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ABSTRACT

Motivation: Microarray experiments have revolutionized the study of

gene expression with their ability to generate large amounts of data.

This article describes an alternative to existing approaches to

clustering of gene expression profiles; the key idea is to cluster in

stages using a hierarchy of distance measures. This method is

motivated by the way in which the human mind sorts and so groups

many items. The distance measures arise from the orthogonal

breakup of Euclidean distance, giving us a set of independent

measures of different attributes of the gene expression profile.

Interpretation of these distances is closely related to the statistical

design of the microarray experiment. This clustering method not

only accommodates missing data but also leads to an associated

imputation method.

Results: The performance of the clustering and imputation methods

was tested on a simulated dataset, a yeast cell cycle dataset and

a central nervous system development dataset. Based on the Rand

and adjusted Rand indices, the clustering method is more consistent

with the biological classification of the data than commonly used

clustering methods. The imputation method, at varying levels of

missingness, outperforms most imputation methods, based on root

mean squared error (RMSE).

Availability: Code in R is available on request from the authors.

Contact: dwong@efs.mq.edu.au

1 INTRODUCTION

Microarray experiments allow us to measure the expression of
tens of thousands of genes simultaneously, thus having the

potential to dramatically increase the efficiency of genome-wide
studies. Following the conduct of a microarray experiment,
a primary concern of the researcher is the appropriate grouping

of similarly expressed genes. The biological motivation for
performing clustering lies in the fact that many co-expressed
genes are also co-regulated; clustering aids in functional

annotation of novel genes, identification of transcription
factor binding sites and discovery of complete biological
pathways (Boutros and Okey, 2005). A secondary, but related,

concern is the need for imputation of missing data. Gene
expression profiles, especially those obtained from microarray

chips, often include a substantial number of missing values.

Techniques such as hierarchical clustering (Eisen et al., 1998),

k-means (Soukas et al., 2000), Cluster affinity search

technique (CAST) (Ben-Dor et al., 1999), gene shaving

(Hastie et al., 2000), the use of self-organizing maps

(SOM) (Tamayo et al., 1999), self-organizing tree algorithms

(SOTA) (Herrero et al., 2001) and mixture models (McLachlan

et al., 2002; Yeung et al., 2001) to name a few, have been used

in the clustering of gene expression profiles. In practice, the

most common clustering methods used by biologists for gene

expression data (Knudsen, 2002) are hierarchical clustering,

k-means and SOM. Hierarchical clustering links the genes,

based on closest distance, to form a ‘family tree’. The k-means

method starts by randomly assigning each gene to one of

k clusters. The distance between each gene and each cluster

centre (or centroid) is calculated and used to assign genes to the

closest centroid. The genes assigned to a centroid become a new

cluster. The centroids are then recalculated and genes

reassigned until the centroids converge. The SOM method is

similar to k-means, the difference being that it is constrained

to work on a 2D grid that provides information about

the relationship between neighbouring clusters. SOTA is a

hierarchical SOM, clustering using the hierarchical structure

with the accuracy and robustness of a neural network. Most

clustering techniques, however, are unable to deal with missing

data. Samples containing missing data must be omitted or the

values imputed.

de Brevern et al. (2004) have shown that the imputation

method used affects the final clustering, even at a low rate

of missingness. Therefore, choosing an appropriate imputa-

tion method is a crucial step in the analysis of gene expres-

sion data. Generally, we can categorize imputation methods

into two classes: the first uses local information and the

second uses global information. The two methods proposed

initially by Troyanskaya et al. (2001), namely the k-nearest

neighbour (KNN) and singular value decomposition (SVD)

imputation methods are the respective pioneers in these two

categories.

