.

This behavior is in fact surprising; one can question how a linear classifier sepa-
rating the class boundaries by an hyperplane can overcome other more sophisticated
classifiers as the decision forests or XCS, specially in the most difficult problems. We
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Fig. 1.1. Problems where the nearest neighbor (nn) performs best (®), worst (x),
and average (+), shown in selected projections of the complexity measurement space:
(a) percentage of points in boundary vs. nonlinearity of nn, both in logarithmic scale,
(b) intra-interclass nearest neighbor distances vs. maximum Fisher’s discriminant
ratio, (c) percentage of retained adherence subsets vs. nn’s error (in logarithmic
scale), and (d) ratio of the number of points to the number of dimensions vs. nn’s

error (in logarithmic scale).
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hypothesize that sparsity of the training set may be a possible cause, making other
classifiers overfit. In sparse training sets, sophisticated classifiers may try to approx-
imate too precisely the class boundaries when these boundaries are not described
by sufficient representative points. Then, these classifiers may perform poorly with
new unseen instances. A linear approach may be well suited to this type of problem,
having less tendency to overfit. The number of points to the number of dimensions
tries to approximate the sparsity of the training set. But we find no clear relation
between the 1c’s behavior and this metric, which may indicate that the metric is a
rough estimation of the training set sparsity. In fact, the metric can only consider
the apparent sparsity of the training set, which may be uncorrelated from the true
sparsity. The distribution of points in the available training set might be very dif-
ferent from the original distribution of the problem. As we do not have the original
sources of the datasets, we can not compute the true sparsity for the current set of
problems.

Since we find that the linear classifier tends to behave optimally for the most
complex problems, where the classifiers’ errors are very high, we may also hypoth-
esize that this condition can be due to the presence of noise, i.e., the presence of
mislabeled points in these datasets. For these types of problems, a linear classifier
may be more robust than other classifiers that try to evolve more complex bound-
aries, which result to be too overfitted.

The current measurement space is insufficient to distinguish clearly the problems
where the linear classifier is best and worst. Although the reasons may be justified
by the two previous hypotheses, they may also be due to a lack of metrics describing
more precisely the complexity of the problem.

The 1c¢’s behavior is somehow extreme too, as found in the case of the nn classi-
fier. Observe that 1c is optimal in 33% of cases, and worst in 40% of cases, as shown
in Table 1.2.

Decision Tree

The decision tree performs optimally in very few problems; to be exact, in only
12 problems out of 392, which corresponds to a percentage of 3%. In 70% of the
problems, the single tree performs as the worst method, while it performs in the
average in 27% of the problems, as shown in Table 1.2.

It is difficult to determine for what kind of problems the single tree is best suited.
It only performs optimally in 12 problems, which is not sufficient to extrapolate
general observations. Moreover these problems are not compacted in the same area
of the measurement space, as it can be observed from Fig. 1.3. It is also difficult to
discriminate between the problems where the single tree performs worst from the
problems where the single tree is an average performer.

Subspace Decision Forest

The subspace decision forest improves the behavior of the single tree, in the sense
that the forest is more robust in a high proportion of problems. Table 1.2 shows
that the subspace forest is an average method in 307 problems (78%), and is best
and worst in fewer proportions (12% and 10% respectively).
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Fig. 1.2. Problems where the linear classifier (1¢) performs best (®), worst (%), and
average (+), shown in selected projections of the complexity measurement space: (a)
percentage of points in boundary vs. nonlinearity of nn, (b) percentage of points in
boundary vs. nonlinearity of nn, in logarithmic scale, (c) intra-interclass nn distances
vs. maximum Fisher’s discriminant ratio, (d) percentage of retained adherence sub-
sets vs. 1c’s error, (e) maximum individual feature efficiency vs. 1c’s error, and (f)
ratio of the number of points to the number of dimensions vs. 1¢’s error.
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Fig. 1.3. Problems where the single tree (odt) performs best (®), worst (x), and
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Fig. 1.4 shows the pdfc’s behavior on selected projections of the complexity mea-
surement space. The plots do not show very compact areas of the measurement space
to distinguish clearly between the best, average and worst problems for the subspace
decision forest. But the general trend is that a higher percentage of problems where
the pdfc performs optimally belong to small percentage of points in boundary, and
also small nonlinearities and intra-interclass nearest neighbor distances. However,
observe that for very few points in boundary and small nonlinearities, the best clas-
sifier is the nearest neighbor, as shown in Fig. 1.3. For boundary values higher than
30% there are cases where the pdfc is best and also other cases where the pdfc is
worst or average. Other projections of the complexity measurement space do not
show any significant discrimination between these three cases.

