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Abstract. This chapter discusses several issues related to the design of
linguistic models with high interpretability using fuzzy genetics-based
machine learning (GBML) algorithms. We assume that a set of
linguistic terms has been given for each variable. Thus our modelling
task is to find a small number of fuzzy rules from possible
combinations of the given linguistic terms. First we formulate a three-
objective optimization problem, which simultaneously minimizes the
total squared error, the number of fuzzy rules, and the total rule length.
Next we show how fuzzy GBML algorithms can be applied to our
problem in the framework of multi-objective optimization as well as
single-objective optimization. Then we point out a possibility that
misleading fuzzy rules can be generated when general and specific
fuzzy rules are simultaneously used in a single linguistic model. Finally
we show that non-standard inclusion-based fuzzy reasoning removes
such an undesirable possibility.

1 Introduction

Since Takagi & Sugeno's pioneering work [33], fuzzy modelling has been extensively
studied [27]. In the 1990s, many approaches were proposed for fuzzy modelling such
as heuristic methods [26, 35], fuzzy-neuro methods [9, 19, 32], and genetic fuzzy
methods [2, 7, 24] where emphasis was primarily placed on the improvement in the
accuracy of fuzzy models. The interpretability of fuzzy models was also discussed in
some studies [29, 31, 34]. Recently the existence of a tradeoff between the accuracy
and the interpretability of fuzzy models was recognized [3] and taken into account in
many studies on fuzzy modelling [22, 23, 28, 30]. While multiple criteria were
simultaneously considered in the design of fuzzy models in those studies, fuzzy
modelling was handled in the framework of single-objective optimization. That is, the
final goal in those studies was to design a single fuzzy model with high accuracy and
high interpretability. The handling of the design of fuzzy models in the framework of
multi-objective optimization was first proposed for fuzzy rule-based classification in
[11] where the goal was not to find a single fuzzy model but to find multiple non-
dominated fuzzy models with respect to the classification accuracy and the number of
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fuzzy rules. The two-objective formulation in [11] was extended to the case of three-
objective optimization in [13, 14] where the total rule length was used as the third
objective. Jimenez et al. [20, 21] discussed multi-objective optimization of Takagi-
Sugeno models where the accuracy, the transparency and the compactness were
considered. Since Takagi-Sugeno models have a linear function in the consequent part
of each fuzzy rule, their linguistic interpretability is not high. Thus we use more
descriptive fuzzy rules with linguistic terms in both the antecedent and consequent
parts (i.e., Mamdani rules).

Let us assume that we have m input-output pairs (X, y,), p=12,..,m for an n-

input and single-output unknown nonlinear function where x, = (x s Xpp) s an

pls -
n-dimensional input vector and y, is the corresponding output value. We also

assume that a set of linguistic terms has been given by domain experts or human users
for each variable. For simplicity of explanation, we use five linguistic terms in Fig. 1
for all the input and output variables. Our task is to linguistically describe the
unknown nonlinear function using fuzzy rules of the following form:

Rule Ry : If x; is A4y and ... and x,, is A4y, then y is By, (1)

where R; is the label of the kth fuzzy rule, x; is the ith input variable, 4;; is an
antecedent fuzzy set on the ith input variable x; , y is the output variable, and B;, is a
consequent fuzzy set. The consequent fuzzy set B;, is one of the five linguistic terms
in Fig. 1 while the antecedent fuzzy set A;; can assume don't care in addition to the
five linguistic terms. Thus the total number of fuzzy rules of the form in (1) is

(5+1)"-5. We do not modify the membership function of each linguistic term
because the modification usually degrades the interpretability of fuzzy rules. Thus the

design of a linguistic model can be viewed as finding a subset of (5+1)"-5 fuzzy

rules. The size of the search space is 2V where N = G+D"-5.

In the next section, we formulate our modelling task as a three-objective
optimization problem. The three objectives are to minimize the total squared error, the
number of fuzzy rules, and the total rule length. The rule length is defined by the
number of antecedent conditions. In Section 3, we show the handling of our
modelling task in the framework of single-objective optimization where the weighted
sum of the three objectives is used as a scalar fitness function. A Pittsburgh-style
fuzzy GBML algorithm is used for finding a single linguistic model. In Section 4, we
show the handling of our modelling task in the framework of multi-objective
optimization. The single-objective fuzzy GBML algorithm is extended using multi-
objective genetic algorithms [4, 6]. Our modelling task is tackled by genetic rule
selection in Section 5 where we also explain heuristic fuzzy rule generation using rule
evaluation measures in data mining [1, 8, 18]. In Section 6, we point out a possibility
that misleading fuzzy rules can be extracted when linguistic models include both
general and specific fuzzy rules. After explaining why misleading fuzzy rules are
extracted, we show that the use of a non-standard fuzzy reasoning method [10]
removes such an undesirable possibility. Section 7 concludes this chapter.
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Fig. 1. Membership functions of five linguistic terms (S: small, MS: medium small, M:
medium, ML: medium large, and L: large)
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Fig. 2. A fuzzy rule table that linguistically describes the nonlinear function in (2)