The KNN imputation method uses information from the

k-nearest neighbours to estimate the missing value. Subsequent

articles belonging to this category further developed this idea

by either altering the gene selection process or the design of the

estimation rule. The KNN method uses Euclidean distance for

gene selection and a weighted average (with weights determined

by gene similarity) for the estimation rule. Improvements in*To whom correspondence should be addressed.
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gene selection include the use of Bayesian variable selection

(Zhou et al., 2003), Gaussian mixture clustering (Ouyang et al.,

2004) or correlation (Bo et al., 2004). Advancements in the

estimation rule include the use of linear models (Scheel et al.,

2005; Zhou et al., 2003), non-linear models (Zhou et al., 2003),

the (Expectation-maximization) EM-algorithm (Bo et al., 2004;

Ouyang et al., 2004) or least squares methods (Bo et al., 2004;

Kim et al., 2005; Nguyen et al., 2004).
The SVD imputation method uses singular value decom-

position to obtain mutually orthogonal expression patterns that

can be linearly combined to approximate the expression of all

genes in the dataset. Estimates of the missing values can be

obtained by regressing against this set of genes. Here, a set of

genes which can represent the entire dataset is selected and used

to estimate the missing value. Further development in this

category includes the introduction of Bayesian estimation into

principal component analysis (Oba et al., 2003), partial least

squares (Nguyen et al., 2004), a covariance-based method to

rank genes (Sehgal et al., 2005) and support vector regression

(Wang et al., 2006).
Other methods are either a variation on, or a combination of,

the above categories. These include a sequential KNN method

(Kim et al., 2004) which uses previously imputed values to

impute subsequent missing values, use of a convex combination

of existing methods (Jornsten et al., 2005), use of information

about the quality of the spots (Tom et al., 2005) and use of

information from gene ontology (Tuikkala et al., 2006). To

date, the KNN approach is the most widely used imputation

method due to its simplicity, efficiency and availability.
This article describes an alternative approach to the

clustering of microarray data; the method accommodates

missing data and also leads to an associated imputation

method. This method is adapted from Godfrey et al. (2002),

where it has been successfully used in a horticultural context

for clustering in genotype-by-environment analyses with miss-

ing data. The method outperforms commonly used clustering

methods while retaining their simplicity. The associated

imputation method also produces promising results.
Section 2 describes the method by first detailing the

derivation of the distance measures. This is followed by a

modification of the distance measures to accommodate missing

data. As an aside, the relationship between the distance

measures and the experimental design used is presented. We

then describe the clustering and imputation algorithms

and introduce the ‘jump factor’ as a stopping criterion.

In Section 3, the results of clustering and imputation using

both two-stage and three-stage methods are presented. A short

discussion is provided in Section 4 and a brief conclusion given

in Section 5.

2 METHODS

The clustering method introduced is based on the simple idea of

grouping in stages using a hierarchy of distance measures. The method

captures the way in which the human mind sorts and thus groups items

using a hierarchy of attributes, so increasing the probability of success.

Consider, for example, how we tackle a jigsaw puzzle. It is common to

sort the pieces into groups at the outset; sorting may require a number

of stages, depending on the complexity of the puzzle. For example,

we might first group the pieces based on shape into edge and non-edge

pieces. Within these groups, we then sort based on colour. Similarly

here, the more complex the design of the experiment, the greater the

number of stages required for clustering. The situation can be modelled

probabilistically, demonstrating that the probability of accurately

grouping the items is always higher when done in stages than when

done all at once.

2.1 Distance measures

The distance measures giving rise to the stages are the result of breaking

Euclidean distance into a number of orthogonal components. For

observations ys, s ¼ 1, 2, . . . ,S, we commonly have a decomposition of

the total sum of squares into, say, n orthogonal components, as

XS
s¼1

y2s ¼ C2
1 þ C2

2 þ � � � þ C2
n

Let yis denote the gene expression of the ith gene and sth sample. The

squared Euclidean distance between the ith and jth gene, E2
ij, is

E2
ij ¼

XS
s¼1

ðyis � yjsÞ
2

Here we consider yis � yjs as our observation, so squared Euclidean

distance is the total sum of squares of the given observations. Thus, we

can commonly obtain an orthogonal decomposition of the squared

Euclidean distance between the ith and jth gene, E2
ij, as

E2
ij ¼ D2

1 þD2
2 þ � � � þD2

n

Each Dk, where k ¼ 1, 2 , . . . , n, corresponds to a certain attribute of the

data. Interpretation of Dk is on a case-by-case basis.

