
Published in Advances in Neural Information Processing Systems 7, p. 537, MIT Press, 1995

Learning with Product UnitsLaurens R. LeerinkDepartment of Electrical EngineeringThe University of SydneyNSW 2006, Australialaurens@sedal.su.oz.au C. Lee GilesNEC Research Institute4 Independence WayPrinceton, NJ 08540, USAgiles@research.nj.nec.comBill G. HorneNEC Research Institute4 Independence WayPrinceton, NJ 08540, USAhorne@research.nj.nec.com Marwan A. JabriDepartment of Electrical EngineeringThe University of SydneyNSW 2006, Australiamarwan@sedal.su.oz.auAbstractProduct units provide a method of automatically learning thehigher-order input combinations required for e�cient learning inneural networks. However, we show that problems are encoun-tered when using backpropagation to train networks containingthese units. This paper examines these problems, and proposessome atypical heuristics to improve learning. Using these heuristicsa constructive method is introduced which solves well-researchedproblems with signi�cantly less neurons than previously reported.Secondly, product units are implemented as candidate units in theCascade Correlation (Fahlman & Lebiere, 1990) system. This re-sulted in smaller networks which trained faster than when usingsigmoidal or Gaussian units.1 IntroductionIt is well-known that supplementing the inputs to a neural network with higher-ordercombinations of the inputs both increases the capacity of the network (Cover, 1965)and the the ability to learn geometrically invariant properties (Giles & Maxwell,



Published in Advances in Neural Information Processing Systems 7, p. 537, MIT Press, 1995

1987). However, there is a combinatorial explosion of higher order terms as thenumber of inputs to the network increases. Yet in order to implement a certainlogical function, in most cases only a few of these higher order terms are required(Redding et al., 1993).The product units (PUs) introduced by (Durbin & Rumelhart, 1989) attempt tomake use of this fact. These networks have the advantage that, given an appropriatetraining algorithm, the units can automatically learn the higher order terms thatare required to implement a speci�c logical function.In these networks the hidden layer units compute the weighted product of the inputs,that is NYi=1xwii instead of NXi=1 xiwi (1)as in standard networks. An additional advantage of PUs is the increased infor-mation capacity of these units compared to standard summation networks. It isapproximately 3N (Durbin & Rumelhart, 1989), compared to 2N for a singlethreshold logic function (Cover, 1965), where N is the number of inputs to theunit.The larger capacity means that the same functions can be implemented by networkscontaining less units. This is important for certain applications such as speechrecognition where the data bandwidth is high or if realtime implementations aredesired.When PUs are used to process Boolean inputs, best performance is obtained(Durbin & Rumelhart, 1989) by using inputs of f+1;�1g. If the imaginary compo-nent is ignored, with these inputs, the activation function is equivalent to a cosinesummation function with f�1;+1g inputs mapped f1; 0g. In the remainder of thispaper the terms product unit (PU) and cos(ine) unit will be used interchangeablyas all the problems examined have Boolean inputs.2 Learning with Product UnitsAs the basic mechanism of a PU is multiplicative instead of additive, one wouldexpect that standard neural network training methods and procedures cannot bedirectly applied when training these networks. This is indeed the case. If a neuralnetwork simulation environment is available the basic functionality of a PU can beobtained by simply adding the cos function cos(� � input) to the existing list oftransfer functions. This assumes that Boolean mappings are being implementedand the appropriate f�1;+1g ! f1; 0g mapping has been performed on the inputvectors. However, if we then attempt to train a network on on the parity-6 problemshown in (Durbin & Rumelhart, 1989), it is found that the standard backpropa-gation (BP) algorithm simply does not work. We have found two main reasons forthis.The �rst is weight initialization. A typical �rst step in the backpropagation proce-dure is to initialize all weights to small random values. The main reason for thisis to use the dynamic range of the sigmoid function and it's derivative. However,the dynamic range of a PU is unlimited. Initializing the weights to small random



Published in Advances in Neural Information Processing Systems 7, p. 537, MIT Press, 1995