Subsample Decision Forest

Comparing the subsample forest with the single tree, we find that the subsample
forest has more robustness across a high range of problems. In almost 69% of the
problems, the subsample decision forest is in the average, being as the best method in
20% of problems and worst in the remaining 11% (see Table 1.2). A similar behavior
in terms of robustness is observed with the subspace decision forest.

Nevertheless, it seems that the subspace decision forest and the subsample deci-
sion forest do have differences in their domains of competence. Comparing Fig. 1.4
with Fig. 1.5, we note that the subsample forest is able to be optimal in problems
with higher boundary values than the subspace forest. In fact, the average percent-
age of points in boundary is 14.38% for the problems where the subspace forest is
best, and 30.37% for the problems where the subsample forest is best. The same be-
havior is observed with the nonlinearities. While the subspace forests work best for
low nonlinearities, the subsample forests work best for higher values. This also hap-
pens with the ratio of intra-interclass nearest neighbor distances. These results are
consistent with previous experiments in the literature [7], where subspace decision
forests are compared with subsample decision forests.

XCS

The domain of competence of XCS is already analyzed in the previous chapter. Sum-
marizing our results, we found that XCS performs best for low points in boundary.
For the lowest percentages of points in boundary, XCS is in the average methods
(in these cases, the best classifier is the nearest neighbor). XCS also tends to be
optimal for low nonlinearities and low ratios of intra-interclass nn distances. The
maximum’s Fisher discriminant ratio and the number of points to the number of
dimensions tend also to be higher for the problems where XCS is best.

The domain of competence of XCS appears to have similarities with that of the
subspace decision forest (see [2]). In fact, we can view XCS as a type of classifier
ensemble method, where each classifier contains a rule with generalizations in some
attributes, having an effect similar to that of sampling over the feature space.

Comparative Analysis

Fig. 1.6 compares jointly the domains of competence of each classifier against some
selected metrics. Each column refers to a classifier; from left to right these are
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Fig. 1.4. Problems where the subspace decision forest (pdfc) performs best (©),
worst (x), and average (+), shown in selected projections of the complexity mea-
surement space: (a) percentage of points in boundary vs. nonlinearity of nn, (b)
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the nn, 1c, pdfc, bdfc, and XCS. The single tree is omitted because of its scarce
contribution as an optimal classifier. Each row plots a particular complexity metric.
Each figure shows three boxplots summarizing the complexity distribution of each
classifier when it performs best (1), worst (2), or average (3). The boxplot has a box
with lines at the lower quartile, the median and the upper quartile. Whiskers extend
to 1.5 times the box length, and the remaining points are considered as outliers and
are plotted with points. The boxplot is useful to analyze the distribution of each
type of problems succinctly, because the ranges and the spread of data can be easily
observed. Nevertheless, the number of points in each boxplot remains hidden so that
this must be coupled with the previous figures.

Note that the comparison of complexity distributions between the nn and the
lc emphasizes again that these classifiers have opposed domains of competence,
as seen specially in measures such as boundary, nonlin-NN, intra-inter, and
volume-overlap. The fisher metric is not as relevant, although we also observe
a tendency for higher discriminant attributes in problems where the nn is best.
The decision forests have different domains of competence, being the measures re-
lated with class distributions, boundary, nonlin-NN and intra-inter, the most
discriminant ones. XCS’s domain of competence appears again very similar to that
of the subspace decision forest. Again the three metrics boundary, nonlinNN and
intra-inter show high correlations for the domains where XCS and the subspace
decision forests are best and worst.

1.4 Dominant Competence of Classifiers

So far we have studied the problems where each classifier performs best and worst.
The approach taken was that of analyzing each classifier separately and relate the
results to the complexity measurement space. In this section, we take a different
point of view. We analyze, for each problem, which is the best and worst classifier
solving it. Doing this, we have observed that some problems are solved by only one
dominant method. On the contrary, other problems have more than one outstanding
methods. These are problems where several classifiers can obtain good results and
therefore their study is less important. Therefore, we will focus on the first types of
problems, that is, problems that are only solved by one dominant method. A similar
behavior is observed for the worst methods of each problem. Some problems have
only one worst classifier, while others have more than one worst classifiers. We will
also analyze which kinds of problems present only one worst classifier.