2.1.1 Two-stage decomposition Here we describe the simplest

situation where there are only two components. Based on the very

simple model

ys ¼ �þ �s

for s ¼ 1, 2, . . . ,S, the total sum of squares can be expressed as

XS
s¼1

ys
2 ¼ S �y2 þ

XS
s¼1

ð ys � �yÞ2

where �y is the sample mean.

Paralleling this, the partitioned squared Euclidean distance between

the ith and jth gene is given as

E2
ij ¼

XS
s¼1

ð yis � yjsÞ
2

¼ Sð �yi� � �yj�Þ
2
þ ðS� 1Þ

PS
s¼1 ð yis � �yi�Þ � ð yjs � �yj�Þ

� �2
S� 1

where �yi� and �yj� are the means of the yis and the yjs respectively across

all S samples.

Thus, we have partitioned the squared Euclidean distance between

the ith and jth expression profiles into two squared distance measures,

E2
ij ¼ D2

1 þD2
2

Here, D1 is a multiple of a main effect distance Mij, where

Mij ¼ j �yi� � �yj�j

and D2 is a multiple of an interaction distance Iij, where

Iij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPS
s¼1 ðyis � �yi�Þ � ðyjs � �yj�Þ

� �2
S� 1

s
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In summary, squared Euclidean distance can be written as

E2
ij ¼ SM2

ij þ ðS� 1ÞI2ij

2.1.2 Three-stage decomposition Using a more elaborate model,

we can extend the two-stage method to a three-stage method. Suppose

we have T treatments within a gene and St repetitions (samples) within

treatment t. For a given gene, we can express this in the model

yts ¼ �þ �t þ �ts

where t ¼ 1, 2, . . . ,T and s ¼ 1, 2, . . . ,St. Letting S ¼
PT

t¼1 St, analysis

of this model can be summarized using the unbalanced one-way

analysis of variance (ANOVA) table shown in Table 1. Thus, the total

sum of squares of the yts can be partitioned into three orthogonal

components as

XT
t¼1

XSt

s¼1

y2ts ¼ S �y2�� þ
XT
t¼1

Stð �yt� � �y��Þ
2
þ
XT
t¼1

XSt

s¼1

ð yts � �yt�Þ
2

Letting yits and yjts denote the expression values for the ith and jth genes

in the tth treatment and sth sample, the squared Euclidean distance

between the ith and jth expression profiles can be expressed as

E2
ij ¼

XT
t¼1

XSt

s¼1

ð yits � yjtsÞ
2

¼ Sð �yi�� � �yj��Þ
2

þ ðT� 1Þ

PT
t¼1 St ð �yit� � �yi��Þ � ð �yjt� � �yj��Þ

� �2
T� 1

þ ðS� T Þ

PT
t¼1

PSt

s¼1 ð yits � �yit�Þ � ð yjts � �yjt�Þ
� �2

S� T

where �yi�� is the mean of the yits across all S samples and �yit� is the mean

of the yits for the samples within treatment t. In summary, we have

partitioned the squared Euclidean distance into three squared distance

measures,

E2
ij ¼ D2

1 þD2
2 þD2

3

Here, D1 is a multiple of a main effect distance Mij, where

Mij ¼ j �yi�� � �yj��j,

D2 is a multiple of a treatment effect distance Tij, where

Tij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1 St ð �yit� � �yi��Þ � ð �yjt� � �yj��Þ

� �2
T� 1

s

and D3 is a multiple of an interaction effect distance Iij, where

Iij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

PSt

s¼1 ð yits � �yit�Þ � ð yjts � �yjt�Þ
� �2

S� T

vuut
Thus, squared Euclidean distance can be decomposed as

E2
ij ¼ SM2

ij þ ðT� 1ÞT2
ij þ ðS� T ÞI2ij

2.2 Distance measures accommodating missing values

The distance measures can be modified to accommodate missing values.

This involves calculating the squared Euclidean distance over samples

common to both genes. We let sij denote the indices of samples where

values for genes i and j are present.

2.2.1 Two-stage decomposition accommodating missing
values Let pij be the number of samples common to genes i and j

and �y
ð j Þ
i� be the mean of the yis across these pij common samples.