values results in an input to the unit where the derivative is small. So apart fromchoosing small weights centered around n� with n = �1;�2; : : : this is the worstpossible choice. In our simulations weights were initialized randomly in the range[�2; 2]. In fact, learning seems insensitive to the size of the weights, as long as theyare large enough.The second problem is local minima. Previous reports have mentioned this prob-lem, (Lapedes & Farber, 1987) commented that \using sin's often leads to nu-merical problems, and nonglobal minima, whereas sigmoids seemed to avoid suchproblems". This comment summarizes our experience of training with PUs. Forsmall problems (less than 3 inputs) backpropagation provides satisfactory training.However, when the number of inputs are increased beyond this number, even withthe weight initialization in the correct range, training usually ends up in a localminima.3 Training AlgorithmsWith these aspects in mind, the following training algorithms were evaluated: onlineand batch versions of Backpropagation (BP), Simulated Annealing (SA), a RandomSearch Algorithm (RSA) and combinations of these algorithms.BP was used as a benchmark and for use in combination with the other algorithms.The Delta-Bar-Delta learning rate adaptation rule (Jacobs, 1988) was used alongwith the batch version of BP to accelerate convergence, with the parameters wereset to � = 0:35; � = 0:05 and � = 0:90. RSA is a global search method (i.e.the whole weight space is explored during training). Weights are randomly chosenfrom a prede�ned distribution, and replaced if this results in an error decrease. SA(Kirkpatrick et al., 1983) is a standard optimization method. The operation of SAis similar to RSA, with the di�erence that with a decreasing probability solutionsare accepted which increase the training error. The combination of algorithms werechosen (BP & SA, BP & RSA) to combine the bene�ts of global and local search.Used in this manner, BP is used to �nd the local minima. If the training error atthe minima is su�ciently low, training is terminated. Otherwise, the global methodinitializes the weights to another position in weight space from which local trainingcan continue.The BP-RSA combination requires further explanation. Several BP-(R)SA combi-nations were evaluated, but best performance was obtained using a �xed number ofiterations of BP (in this case 120) along with one initial iteration of RSA. In thismanner BP is used to move to the local minima, and if the training error is stillabove the desired level the RSA algorithm generates a new set of random weightsfrom which BP can start again.The algorithms were avaluated on two problems, the parity problem and learning alllogical functions of 2 and 3 inputs. The infamous parity problem is (for the productunit at least) an appropriate task. As illustrated by (Durbin & Rumelhart, 1989),this problem can be solved by one product unit. The question is whether the trainingalgorithms can �nd a solution. The target values are f�1;+1g, and the output istaken to be correct if it has the correct sign. The simulation results are shown inTable 1. It should be noted that one epoch of both SA and RSA involves relaxing



Published in Advances in Neural Information Processing Systems 7, p. 537, MIT Press, 1995

the network across the training set for every weight, so in terms of computationtheir nepoch values should be multiplied by a factor of (N + 1).Parity Online BP Batch BP SA RSAN nconv nepoch nconv nepoch nconv nepoch nconv nepoch6 10 30.4 7 34 10 12.6 10 15.28 8 101.3 2 700 10 52.8 10 45.410 6 203.3 0 - 10 99.9 10 74.1Table 1: The parity N problem: The table shows nconv the number of runs out of10 that have converged and nepoch, the average number of training epochs requiredwhen training converged.For the parity problem it is clear that local learning alone does not provide goodconvergence. For this problem, global search algorithms have the following advan-tages: (1) The search space is bounded (all weights are restricted to [�2;+2]) (2)The dimension of search space is low (maximum of 11 weights for the problemsexamined). (3) The fraction of the weight space which satis�es the parity problemrelative to the total bounded weight space is high.In a second set of simulations, one product unit was trained to calculate all (22)Nlogical functions of the N input variables. Unfortunately, this is only practical forN 2 f2; 3g. For N = 2 there are only 16 functions, and a product unit has noproblem learning all these functions rapidly with all four training algorithms. Incomparison a single summation unit can learn 14 (not the XOR& XNOR functions).For N=3, a product unit is able to implement 208 of the 256 functions, while a singlesummation unit could only implement 104. The simulation results are displayed inTable 2.Online BP Batch BP SA RSA BP-RSAnlogic nepoch nlogic nepoch nlogic nepoch nlogic nepoch nlogic nepoch147.3 42.6 189.2 20.5 196.1 43.8 167.4 60.2 208 44.3Table 2: Learning all logical functions of 3 inputs: The rows display nlogic, theaverage number of logical functions implemented by a product unit and nepoch, thenumber of epochs required for convergence. Ten simulations were performed foreach of the 256 logical functions, each for a maximum of 1,000 iterations.4 Constructive Learning with Product UnitsSelecting the optimal network architecture for a speci�c application is a nontrivialand time-consuming task, and several algorithms have been proposed to automatethis process. These include pruning methods and growing algorithms. In this sectiona simple method is proposed for adding PUs to the hidden layer of a three layernetwork. The output layer contains a single sigmoidal unit.Several constructive algorithms proceed by freezing a subset of the weights andlimiting training to the newly added units. As mentioned earlier, for PUs a global



Published in Advances in Neural Information Processing Systems 7, p. 537, MIT Press, 1995

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200

N
um

be
r 

of
 n

eu
ro

ns
 in

 n
et

w
or

k

Number of patterns (2^N)