2 Formulation of Linguistic Modelling

First we explain the basic idea of linguistic modelling using the following two-input
and single-output nonlinear function [33]:

y=(+x2+x319)2, 1<x;<5 for i=12. )

Nozaki et al. [26] extracted 25 linguistic rules in Fig. 2 where the five linguistic
terms in Fig. 1 are used as consequent fuzzy sets. While it is not easy to intuitively
understand the shape of the nonlinear function from the mathematical description in
(2), we can easily grasp a rough three-dimensional shape of the nonlinear function
from the linguistic description shown in Fig. 2. Thus the fuzzy rule table in Fig. 2 is
an interpretable linguistic model of the nonlinear function in (2). As shown in this
example, two-input and single-output nonlinear functions can be linguistically
described by fuzzy rule tables in a human understandable manner.

The main difficulty in the application of fuzzy rule tables to high-dimensional
nonlinear functions is the exponential increase in the number of fuzzy rules, which is
often referred to as the curse of dimensionality. Let K be the number of linguistic
terms for each input variable (e.g., K =5 in Fig. 2), the number of fuzzy rules in an n-

dimensional fuzzy rule table is K" . Thus the interpretability of fuzzy rule tables is
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severely deteriorated by the increase in the number of input variables. For example,
let us consider the following nonlinear function [12]:

1

y= 3
2(1 +exp{d (—60x; + 55)}j

i=1

, 0<x;<1fori=123. 3)

When we have the five linguistic terms in Fig. 1 for all the three input and single
output variables, we can easily generate 125 fuzzy rules using a heuristic method
(e.g., [26, 35]). It is, however, not easy for human users to understand the nonlinear
function from the generated 125 fuzzy rules. This is because the number of the
generated fuzzy rules is too large. It should be noted that the understanding of the
nonlinear function from the mathematical description in (3) is also difficult.

Even when the number of fuzzy rules is small, linguistic models are not always
interpretable. Another difficulty in the handling of high-dimensional problems is the
increase in the rule length. It is not easy for human users to intuitively understand
long fuzzy rules with many antecedent conditions. Thus the length of each fuzzy rule
should be small when we design linguistic models with high interpretability. In this
chapter, the number of antecedent conditions of each fuzzy rule is referred to as the
rule length. For generating short fuzzy rules for high-dimensional problems, we use
“don't care” as an additional antecedent fuzzy set. Since don't care is fully compatible
with any input values, its membership function is defined as

Hion't care(X) =1 for Vx. )

Since don't care conditions are usually omitted from the antecedent part, fuzzy
rules with many don't care conditions are short and interpretable. As an example, let
us consider the following fuzzy rule:

If x, is don't care and x, is don't care and x5 is large

. . &)
then y is medium large.
We omit the two don't care conditions as
If x5 is large then y is medium large. ©)

Short and long fuzzy rules are referred to as general and specific rules,
respectively.

The use of don't care is also supported from the viewpoint of the number of fuzzy
rules required for covering the whole input space. As we can see from Fig. 1, each
linguistic term covers the following fraction of the domain interval [0, 1] of each
input variable:

small: 1/4 (0<x; <0.25), medium small: 1/2 (0< x; <0.5),
medium: 1/2 (0.25< x; <0.75), medium large: 1/2 (0.5<x; <1),
large: 1/4 (0.75<x; <1).

Thus we can see that each linguistic term covers on average 2/5 of the domain
interval [0, 1] where
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2:lx l><2+l><3 . @)
5 5 \4 2

Since each fuzzy rule has n antecedent conditions, it covers on average (2/5)" of

the n-dimensional input space [0, 1]" if no don't care conditions are included. That is,

the fraction covered by each fuzzy rule is exponentially decreased by the increase in
the dimensionality of the input space. The minimum number of fuzzy rules required

for covering the whole input space is roughly estimated as (5/2)" . This becomes

huge in the case of high-dimensional problems. For example, (5/2)" is 9537 for

n =10 and about 91 million for n =20. This discussion clearly shows the necessity of
don't care conditions when we try to linguistically describe high-dimensional
nonlinear functions. General fuzzy rules with many don't care conditions can cover a
large portion of the input space. Thus the whole input space can be covered by a small
number of general fuzzy rules. For example, the following two fuzzy rules were
generated in [12] for the nonlinear function in (3).

v is small, (@)
If x; is large and x, is large and x5 is large then y is medium. )

The first fuzzy rule has no antecedent conditions (i.e., it has don't care conditions
on all the three input variables). The whole input space [0, 1]3 is covered by these two

fuzzy rules (Actually it is covered by the first fuzzy rule). We can easily grasp a rough
shape of the nonlinear function in (3) from the two fuzzy rules in (8)-(9).