The orthogonal partition of the squared Euclidean distance using only

common samples will be

E2
ij ¼

X
sij

ð yis � yjsÞ
2

¼ pijð �y
ð j Þ
i� � �y

ði Þ
j� Þ

2

þ ðpij � 1Þ

P
sij

ð yis � �y
ð jÞ
i� Þ � ð yjs � �y

ðiÞ
j� Þ

� �2
p�1
ij

Thus, we have a main effect distance

Mij ¼ j �y
ð j Þ
i� � �y

ði Þ
j� j

p�1
ij

and an interaction distance

Iij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
sij

ðyis � �y
ð jÞ
i� Þ � ðyjs � �y

ðiÞ
j� Þ

� �2
pij � 1

vuuut

that accommodate missing values.

2.2.2 Three-stage decomposition accommodating missing
values Let sijt be the indices of samples in treatment t where values

for genes i and j are present, pijt be the number of samples common to

genes i and j in treatment t, �y
ð jÞ
it� be the mean of the yits, using only the pijt

common samples and �y
ð jÞ
i�� be the overall mean of the yits, using only

common samples between gene i and gene j. Letting pij ¼
PT

t¼1 pijt, we

can express y
ð jÞ
it� and y

ð jÞ
i�� as

�y
ðjÞ
it� ¼

P
sijt
yits

pijt

�y
ðjÞ
i�� ¼

PT
t¼1

P
sijt
yits

pij

The squared Euclidean distance can then be expressed as

E2
ij ¼

XT
t¼1

X
sijt

ð yits � yjtsÞ
2

¼ pijð �y
ð j Þ
i�� � �y

ðiÞ
j�� Þ

2

þ ðT� 1Þ

PT
t¼1 pijt ð �y

ð jÞ
it� � �y

ð jÞ
i�� Þ � ð �y

ðiÞ
jt� � �y

ðiÞ
j�� Þ

� �2
T� 1

þ ðpij � TÞ

PT
t¼1

P
sijt

ð yts � �yð jÞit� Þ � ð yjts � �yðiÞjt� Þ
� �2

pij � T

As a result, we have a main effect distance, Mij, where

Mij ¼ j �y
ð jÞ
i�� � �y

ðiÞ
j�� j

Table 1. Unbalanced one-way ANOVA

Source of variation df SS

Overall mean 1 S �y2��

Treatments T� 1
PT

t¼1 Stð �yt� � �y��Þ
2

Error S�T
PT

t¼1

PSt

s¼1 ðyts � �yt�Þ
2

Total S
PT

t¼1

PSt

s¼1 y
2
ts
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a treatment effect distance, Tij, where

Tij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1 pijt ð �y

ð jÞ
it� � �y

ð jÞ
i�� Þ � ð �y

ðiÞ
jt� � �y

ðiÞ
j�� Þ

� �2
T� 1

vuut

and an interaction effect distance, Iij, where

Iij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

P
sijt

ð yits � �y
ð jÞ
it� Þ � ð yjts � �y

ðiÞ
jt� Þ

� �2
pij � T

vuuut

that accommodate missing values.

2.3 Relationship between the distance measures and

the gene expression model

In this section, we show how the distance measures obtained from the

two-stage decomposition are related to a model for gene expression

data. This can be extended to the distance measures obtained from

higher order decompositions and the associated models.

We consider a two-factor factorial design with no replicates. Let Yis

denote the gene expression for the ith gene and sth sample. An

appropriate model for this design is

Yis ¼ �þ Gi þ Ss þ ðGSis þ �isÞ

where Gi denotes the gene effect, Ss denotes the sample effect, GSis is the

gene-by-sample (G�S) interaction and �is is the error term assumed to

be independently and normally drawn with mean zero and variance �2.

Since there are no replicates, GSis and �is are confounded. The squared

Euclidean distance between the expression profiles for genes i and j is

E2
ij ¼

XS
s¼1

ðGi � GjÞ þ ðGSis � GSjsÞ þ ð�is � �jsÞ
� �2

This is a combination of the main effect difference between genes

i and j, the G�S interaction difference between genes i and j and the

error difference between genes i and j.

It can be shown that SM2
ij=2�

2 follows a non-central �2 distribution

with one degree of freedom and non-centrality parameter

SðGi � GjÞ
2=2�2. Therefore, the expected value of M2

ij is

ð2�2=SÞ þ ðGi � GjÞ
2. This is a translation of the squared difference in

gene expression level. Moreover, the translation value, 2�2=S, is usually

small relative to ðGi � GjÞ
2. Consequently, M2

ij serves as a satisfactory

measure of difference in gene level.