There are 270 problems that have a dominant best classifier. This represents
a 69% of all the datasets. Fig. 1.7 shows these problems, plotted against selected
projections of the measurement space. We use a different symbol for each classifier,
as indicated in the legend of each plot. We also show with small dots the location of
the problems with more than one optimal classifiers. Note that there are only four
methods which are dominant out of six methods. These are the nearest neighbor, the
linear classifier, the subsample decision forest, and XCS. The rest of classifiers (the
single tree and the subspace decision forest) are not outstanding in any problem.
When they perform as the best method, there are also other methods performing
equivalently.

Moreover, it is also interesting to note that almost all these problems are solved
predominantly by the nearest neighbor or the linear classifier. Table 1.3 details the
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Fig. 1.6. Boxplot distributions of best (1), worst (2), and average (3) domains for
each classifier, shown in individual projections of the complexity measurement space.
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Fig. 1.7. Dominant competence of classifiers. Problems with a dominant best clas-
sifier (a, b, and c), and problems with a dominant worst classifier (d, e, and f),
shown in selected projections of the complexity measurement space: percentage of
points in boundary vs. nonlinearity of nn (a and d), intra-interclass nearest neigh-
bor distances vs. percentage of retained adherence subsets (b and e), and maximum
feature efficiency vs. volume of overlap region (c and f).
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Table 1.3. Distribution of classifiers for problems with a best dominant classifier
and a worst dominant classifier.

Best Worst
nn  69% 11%
Ic 23%  30%
odt 0% 56%
pdfc 0% 0%
bdfc 4% 1%
xcs 4% 1%
total 270 157

proportion of problems where each method is predominantly best and worst. See that
the nn classifier is dominantly best in 69% of problems, and worst in 11%. The 1c is
dominantly best in 23% of problems and worst in 30%. This is significantly different
from the forests and XCS; they are almost neither dominantly best nor worst. We
can conclude that the nearest neighbor and the linear classifier are very specialized
methods, being successful only for specific types of problems. On the other hand,
the ensemble methods and XCS are more robust but they are not outstanding in
many problems. Fig. 1.7 also shows that the domain of competence of the nearest
neighbor is placed in low percentage of points in boundary, and low nonlinearities.
For increasing boundary values, XCS seems to be the best classifier, although for
a small range of problems (in boundary values between 2% and 10%). For higher
boundary values, there is a range of problems where the linear classifier mostly
outstands, but also sometimes, and with less frequency, the subsample forest and
XCS.

It is also interesting to compare Figs. 7(a), 7(b), and 7(c) with Figs. 7(d), 7(e)
and 7(f), which show the problems where there is only one method performing
poorly. There are 157 problems with a single worst classifier. Note that the sin-
gle tree appears very often as the dominant worst classifier, mainly located in low
boundary values. Also the linear classifier is worst for low boundary values and low
nonlinearities. The nearest neighbor tends to be worst for percentage of points in
boundary greater than 10% and nonlinearities greater than 4% approximately. XCS
appears as the worst method for high boundaries and nonlinearities.

We also note that there is no compact area where problems solved by more than
one outstanding (best or worst) methods are placed. They are distributed along all
projections of the complexity measurement space, so we can not give any apparent
reason to discriminate problems with a dominant method from those with several
applicable methods, at least for the current measurement space.

1.5 Discussion

The current study allows also to identify the most relevant metrics for discriminating
between domains of competence of classifiers. These are: the percentage of points
in boundary, the nonlinearities, and the ratio of intra-interclass nearest neighbor
distances. These metrics are more related to the geometry of the problem and the
shape and distribution of the class boundaries. The metrics describing the discrim-
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inative power of the attributes, like the maximum Fisher’s discriminant ratio and
the maximum feature efficiency, seem to be less important to identify domains of
competence. Although they influence the complexity of the problem, they are not as
useful as the other metrics to discriminate between two classifiers. This means that
the domains of competence of classifiers are mostly determined by the geometry of
the problem.

Some metrics, although also describing the geometry of the problem, are able
to give particular explanations of some classifier’s behavior, but they are not gen-
eral enough. One of the reasons of their narrower applicability is that they are not
spread uniformly for the current set of problems. This is the case of the pretopo-
logical measure on the percentage of retained adherence subsets. It presents high
values for almost all the problems (between 80% and 100%). Although small values
may indicate that the problem has a less complex geometry, there are insufficient
problems located in these cases to extract useful conclusions. Moreover, there are
empty regions in the measurement space. The problems are not evenly distributed
along all dimensions of the measurement space; i.e., there are some regions which are
not covered by any problem. We still do not know if these empty regions are induced
by some geometrical constraints or are due to the particular choice of classification
problems.