A linguistic model with only a small number of general fuzzy rules has high
interpretability. If the approximation accuracy is also high, we may be able to
correctly understand the nonlinear function from the linguistic model. On the other
hand, the linguistic model is unreliable if its approximation accuracy is very low.
Thus not only the interpretability but also the approximation accuracy should be high
when we design a linguistic model for linguistically describing a nonlinear function.

When we use K linguistic terms and don't care in the antecedent part and K
linguistic terms in the consequent part, the total number of possible fuzzy rules is

(K+1)"-K . Let S be a subset of those fuzzy rules. Our linguistic modelling task is
formulated as a three-objective combinatorial optimization problem where the
following objectives are to be minimized:

f1(S) : The total squared error by the rule set S.

f>(8) : The number of fuzzy rules in the rule set S.

Jf3(S) : The total rule length of fuzzy rules in the rule set S.

A similar three-objective problem was formulated for fuzzy rule-based
classification in [13, 14]. It should be noted that the third objective is not the average
rule length but the total rule length. This is because the average rule length does not
appropriately measure the complexity of linguistic models. For example, let us
consider a linguistic model with three fuzzy rules of the average length 3. If we
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include an additional fuzzy rule of the length 1, the average rule length is decreased
from 3 to 2.5 while the actual complexity of the linguistic model is increased.

The first objective is calculated from the difference between the actual output value
y, and the estimated output value y(x p) - The latter is calculated as

(10)

where Hay (x,) is the compatibility grade of the antecedent part Ay = (4, ..., 4y,)
of the fuzzy rule R, with the input vector x ,, and by is a representative real number

of the consequent fuzzy set By . As the representative real number of each linguistic

term in Fig. 1, we use the center of its triangular membership function (i.e., 0.0 for
small, 0.25 for medium small, 0.5 for medium, 0.75 for medium large, and 1.0 for

large). The compatibility grade f4 ‘ (x,) is calculated by the product operation as

:uAk (Xp)zluAkl (xpl)';uAkz (po)' '/uAkn (xpn) > (11)

where f24,.() is the membership function of the antecedent fuzzy set 4y, .
The total squared error over the m input-output pairs (X,, y,), p=12,..m is

calculated from the actual output value y, and the estimated output value P(x p) as

| LN 2
IOESNECHESAE (12)
p=l
If there is no compatible fuzzy rule with the input vector x , , the estimated output
value p(x p) cannot be calculated by (10). In this case, we use a pre-specified large
penalty value as the corresponding squared error. In our computer simulations, we
specify the penalty value as | p(x »)=Vp \2=1 because the range of the output

variable is the unit interval [0, 1] in numerical examples of this chapter.

3 Single-Objective Fuzzy GBML Algorithm

3.1 Problem Specification

When our three-objective linguistic modelling problem is handled in the framework
of single-objective optimization, a scalar fitness function is defined from the three
objectives. We use the following weighted sum of the three objectives as the scalar
fitness function to be maximized in fuzzy GBML algorithms:

f(S)=-wy- /1(S)—wy - f2(S)— w3 f3(5), (13)
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where w; is a user-definable positive weight for the ith objective f;(S), i=123.

Our three-objective linguistic modelling problem is reduced to the task of finding the
optimal rule set that maximizes the scalar fitness function in (13). In this case, the
obtained optimal rule set totally depends on the specification of the three weights.

3.2 Pittsburgh-Style Fuzzy GBML Algorithm

Many fuzzy GBML algorithms can be classified into two categories: Michigan
Approach and Pittsburgh Approach (see [5] for various fuzzy GBML algorithms).
Each fuzzy rule is handled as an individual in Michigan-style algorithms while a set
of fuzzy rules is handled as an individual in Pittsburgh-style algorithms. In general,
Michigan-style algorithms need much less computational load than Pittsburgh-style
algorithms. The optimization of rule sets is indirectly executed through the evolution
of fuzzy rules in Michigan-style algorithms while rule sets are directly optimized in
Pittsburgh-style algorithms through the evolution of rule sets.

Since the scalar fitness function in (13) involves the minimization of the number of
fuzzy rules, the application of Michigan-style algorithms is difficult. This is because
the minimization of the number of fuzzy rules means the minimization of the
population size in Michigan-style algorithms. Thus we use a Pittsburgh-style
algorithm. The outline of our Pittsburgh-style algorithm is written as follows:

[Outline of Pittsburgh-Style Fuzzy GBML Algorithm]

Step 1: Randomly generate a number of rule sets as an initial population.

Step 2: Repeat the following procedures for generating new rule sets.
(a) Select a pair of parent rule sets from the current population.
(b) Generate a new rule set from the selected pair by a crossover operation.
(c) Apply mutation operations to the generated rule set.

Step 3: Update the current population using the newly generated rule sets.

Step 4: If a pre-specified stopping condition is not satisfied, return to Step 2.