Also, ðS� 1ÞI2ij=2�
2 follows a non-central �2 distribution with

S� 1 degrees of freedom and non-centrality parameter

ð
PS

s¼1ðGSis � GSjsÞ
2
Þ=2�2. Thus, the expected value of I2ij is

2�2 þ ð
PS

s¼1ðGSis � GSjsÞ
2
Þ=ðS� 1Þ. Let GSis � GSjs, the difference

between the G�S interaction of the ith and jth gene, be considered

as an observation. Note that GSis � GSjs across the S samples has mean

zero, whence ð
PS

s¼1ðGSis � GSjsÞ
2
Þ=ðS� 1Þ is the sample variance of the

GSis � GSjs. The value of this variance gives us a good indication of the

extent of the difference in G� S interaction between the ith and jth

genes. The expected value of I2ij is a translation of this variance by 2�2.

Consequently, I2ij serves as a satisfactory measure of difference in G�S

interaction.

2.4 Clustering

The idea underlying the clustering method proposed is to group in

stages using a hierarchy of distance measures. The hierarchy begins with

the most dominant attribute and progresses through to finer attributes.

This mimics the way mails are sorted, for example firstly by country

then by state, down to postcode and so on. We can summarize the

clustering algorithm as follows:

Stage 1: Cluster using D1

Stage 2: Cluster within each first-stage cluster using D2

Stage 3: Cluster within each second-stage cluster using D3.

In general, to cluster in n stages, first cluster usingD1 then cluster within

each stage i� 1 cluster using Di, for i from 2 to n. For all stages, we use

hierarchical agglomerative clustering with Ward’s linkage method.

Ward’s linkage method combines the two clusters which minimize the

increase in total error sum of squares (ESS). The ESS of a cluster is the

sum of squares of the deviations from the mean value.

2.4.1 Two-stage clustering We begin by describing the two-stage

clustering method, with distance measures of main effect distance and

interaction distance. This is summarized as follows:

First stage

(1) Calculate all main effect distances Mij

(2) Cluster genes using these main effect distances (this produces

level-similar clusters).

Second stage

(1) Calculate interaction distances Iij for all gene pairs i and j within

first-stage clusters

(2) Cluster genes within each first-stage cluster using the interaction

distances (this produces level-similar and shape-similar gene

clusters).

2.4.2 Three-stage clustering When we have three distance

measures, namely the main effect, treatment and interaction distances,

a three-stage clustering algorithm can be summarized as follows:

First stage

(1) Calculate all main effect distances Mij

(2) Cluster genes using these main effect distances (this produces

level-similar clusters).

Second stage

(1) Calculate treatment distances Tij for all gene pairs i and j within

first-stage clusters

(2) Cluster genes within each first-stage cluster using the treatment

distances (this produces level-similar and treatment shape-similar

gene clusters).

Third stage

(1) Calculate interaction distances Iij for all gene pairs i and j within

second-stage clusters

(2) Cluster genes within each second-stage cluster using the interac-

tion distances (this produces level-similar, treatment shape-

similar as well as interaction shape-similar gene clusters).

2.5 Imputation

For imputation, we cluster using interaction distance modified to

accommodate missing values. We use information from the genes in the

cluster of the gene with missing data to find an imputed value.

Multi-stage clustering and imputation
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2.5.1 Two-stage imputation

(1) Perform clustering using only interaction distance

(2) For each missing value, identify the gene and the sample to which

it corresponds (we call these the target gene and the target

sample)

(3) Identify the genes that belong to the same interaction cluster as

the target gene (we call these the parent genes)

(4) For each parent gene with an expression value in the target

sample, calculate the corresponding overall mean

(5) Find the difference between the expression value in the target

sample and the calculated overall mean

(6) Calculate the mean of all values obtained in Step 5

(7) The imputed value is the overall mean of the target gene plus the

value calculated in Step 6.