Tiling Algorithm
Upstart Algorithm

SIM using Product Units

Figure 1: The number of units required for learning the random mapping problemsby the `tiling', `upstart' and SIM algorithms.search is required to solve the local-minima problems. Freezing a subset of theweights restricts the new solution to an a�ne subset of the existing weight space,often resulting in non-minimal networks (Ash, 1989). For this reason a simpleincremental method (SIM) was implemented which retains the global search for allweights during the whole training process. The method used in our simulations isas follows:� Train a network using the BP-RSA combination on a network with a spec-i�ed minimum number of hidden PUs.� If there is no convergence within a speci�ed number of epochs, add a PU tothe network. Reinitialize weights and continue training with the BP-RSAcombination.� Repeat process until a solution is found or the network has grown a prede-termined maximum size.The method of (Ash, 1989) was also evaluated, where neurons with small weightswere added to a network according to certain criteria. The SIM performed better,possibly because of the global search performed by the RSA step.The `upstart' (Frean, 1990) and `tiling' (M�ezard & Nadal, 1989) constructivealgorithms were chosen as benchmarks. A constructive PU network was trained ontwo problems described in these papers, namely the parity problem and the randommapping problem. In (Frean, 1990) it was reported that the upstart algorithm



Published in Advances in Neural Information Processing Systems 7, p. 537, MIT Press, 1995

required N units for all parity N problems, and 1,000 training epochs were su�cientfor all values of N except N = 10, which required 10,000. As seen earlier, one PUis able to perform any parity function, and SIM required an an average of 74.1iterations for N = 6; 8; 10.The random mapping problem is de�ned by assigning each of the 2N patterns itstarget f�1;+1gwith 50% probability. This is a di�cult problem, due to the absenceof correlations and structure in the input. As in (Frean, 1990; M�ezard & Nadal,1989) the average of 25 runs were performed, each on a di�erent training set. Thenumber of units required by SIM is plotted in Figure 1. The values for the tilingand upstart algorithms are approximate and were obtained through inspection froma similar graph in (Frean, 1990).5 Using Cosine Candidate Units in Cascade CorrelationInitially we wanted to compare the performance of SIM with the well-known`cascade-correlation' (CC) algorithm of (Fahlman & Lebiere, 1990). However, thenetwork architectures di�er and a direct comparison between the number of units inthe respective architectures does not reect the e�ciency of the algorithms. Instead,it was decided to integrate PUs into the CC system as candidate units.For these simulations a public domain version of CC was used (White, 1993) whichsupports four di�erent candidate types; the asymmetric sigmoid, symmetric sig-moid, variable sigmoid and gaussian units. Facilities exist for either constructinghomogeneous networks by selecting one unit type, or training with a pool of di�er-ent units allowing the construction of hybrid networks. It was thus relatively simpleto add PU candidate units to the system. Table 3 displays the results when CC wastrained on the random logic problem using three types of homogeneous candidateunits. N CC Sigmoid CC Gauss CC PUnunits nepochs nunits nepochs nunits nepochs7 6.6 924.5 6.7 642.6 5.7 493.88 12.1 1630.9 11.5 1128.2 9.9 833.89 20.5 2738.3 18.4 1831.1 16.4 1481.810 32.9 4410.9 30.2 2967.6 26.6 2590.8Table 3: Learning random logic functions of N inputs: The table shows nunits,the average number of units required and nepochs, the average number of trainingepochs required for convergence of CC using sigmoidal, Gaussian and PU candidateunits. Figures are based on 25 simulations.In a separate experiment the performance of hybrid networks were re-evaluated onthe same random logic problem. To enable a fair competition between candidateunits of di�erent types, the simulations were run with 40 candidate units, 8 of eachtype. The simulations were evaluated on 25 trails for each of the random mappingproblems (7,8,9 and 10 inputs, a total of 1920 input vectors). In total 1460 hiddenunits were allocated, and in all cases PU candidate units were chosen above unitsof the 4 other types during the competitive stage. During this comparison all