In our fuzzy GBML algorithm, the fuzzy rule R, in (1) is coded by its n
antecedent and single consequent fuzzy sets as R = A4y -+ Ay, By - A rule set S is
represented by a concatenated string where each substring of the length (n+1)

corresponds to a single fuzzy rule. Initial rule sets are generated by randomly
assigning a linguistic term or don't care to A;; and a linguistic term to By, .

From the current population, two parent rule sets are selected according to their
fitness values. We use the binary tournament selection where two rule sets are
randomly drawn with replacement from the current population and the better one with
the higher fitness value is chosen as a parent. The binary tournament selection is
iterated for selecting a pair of parent rule sets.

Since the number of fuzzy rules is minimized in our fuzzy GBML algorithm, the
string length is not fixed. The number of fuzzy rules in each rule set is modified by a
crossover operation, which generates a new string whose length is different from its
parent strings. We use a kind of one-point crossover with different cutoff points
illustrated in Fig. 3 where R, denotes a substring of the length (n+1). One of the

two children in Fig. 3 is randomly selected as a new rule set while it is also possible to
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use both children. The crossover operation is applied to each pair of selected parents
with a pre-specified crossover probability. When the crossover operation is not
applied, one of the two parents is handled as a new rule set. The crossover operation
in Fig. 3 can be viewed as a special form of the cut and splice crossover used in messy
genetic algorithms (see [5] for details of the cut and splice crossover). For efficiently
searching for compact rule sets, we use a heuristic procedure after the crossover
operation. The heuristic procedure imposes an upper bound on the number of fuzzy
rules in each rule set. In our computer simulations, only the first 20 fuzzy rules from
the left of each string are used and the other rules are removed from the string when
the number of fuzzy rules exceeds 20.

A mutation operation is applied with a pre-specified mutation probability after the
crossover operation. Our mutation operation randomly replaces each antecedent (and
consequent) fuzzy set with another one. It should be noted that don't care is used only
in the antecedent part. We also use a different kind of mutation, which randomly
removes each fuzzy rule from the rule set with a pre-specified probability. We can
also use heuristic-based mutation operations for improving the search ability of our
fuzzy GBML algorithm. For example, the consequent fuzzy set of each fuzzy rule is
probabilistically replaced with more appropriate one using compatible input-output
pairs with its antecedent part. Moreover a new fuzzy rule can be directly generated
from an input-output pair with the largest error in a heuristic manner and added to a
rule set. See [16] for details of these heuristic-based mutation operations.

Let Ny, be the population size. The selection, crossover and mutation are iterated

for generating (N,,, —1) rule sets as a new population. The best rule set with the

pop
largest fitness value in the current population is added to the generated new
population with no modifications as an elite rule set.

y
Parent 1 |R1[R2|R3|R4|R5|Re|

Parent 2 [RAIRBIRCIRD|RE]RF]

s

Child  [R1|R2|RAIRBIRC] or  [R3[R4]R5[R6]RDIRE[RF]

Fig. 3. A kind of one-point crossover with different cutoff points

4 Three-Objective Fuzzy GBML Algorithm

4.1 Problem Specification

Our task is to find all non-dominated rule sets (i.e., Pareto-optimal solutions) with
respect to the three objectives when linguistic modelling is handled in the framework
of multi-objective optimization. First we briefly describe the concept of Pareto-
optimality. A rule set S, is said to dominate another rule set Sp (i.e., S, is better

than Sp: S, < Sp) if all the following three inequalities hold:
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Fig. 4. lllustration of the tradeoff between the error and the complexity of rule sets

NS N(Sp)s (8= /2(SB), [3(S4)= f3(SB), (14)
and at least one of the following three inequalities holds:
NS <f1(SB)s [2(S)<f2(Sp), f3(S4)<f3(SB). (15)

The first condition (i.e., all the three inequalities in (14)) means that no objective of
S, is worse than Sp . The second condition (i.e., one of the three inequalities in (15))

means that at least one objective of S, is better than Sz . When a rule set S is not

dominated by any other rule sets, S is said to be a Pareto-optimal solution with respect
to the three objectives. Our three-objective linguistic modelling problem is to find all
Pareto-optimal solutions. Since there exists a tradeoff between the accuracy and the
complexity of linguistic models [3], our linguistic modelling problem has many
Pareto-optimal solutions with different accuracy and different complexity. The
tradeoff between the error and the complexity of rule sets is illustrated in Fig. 4.

4.2  Multi-objective Fuzzy GBML Algorithm

Our Pittsburgh-style fuzzy GBML algorithm in the previous section can be extended
to the case of three-objective optimization as in [13, 14] for fuzzy rule-based pattern
classification. Recently many multi-objective genetic algorithms (MOGAs) have been
proposed [4, 6] together with various performance measures [25]. Since most
MOGAs are general-purpose search algorithms, they can be used for finding Pareto-
optimal solutions of our three-objective linguistic modelling problem.