2.5.2 Three-stage imputation

(1) Perform clustering using only interaction distance

(2) For each missing value, identify the gene, the sample and the

treatment to which it corresponds (we call these the target gene,

the target sample and the target treatment)

(3) Identify the genes that belong to the same interaction cluster as

the target gene (we again call these the parent genes)

(4) For each parent gene with an expression value in the target

sample, calculate the corresponding target treatment mean

(5) Find the difference between the expression value in the target

sample and the calculated target treatment mean

(6) Calculate the mean of all values obtained in Step 5

(7) The imputed value is the target treatment mean of the target gene

plus the value calculated in Step 6.

2.6 Stopping criterion

A critical challenge is to determine an appropriate number of clusters

when no prior knowledge is available. To identify the appropriate

number of clusters, we plot the height of the new cluster to be formed

against the current number of clusters. Height here corresponds to the

criterion used to determine which two clusters are to be merged to form

a new cluster. For example, we used Ward’s linkage method where

height is the total ESS after merging two clusters. Since a hierarchical

agglomerative technique starts with each data point a cluster, then at

each iterative step joins the two closest clusters, the height of the new

cluster will be the largest height calculated so far. We propose that

clustering should stop when the height increases markedly. As a

quantitative measure of this, we use a ‘jump factor’ defined as

current height increase

maxfprevious height increasesg

The appropriate number of clusters is that just before the maximum

jump factor occurs. Intuitively, this ensures that we stop just before we

merge strongly resistant clusters.

3 RESULTS

In this section, we first illustrate the performance of the

two-stage and the three-stage clustering methods. We then

demonstrate the performance of the two-stage and the three-

stage imputation methods.

3.1 Clustering

We compared the two-stage and three-stage clustering methods

to commonly used methods, namely, the hierarchical, k-means,

SOM, SOTA and model-based clustering (Yeung et al., 2001)

methods. All codes were obtained from R packages (cluster,

stats, som, mclust) downloadable from the comprehensive R

archive network (CRAN) except for SOTA, which we ran on

GEPAS, a web-based server for SOTA. The Rand and adjusted

Rand indices were used to measure performance. The Rand

index (Rand, 1971) is the number of agreements (pairs that are

either in the same cluster or in different clusters in both

clusterings) divided by the total number of pairs. The adjusted

Rand index proposed by Hubert and Arabie (1985), adjusts the

score so that its expected value for random clustering is zero.

The maximum value for the Rand and adjusted Rand indices is

one; a high index indicates a high level of agreement between

the clusterings. The jump factor criterion was used to detect the

number of clusters for hierarchical, two-stage and three-stage

methods. The model-based method and SOTA have a built-in

criteria while the number of clusters for k-means and SOM are

user specified.

3.1.1 Two-stage clustering To test the two-stage clustering
method, we used a simulated dataset placed by Michaud et al.

(2003) at http://www.che.udel.edu/eXPatGen/paper/example2.

out and the yeast cell cycle data with MIPS criterion (extracted

from Cho et al. (2001)) made available by Yeung et al. (2001)

at http://faculty.washington.edu/kayee/cluster/. The simulated

dataset contains 100 genes and 36 samples and is generated

based on known biological features of expression complexity,

diversity and interconnectivity. There are 10 clusters in this

dataset, with each cluster containing 10 genes. Close examina-

tion of this dataset, however, shows that the first two clusters

contain genes that are neither repressed nor induced at any

point of the experiment. We treat these clusters as identical and

so the dataset contains only nine true clusters. The yeast cell

cycle dataset contains 237 genes and 17 samples. These genes

corresponding to four categories in the MIPS database (DNA

synthesis and replication, organization of centrosome, nitrogen

and sulphur metabolism, and ribosomal proteins); we assume

these to be the true clusters. Table 2 shows the Rand and

adjusted Rand indices for the two-stage method and the other

Table 2. Rand and adjusted Rand indices for the simulated data and

the yeast cell cycle data

Index Simulated data Yeast cell cycle data

Rand Adjusted Rand Rand Adjusted Rand

Two-stage 0.9961 0.9806 0.7087 0.3697

Hierarchical 0.9760 0.8873 0.6709 0.2984

k-means 0.9748 0.8794 0.6892 0.3197

SOM 0.8588 0.5363 0.6715 0.3159

SOTA 0.9596 0.8235 – –

Model-based 0.9961 0.9806 0.5702 0.1472
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commonly used methods, against the true clusters for the