Another source of difficulty for the current study, which limits the extraction of
more conclusive results, is the estimation of the complexity of the problems. Recall
that all metrics are computed from the available training sets, and therefore they
represent the apparent complexity of the problem. The measure of sparsity seems
to be particularly sensitive to it. The estimation of the sparsity of the training set
by the ratio of the number of points to the number of dimensions on the available
training set may be uncorrelated with the real distribution of points in the original
problem. This leads us to inconclusive results when we try to explain the domain of
competence of the linear classifier related to the sparsity of the training set.

On the other hand, there are also some correlations between the metrics them-
selves. For example, the percentage of points in boundary is fairly related to the
nonlinearities, and to the intra-interclass nearest neighbor distances to some extent.
Although this correlation is reasonable, it is not necessary. For example, a problem
can have a high percentage of points in boundary but present low nonlinearities.
The correlation between these metrics in the current set of problems may lead to
conclusions too overfitted for these problems.

The lack of uniformity, the apparent estimation of metrics and the correlation
between metrics are some of the sources of difficulty found in the present study. Also
the current choice of problems may bias the results and lead to conclusions which
may not be directly extrapolated to other types of problems. The use of problems
designed artificially may overcome these difficulties.

1.6 Conclusions

We propose a methodology based on the analysis of data complexity to study the
domains of competence of classifiers. We find that the simplest methods, i.e., the
linear classifier and the nearest neighbor, have eztreme behaviors. They perform op-
timally in a number of problems (third part and half respectively), but also perform
as the worst method in almost the same percentages of problems respectively. This
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means that they are very specialized methods. When the conditions are favorable for
these particular methods, they perform optimally. The key issue is to detect which
conditions are these and whether they apply given a certain problem. The single
decision tree is almost biased towards performing as the worst method or as an av-
erage method. On the other hand, the most elaborate classifiers tend to have a more
robust behavior. They are mostly placed between the best and the worst method.
They are not very specific to behave optimally in a particular set of problems, nor to
behave poorly in another type of problems, but to behave in the average for a high
proportion of problems. These types of classifiers are more general methods. They
are applicable to a higher range of problems, where we can expect a moderately
good result. This happens with the subsample decision forest, the subspace decision
forest, and XCS.

The key issue is to identify which type of problems are suitable and not suit-
able for each classifier. This is more important for the most specialized classifiers,
since their behavior can change dramatically depending on the problem. The do-
main of competence of the nearest neighbor classifier is located in problems with
compact classes and few interleaving. Particularly, for problems with less than 10%
of points in boundary, intra-interclass nearest neighbor distances less than 0.4 and
nonlinearities less than 5%, the nearest neighbor classifier has good applicability.
For problems outside this region, the nearest neighbor classifier is hardly recom-
mended. The identification of the domain of competence of the linear classifier is
more difficult. We effectively identify that the linear classifier is not well suited for
problems with compact classes. In these cases, other classifiers perform better. But
to what kind of problems the linear classifier is best suited is not conclusive enough,
at least for the current measurement space. A possible hypothesis points out to
problems with sparse training sets, but this is also difficult to determine since we
do not know the original distribution of the problems. The decision tree is almost
always outperformed by the other classifiers. Nevertheless, the ensemble classifiers
based on the same tree, the subspace decision forest and the subsample decision
forest, are much more applicable. In fact, the ensemble classifiers and XCS are av-
erage methods for a wide range of problems. In cases of uncertainty, so that there is
no guarantee that a simple classifier will perform best, ensemble methods can offer
a reasonable result. In these cases, XCS seems to perform better when the classes
are more compact, similarly to the subspace decision forest. On the contrary, the
subsample decision forest works better for higher percentage of points in boundary
and higher nonlinearities.

Limitations of the current study are identified, such as biases due to the current
choice of problems, uneven distribution of problems along the measurement space,
and apparent estimation of complexity. The study is also biased by the current pool
of classifiers. Further studies are needed to provide higher understanding on the
relationship between class distributions, complexity and classifier’s behavior. Also
adding in synthetic datasets may be useful to control the apparent estimation of
complexity and its influence on data complexity.
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