The main difference between single-objective and multi-objective fuzzy GBML
algorithms is the fitness calculation for each rule set. The fitness calculation was very
simple in the previous section because the three objectives were integrated into the
scalar fitness function using the user-definable weight values. On the other hand, we
do not assume any a priori knowledge about the relative importance of the three
objectives in this section. Thus the fitness value of each rule set is calculated based on
the Pareto-dominance relation defined by (14)-(15). Larger fitness values are usually
assigned to non-dominated rule sets than dominated ones. For maintaining the
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diversity of solutions (i.e., finding a variety of Pareto-optimal solutions), the concept
of fitness sharing or crowding is also used in the fitness calculation. A larger fitness
value is usually assigned to a rule set that is less similar to other rule sets. The concept
of elite solutions should be modified in multi-objective optimization. While the best
solution with the largest fitness value was used as an elite solution in the previous
section, each non-dominated solution in the current population can be viewed as an
elite solution. For various implementations of MOGAs, see [4, 6].

Some MOGAs have a secondary population where tentative non-dominated
solutions are stored separately from the current population. The secondary population
is updated by comparing it with the current population in every generation. When we
use a MOGA with a secondary population, the outline of our single-objective fuzzy
GBML algorithm in the previous section is extended to the case of multi-objective
optimization as follows:

[Outline of Pittsburgh-Style Multi-Objective Fuzzy GBML Algorithm]

Step 1: Randomly generate a number of rule sets as an initial population. A copy
of each non-dominated rule set in the initial population is included in the
secondary population.

Step 2: Repeat the following procedures for generating new rule sets.

(a) Select a pair of parent rule sets from the current population.
(b) Generate a new rule set from the selected pair by a crossover operation.
(c) Apply mutation operations to the generated rule set.

Step 3: Update the secondary population using the newly generated rule sets in
Step 2. Generate a new population using the current population, the newly
generated rule sets, and the secondary population.

Step 4: If a pre-specified stopping condition is not satisfied, return to Step 2.

When the execution is terminated, non-dominated rule sets stored in the secondary
population are presented to human users as solutions of the three-objective linguistic
modelling problem. Those rule sets are used for examining the tradeoff between the
accuracy and the interpretability of linguistic models. When a single linguistic model
should be chosen, the choice depends on the preference of human users. In general,
the choice of a single linguistic model from multiple non-dominated ones is much
easier than the pre-specification of the weight value to each objective.

5 Genetic Rule Selection

5.1 Basic Idea of Genetic Rule Selection

The design of a linguistic model for an n-input and single-output nonlinear function
can be viewed as finding a subset of (K +1)" - K fuzzy rules where K is the number

of linguistic terms given for each variable. When » is small, we can handle linguistic
modelling as a rule selection problem where a small number of fuzzy rules are

selected from (K +1)"-K candidate rules. Single-objective and multi-objective
genetic algorithms are directly applicable to such a rule selection problem because
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each rule set is naturally represented by a binary string of the length (K +1)" - K . The

size of the search space is 2V where N = (K+D)"-K.

Genetic rule selection was originally proposed for fuzzy rule-based classification
by Ishibuchi et al. [15] where the weighted sum of the classification accuracy and the
number of fuzzy rules was used as a fitness function. Their study was extended to
two-objective rule selection in [11] and three-objective rule selection in [13, 14].
Since the number of candidate rules exponentially increases with the number of input
variables, the computational load and the memory storage for genetic rule selection
also exponentially increase. As a result, genetic rule selection is much slower than
fuzzy GBML algorithms as shown in [16] except for the case of low-dimensional

problems. Moreover, it is impractical to use all the (K+1)"-K fuzzy rules as
candidate rules when the number of input variables is large (i.e., when # is large).

5.2 Heuristic Rule Generation Using Data Mining Criteria

When the number of input variables is small, we can use all the (K +1)"-K fuzzy

rules as candidate rules in genetic rule selection. On the other hand, we need some
prescreening procedure of candidate rules in the application of genetic rule selection
to high-dimensional problems. We proposed the use of heuristic rule evaluation
criteria for candidate rule prescreening in [17] for fuzzy rule-based classification.
More specifically, two rule evaluation measures (i.e., support and confidence) were
employed for evaluating fuzzy rules. The proposed idea can be also used for linguistic
modelling. The two rule evaluation measures, which were originally used for
evaluating association rules in the area of data mining [1], were extended to the case
of fuzzy rules in [8, 18].

The confidence c(R;) of the fuzzy rule R, in (1) is defined using the given m

input-output pairs (X, y,), p=12,...mas

S tiay (%) g, (7))
o(Ry) == : (16)
z #Ak (Xp)
p=1

where HAy (x,) is the compatibility grade of the input vector x, with the

antecedent part Ay =(4gy, ..., g,) of the fuzzy rule Ry, and pp (y,) is the
compatibility grade of the output value y, with the consequent part By of R . The
denominator of (16) corresponds to the number of input-output pairs that are
compatible with the antecedent part A; of the fuzzy rule R, . The numerator

corresponds to the number of input-output pairs that are compatible with both the
antecedent and consequent parts of R; .