simulated data and the yeast cell cycle data.
For the simulated data, both the two-stage and model-based

method did equally well, with nine clusters detected and only

one gene misclassified. Hierarchical clustering detected only

eight clusters, SOTA detected seven and the k-means method

had the number of clusters pre-specified as nine. All these

methods had slightly lower Rand and Adjusted Rand indices

compared to the two-stage method. We were unable to force

SOM to produce nine clusters; six clusters was the optimal

choice. This method produced the lowest Rand and adjusted

Rand indices.

For the yeast cell cycle data, the two-stage method detected

four clusters (two in the first stage and two in each first-stage

cluster in the second stage). Two-stage clustering has the

highest Rand and adjusted Rand indices. Using hierarchical

clustering, three clusters were detected. If we pre-specify four as

the number of clusters in hierarchical clustering, it performed

slightly better but not as well as the two-stage method. The

k-means and SOM methods, despite having the advantage of

four being pre-specified as the number of clusters, have a lower

adjusted Rand index than the two-stage clustering method. The

model-based method detected only two clusters; this could be

the reason behind its having the lowest Rand and adjusted

Rand indices. We did not include SOTA in the results because it

produced too many clusters (up to 50).

3.1.2 Three-stage clustering The central nervous system

(CNS) development gene expression data (Wen et al., 1998)

made available by Yeung et al. (2001) at http://faculty.

washington.edu/kayee/cluster/ was used to test the three-stage

method. There are 112 genes known to belong to major gene

families deemed important for spinal cord development. There

are nine samples in this experiment, measured using embryonic

days 11, 13, 15, 18 and 21, postnatal days 0, 7 and 14 and adult

(postnatal day 90).

We divided the data into three groups, early embryonic days

(E11, E13, E15), late embryonic days (E18, E21) and all data

after birth (P0, P7, P14, P90). Table 3 shows the Rand and

adjusted Rand indices for the two-stage and three-stage

methods. Wen et al. (1998) classified the genes into 14 general

functional classes. The two-stage clustering resulted in six

clusters, while three-stage clustering yielded 21 clusters. In this

dataset, three-stage clustering performed better based on both

the Rand and adjusted Rand indices.

3.2 Imputation

Missing values were generated by randomly removing from 1 to

20% of the data. The root mean squared error (RMSE) was

calculated to measure the performance of the imputation.

To assess the consistency of results, 1000 runs (each with
different values removed randomly) were performed and the

mean, minimum and maximum RMSE across all runs were
obtained.

3.2.1 Two-stage imputation To illustrate the performance of

the two-stage imputation method, the simulated dataset and the
yeast cell cycle data withMIPS criterion was used.We compared
the two-stage imputation method to the commonly used

imputation methods of zero, row mean and KNN imputation.
Current methods that are more sophisticated such as the local
least squares imputation method (LLSimpute) (Kim et al.,

2005), Bayesian principal component method (BPCA) (Oba et
al., 2003) and collateral missing value imputation (CMVE)
(Sehgal et al., 2005) were also compared to give more credibility

to the comparison between methods. The code for KNN
imputation was obtained from the R package, called ‘impute’,
downloadable from CRAN. LLSimpute, BPCA and CMVE

were obtained via downloadable Matlab code available at the
associated author website. An example of the results, with 10%
of data missing, is shown in Table 4.

For the simulated dataset, we used k¼ 10 for the KNN,
LLSimpute and CMVE method since each cluster contains
10 genes, and this value is reported to work well for all three

methods (Sehgal et al., 2005). For the yeast cell cycle data, we
used k¼ 8 for the KNN method and for two-stage imputation
we used 30 clusters; this corresponds to approximately 8 genes

in a cluster, assuming that they are uniformly distributed.
This choice produces a markedly low RMSE for both methods.
The same k value is used for LLSimpute and CMVE to provide

an equitable comparison.
Based on RMSE, the two-stage method outperformed all

methods except BPCA. BPCA is a more sophisticated method

than the two-stage method and far more computationally
intensive. A single run using the simulated dataset with 10%
missing values takes BPCA approximately 40 s while the