Published in Advances in Neural Information Processing Systems 7, p. 537, MIT Press, 1995

parameters were set to default values, i.e. the weights of the PU candidate unitswere random numbers initialized in the range of [�1;+1]. As discussed earlier, thisputs the PUs at a slight disadvantage as their optimum range is [�2;+2].6 DiscussionThe BP-RSA combination is in e�ect equivalent to the `local optimization withrandom restarts' process discussed by (Karmarkar & Karp, 1982), where the localoptimization is this case is performed by the BP algorithm. They reported thatfor certain problems where the error surface was `exceedingly mountainous', mul-tiple random-start local optimization outperformed more sophisticated methods.We hypothesize that adding PUs to a network makes the error surface su�cientlymountainous so that a global search is required.As expected, the higher separating capacity of the PU enables the construction ofnetworks with less neurons than those produced by the tiling and upstart algorithms.The fact that SIM works this well is mainly a result of the error surface; the surfaceis so irregular that even training a network of �xed architecture is best done byreinitializing the weights if convergence does not occur within certain bounds. Thisagain is in accordance with the results of (Karmarkar & Karp, 1982) discussedabove.When used in CC we hypothesize that there are three main reasons for the choiceof PUs above any of the other types during the competitive learning phase. Firstly,the higher capacity (in a information capacity sense) of the PUs allows a bettercorrelation with the error signal. Secondly, having N competing candidate units isequivalent to selecting the best of N random restarts, and performs the requiredglobal search. Thirdly, although the error surface of networks with PUs containsmore local minima than when using standard transfer functions, the surface is locallysmooth. This allows e�ective use of higher-order error derivatives, resulting in fastconvergence by the quickprop algorithm.In (Dawson & Schopocher, 1992) it was shown that networks with Gaussian unitstrain faster and require less units than networks with standard sigmoidal units.This is supported by our results shown in Table 3. However, for the problemexamined, PUs outperform Gaussian units by approximately the same margin asGaussian units outperform sigmoidal units. It should also be noted that theseproblems where not chosen for their suitability for PUs. In fact, if the problems aresymmetric/regular the di�erence in performance is expected to increase.7 ConclusionOf the learning algorithms examined BP provides the fastest training, but is proneto nonglobal minima. On the other hand, global search methods are impracticalfor larger networks. For the problems examined, a combination of local and globalsearch methods were found to perform best. Given a network containing PUs, thereare some atypical heuristics that can be used: (a) correct weight initialization (b)reinitialization of the weights if convergence is not rapidly reached. In addition,the representational power of PUs have enabled us to solve standard problems



Published in Advances in Neural Information Processing Systems 7, p. 537, MIT Press, 1995

using signi�cantly smaller networks than previously reported, using a very simpleconstructive method. When implemented in the CC architecture, for the problemsexamined PUs resulted in smaller networks which trained faster than other units.When included in a pool of competing candidate units, simulations showed that inall cases PU candidate units were preferred over candidate units of the other fourtypes.ReferencesAsh, T. (1989). Dynamic node creation in backpropagation networks. ConnectionScience, 1 (4), 365{375.Cover, T. (1965). Geometrical and statistical properties of systems of linear inequal-ities with applications in pattern recognition. IEEE Transactions on ElectronicComputers, 14, 326{334.Dawson, M. & Schopocher, D. (1992). Modifying the generalized delta rule to trainnetworks of nonmonotonic processors for pattern classi�cation. ConnectionScience, 4, 19{31.Durbin, R. & Rumelhart, D. (1989). Product units: A computationally power-ful and biologically plausible extension to backpropagation networks. NeuralComputation, 1, 133{142.Fahlman, S. & Lebiere, C. (1990). The cascade-correlation learning architecture.In Touretzky, D. (Ed.), Advances in Neural Information Processing Systems,volume 2, (pp. 524{532)., San Mateo. (Denver 1989), Morgan Kaufmann.Frean, M. (1990). The upstart algorithm: A method for constructing and trainingfeedforward neural networks. Neural Computation, 2, 198{209.Giles, C. & Maxwell, T. (1987). Learning, invariance, and generalization in high-order neural networks. Applied Optics, 26 (23), 4972{4978.Jacobs, R. (1988). Increased rates of convergence through learning rate adaptation.Neural Networks, 1, 295{307.Karmarkar, N. & Karp, R. (1982). The di�erencing method of set partitioning.Technical Report UCB/CSD 82/113, Computer Science Division, University ofCalifornia, Berkeley, California.Kirkpatrick, S., Jr., C. G., , & Vecchi, M. (1983). Optimization by simulatedannealing. Science, 220.Lapedes, A. & Farber, R. (1987). Nonlinear signal processing using neural net-works: Prediction and system modelling. Technical Report LA{UR{87{2662,Los Alamos National Laboratory, Los Alamos, NM.M�ezard, M. & Nadal, J.-P. (1989). Learning in feedforward layered networks: Thetiling algorithm. Journal of Physics A, 22, 2191{2204.Redding, N., Kowalczyk, A., & Downs, T. (1993). A constructive higher ordernetwork algorithm that is polynomial-time. Neural Networks, 6, 997.White, M. (1993). A public domain C implemention of the Cascade Correlation al-gorithm. Department of Computer Science, Carnegie Mellon University, Pitts-burgh, PA.