The support s(R;) of the fuzzy rule R; is defined as
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S s, (%) g, (7))

s(Ry) = 22 . (17)
m

When both the antecedent and consequent parts of the fuzzy rule R; are specified

by non-fuzzy concepts, these two definitions in (16) and (17) are exactly the same as
those used for non-fuzzy association rules in data mining [1].

The two rule evaluation measures are employed for extracting a pre-specified
number of candidate rules in various manners. For example, we can use one of the
following rule extraction criteria:

(1) Choose candidate rules using the confidence measure.

(2) Choose candidate rules using the support measure.

(3) Choose candidate rules using the confidence measure from fuzzy rules whose
support values are not less than a pre-specified minimum support level.

(4) Choose candidate rules using the support measure from fuzzy rules whose
confidence values are not less than a pre-specified minimum confidence level.

(5) Choose candidate rules using a composite criterion of the confidence and support
measures. A simple example of such a composite criterion is their product.

The length of fuzzy rules can be used as a constraint condition on candidate rules.
That is, candidate rules are chosen using a rule extraction criterion from fuzzy rules
that are shorter than or equal to a pre-specified maximum length. The use of the upper
bound on the length of candidate rules is consistent with the third objective of our
linguistic modelling problem (i.e., minimization of the total rule length).

5.3  Genetic Algorithms for Rule Selection

Let us assume that we have N candidate rules for genetic rule selection. Any subset S
of those candidate rules is denoted by a binary string of the length N as

S=s5180 85y, (18)
where s;=1 and s;=0 mean that the jth candidate rule is included in S and
excluded from S, respectively.

When the weight values for the three objectives are given from domain experts or
human users, we can use the weighted sum in (13) as a scalar fitness function. In this
case, we can use standard genetic algorithms for finding the optimal rule set that
maximizes the scalar fitness function. On the other hand, genetic rule selection is
performed using multi-objective genetic algorithms [4, 6] when no a priori
knowledge is given for the relative importance of the three objectives.

As shown in (18), the length of the binary string S is N (i.e., the number of

candidate rules). Thus the size of the search space is 2V This means that long
computation time and large memory storage are needed for executing genetic rule
selection when the number of candidate rules is large. Two heuristic procedures were
used for improving the efficiency of genetic rule selection for fuzzy rule-based
classification [11, 13, 14, 15, 17]. One is the use of biased mutation where a larger
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mutation probability is assigned to the mutation from 1 to 0 than that from 0 to 1. The
biased mutation is for efficiently decreasing the number of fuzzy rules in each rule
set. The other is the removal of unnecessary fuzzy rules. If the antecedent part of a
fuzzy rule is not compatible with any input-output pair, we can remove the fuzzy rule
without deteriorating the approximation accuracy. At the same time, the removal of
such an unnecessary rule improves the second and third objectives of our linguistic
modelling problem. While the efficiency of genetic rule selection mainly depends on
the choice of candidate rules, the biased mutation and the removal of unnecessary
rules also improve the search ability to efficiently find good rule sets.

6 Modification of Fuzzy Reasoning

6.1 Computer Simulations on Simple Numerical Examples

As a test problem, we generated 9261 input-output pairs (x,1, X2, Xp3, Vp), P=1,
2, ..., 9261, from the three-input and single-output nonlinear function in (3) using the
21x21x21 uniform grid of the input space [0, 1]3: Xpi = 0.00, 0.05, 0.10, ..., 1.00

for i=1,2,3. The five linguistic terms in Fig. 1 were used for all the three input and
single output variables. We also used don't care as an additional antecedent fuzzy set.
We assumed that the following scalar fitness function was given:

S(8)==100£1(S) = f2(8) = f3(5) . (19)

We used the fuzzy GBML algorithm in Section 3 for finding the optimal rule set
with respect to this scalar fitness function. As explained in Section 3, the heuristic
procedure with the upper bound on the number of fuzzy rules (i.e., 20 rules) was used.
The other heuristic procedures were not utilized in computer simulations. Our fuzzy
GBML algorithm was executed under the following parameter specifications:

Population size: 200,

The number of fuzzy rules in each initial rule set: 10,

Crossover probability: 0.8,

Mutation probability for replacing each fuzzy set with another one: 0.1,
Mutation probability for removing each fuzzy rule: 0.1,

Stopping condition: 5000 generations.

We applied our fuzzy GBML algorithm to the generated 9261 input-output pairs 10
times using different initial populations. A rule set with the following two rules was
obtained from 4 out of 10 runs:

Ry 1y is small, (20)
Rp:If x; is large and x, is large and xj is large then y is large. 2D

The total squared error over the 9261 input-output pairs was 1.045. Thus we can
see that the accuracy of the rule set with R, and Rp is high. In all the other six runs,

these two rules were obtained as a part of larger rule sets with additional fuzzy rules.
The total squared error of those larger rule sets was slightly better than the case of the
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rule set with the above two fuzzy rules. Actually it was between 0.738 and 0.968.
These simulation results were much more sensitive to the specification of the weight
values in (19) than the above parameter values in our fuzzy GBML algorithm.

We can easily understand a rough shape of the nonlinear function from the above
two fuzzy rules. That is, one may think that the output value is small except for the
region with large x|, large x, and large x5 where the output value is large.

Using the confidence measure, we evaluated the two fuzzy rules. The confidence
value of each fuzzy rule was calculated as follows:

¢(Rp)=0.994 and c(Rg)=0.000. (22)

We can see that the confidence value of Rp is very small while that of R, is

large. For comparison, we also calculated the confidence values of the following
fuzzy rules that have the same antecedent part as Rp but different consequent fuzzy

sets:

Rc: If x; is large and x, is large and x3 is large then y is small,
Rp : If xy is large and x, is large and x5 is large then y is medium small,
Rg : If x; is large and x, is large and x5 is large then y is medium,

Rp: If x; is large and x, is large and x5 is large then y is medium large.

The confidence value of each fuzzy rule was calculated as follows:
¢(Rc)=10.660, c(Rp)=0.148, c(Rg)=0.192, and c(Rp)=10.000. (23)

We can see that the fuzzy rules R-, Rp and Rg are more compatible with the
given input-output pairs than the obtained fuzzy rule Rp. That is, the output value is
not large but small, medium small or medium for input vectors with large x;, large
X, and large x5 . In this sense, the obtained fuzzy rule Rp in (21) is misleading.

For visually examining why such a misleading fuzzy rule was obtained, we applied
our fuzzy GBML algorithm to a two-input and single-output nonlinear function in
Fig. 5 in the same manner as the previous computer simulation. We first generated
441 input-output pairs (xp1, Xp2, Yp), p = 1,2, ..., 441, from the nonlinear function

using the 21x21 uniform grid of the input space [0, 1]2 . Then we applied our fuzzy
GBML algorithm to the generated 441 input-output pairs 20 times using different
initial populations. A rule set with the following three rules was obtained from 17 out
of 20 runs:

Ry :yissmall, (24)
Ryp: If x| is smallthen y is medium, 25)
Ry If x; is small and x, is small then y is large. (206)

The total squared error was 0. Actually we depicted the nonlinear function in Fig. 5
by applying the fuzzy reasoning method in (10) to the three fuzzy rules in (24)-(26).
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Fig. 5. Nonlinear function to be linguistically described

Let us try to imagine a three-dimensional shape of a nonlinear function from the
three fuzzy rules in (24)-(26). From the fuzzy rule Ry, we think that the output is
large for small x| and small x,.From the fuzzy rule Ry, we think that the output is
medium for small x| . For other input vectors, the output values seem to be small. As
a result, we may have a three-dimensional shape that is similar to Fig. 6. It should be
noted that the intuitively imagined shape is different from Fig. 5 from which the three
fuzzy rules in (24)-(26) were derived by our fuzzy GBML algorithm. We further

examined the three fuzzy rules using the confidence measure. The confidence value of
each fuzzy rule was calculated from the 441 input-output pairs as follows:

¢(R;)=0.819, ¢(Ry;)=0.078 and c(Ryy)= 0.000. 27)

While the first fuzzy rule R; has a large confidence value, the confidence values of
the other fuzzy rules are very small. This means that the fuzzy rules Ry and Ry are
not consistent with the given input-output pairs.

Let us explain why the misleading fuzzy rules were obtained for the nonlinear
functions in (3) and Fig. 5. In our approach to linguistic modelling, we use don't care
as an additional antecedent fuzzy set for generating short fuzzy rules and covering the
whole input space by a small number of fuzzy rules. As we have already explained in
Section 2, the use of don't care is necessary for linguistically explaining a nonlinear
function using a small number of fuzzy rules. Thus our linguistic model is a mixture
of general and specific fuzzy rules. When we intuitively estimate an output value
from general and specific rules, specific rules have usually higher priority than
general rules. For example, we may mainly use the most specific fuzzy rule R in

(26) when we estimate an output value for small x; and small x, using the three

fuzzy rules in (24)-(26). In this case, the output is intuitively estimated as large (see
Fig. 6). On the other hand, most fuzzy reasoning methods are based on the
interpolation of compatible fuzzy rules. Thus the estimated output for small x; and

small x, is usually calculated as medium (see Fig. 5). This difference between our
intuition and fuzzy reasoning leads to linguistic models with misleading fuzzy rules.
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Fig. 6. Nonlinear function that is intuitively depicted from Ry, Ry and Ry in (24)-(26)

6.2 Non-standard Inclusion-Based Fuzzy Reasoning

A non-standard fuzzy reasoning method based on an inclusion relation among fuzzy
rules was proposed for obtaining intuitively acceptable fuzzy reasoning results [10].
The proposal of such an inclusion-based fuzzy reasoning method was motivated by
the above-mentioned difficulty of standard interpolation-based fuzzy reasoning.

First we explain an inclusion relation using the following two fuzzy rules:

Ry :If x; is A4y and ... and x,, is A4y, then y is By, (28)
R,:1f xy is A,y and ...and x, is 4, then y is B,. 29)

When the inclusion relation 4,; < 4; holds between the antecedent fuzzy sets for
i=12,..,n, we say that the fuzzy rule R, is included in the fuzzy rule R, (i.e.,
R, < Ry ). In order to implement the preference for more specific fuzzy rules, the
standard fuzzy reasoning method in (10) is modified as

S HRe, X)) by ta, (X))
RreS

Y Ry X)) Hay (X))
RpeS

(x,)= (30)

where @¢(Ry, x,,) is a weight determined by the inclusion relation between R; and
the other fuzzy rules in the rule set S. The value of ¢(R;,x,) is small when Ry
includes more specific rules compatible with the input vector x,. In this case, the
weight of R is discounted in fuzzy reasoning. Actually ¢(Ry, x,) is defined using
a user-definable non-negative parameter [ as

ORexp)= T1 (1-py, (x,)7. G1)

Rq CRy
q#k
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When no fuzzy rule is included in Ry, @(Ry, x,) is specified as @(R;, x,)=1

because the weight of R; should not be discounted in this case.

The nonlinear function in Fig. 6 was the fuzzy reasoning result where the
inclusion-based fuzzy reasoning method with £ =1 in (30) was applied to the three
fuzzy rules Ry, Ry and Ry in (24)-(26). From the comparison between the three

fuzzy rules in (24)-(26) and the three-dimensional shape of the nonlinear function in
Fig. 6, we can see that an intuitively acceptable fuzzy reasoning result was obtained
by the non-standard inclusion-based fuzzy reasoning method.

6.3  Computer Simulations Using Non-standard Fuzzy Reasoning

In the same manner as Subsection 6.1, we applied our fuzzy GBML algorithm to the
nonlinear function in Fig. 5. When the total squared error was calculated, we used the
non-standard inclusion-based fuzzy reasoning method with B =2 instead of the
standard interpolation-based fuzzy reasoning method in (10). The computer
simulation was iterated 20 times using different initial populations. A rule set with the
following three fuzzy rules was obtained from 15 out of 20 runs:

y is small, (32)
If x; issmall then y is medium small, (33)
If x| is small and x, is small then y is medium. (34)

From the comparison between the obtained three fuzzy rules and Fig. 5, we can see
that the nonlinear function in Fig. 5 is linguistically described in an intuitively
acceptable manner. That is, the obtained fuzzy rules in (32)-(34) are consistent with
the three-dimensional shape of the nonlinear function in Fig. 5.

In the same manner as Subsection 6.1, we also applied our fuzzy GBML algorithm
to the nonlinear function in (3) using the non-standard fuzzy reasoning method with
P =5. The computer simulation was iterated 10 times using different initial
populations. A rule set with the following two fuzzy rules was obtained from all the
10 runs.

Ry 1y is small, (3%5)

Rg : If xy is large and x, is large and x5 is large then y is medium. (36)

As we have already explained in Subsection 6.1, these two fuzzy rules have large
confidence values (i.e., ¢(Rp)=0.994 and c(Rg)=0.192). While the misleading

fuzzy rule Rg with a very small confidence value (i.e., ¢(Rg)=0.000) was obtained

in Subsection 6.1 using the standard interpolation-based fuzzy reasoning method, the
fuzzy rule Rp with a larger confidence value was obtained using the non-standard

inclusion-based fuzzy reasoning method.
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7 Concluding Remarks

In this chapter, we discussed linguistic modelling for linguistically describing
nonlinear functions in a human understandable manner. That is, we discussed
linguistic modelling for obtaining linguistic models with high interpretability as well
as high accuracy. We assumed that a set of linguistic terms was given for each
variable from domain experts or human users. Thus we did not discuss the
interpretability of fuzzy partitions. The interpretability of linguistic models was
defined by the number of fuzzy rules and the total rule length. In this context, we
explained the validity of the use of the total rule length instead of the average rule
length as a complexity measure of linguistic models. We also explained the necessity
of the use of don't care as an additional antecedent fuzzy set for linguistically
describing high-dimensional nonlinear functions using a small number of fuzzy rules
with high interpretability.

Linguistic modelling was formulated as a three-objective optimization problem
where the total squared error, the number of fuzzy rules and the total rule length were
minimized. We explained how the formulated linguistic modelling problem can be
handled by single-objective and multi-objective genetic algorithms. We showed two
approaches to our linguistic modelling problem: fuzzy genetics-based machine
learning and genetic rule selection. Then we pointed out a possibility that misleading
fuzzy rules can be obtained from our linguistic modelling problem. Finally we
demonstrated that the use of the non-standard inclusion-based fuzzy reasoning
method removed such an undesirable possibility.
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