two-stage imputation method takes �1 s. Furthermore,
Bayesian approaches are highly dependent on the chosen prior
distribution; a wrong choice of prior distribution would

result in poor performance. In our investigation, BPCA outper-
forms LLSimpute and CMVE, while Kim et al. (2005) and
Sehgal et al. (2005) have reported that their respective methods

outperform BPCA. LLSimpute is reported to perform well when

Table 4. Mean, minimum and maximum RMSE for 1000 runs of the

simulated dataset and the yeast cell cycle data, with 10% data missing

(chosen at random in each run), using the different imputation methods

RMSE Simulated data Yeast cell cycle data

Mean Min Max Mean Min Max

Two-stage 0.1225 0.0915 0.1866 0.2743 0.2182 0.3374

Zero 1.031 0.9248 1.1489 6.5875 6.3737 6.7703

Row mean 0.7053 0.6485 0.7530 0.3837 0.3230 0.4522

KNN 0.1325 0.097 0.1325 0.2860 0.2332 0.3500

LLSimpute 0.1849 0.1202 0.3005 0.4600 0.2787 8.2121

CMVE – 0.7216 – – 1.8897 –

BPCA 0.0916 0.0738 0.1333 0.2493 0.2032 0.3058

Table 3. Rand and adjusted Rand indices for the CNS data

Index Rand Adjusted Rand

Two-stage 0.7479 0.0685

Three-stage 0.8797 0.0899
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k is large; based on the 1000 runs, we found that the optimal

k varies extensively. CMVE performed extremely badly on a

number of runs, giving an infinitely large RMSE. Moreover,

even its minimum RMSE is high in comparison with other

methods. This could be due to bugs in the Matlab code or

sensitivity to the distribution of the missing data.

3.2.2 Three-stage imputation To test the performance of
the three-stage imputation method, the CNS data was used.

The main focus was to compare the three-stage method with

the two-stage method. An example of the results, with 10%

of data missing, is shown in Table 5.
For both two-stage and three-stage imputation, we used 11

clusters. This number of clusters was chosen because it

produces a low RMSE. For 10% of values missing, on average,

two-stage imputation performed slightly better than three-stage

imputation. The three-stage method, however, has a lower

minimum compared to two-stage imputation. Table 6 shows

the difference between the performance of the two-stage

and the three-stage imputation methods as the percentage of

missing values increases from 1 to 20%.
On average, three-stage imputation performed better than

two-stage imputation when the percentage of missing values

was low (i.e. at 1 and 5%). As the percentage of missing values

increases, the performance of three-stage imputation drops.

This is because the replication within treatment is very small

(i.e. three replications within each treatment). When the

percentage of missing values is high, there is a high probability

that all replications within a treatment are missing and

therefore, the imputed value is the overall mean of the gene

expression profile. This reduces the three-stage imputation

method to row mean imputation and thus its performance falls.

4 DISCUSSION

Our results suggest that decomposing the profiles into

orthogonal components and clustering in stages is a useful

approach. Geometrically, the multi-stage approach breaks the

S-dimensional space in which the data lies into orthogonal

subspaces. The advantage of this approach is most apparent

when the scale of the dominant attribute is considerably larger

than that of the others. In this case, clustering is largely based

on the dominant attribute when using Euclidean distance.

The multi-stage approach, however, allows the subtlety of all

components to be acknowledged. Therefore, extra information

is available when performing the clustering.

In this article, for two-stage clustering, we have used main

effect distance first then interaction distance second; we refer to

this as the ‘top-down’ order. Altering the order can give very

different clustering results, especially when the clusters are

indistinct. It is possible that a ‘bottom-up’ approach could

produce better results. The question here is not to determine

which order is better, rather it is to determine when a certain

order is better. Since the process is not reversible, we always

begin with the attribute which produces the most distinct

clusters. If the separation is unclear in the first stage, the

misclustering that occurs is carried on to subsequent stages.

Information on the separation of the clusters in each stage

is usually unattainable; we resolve this difficulty by assuming

that attributes with larger values tend to have more distinct

clusters. Thus, a top-down approach should be the default

option.
Work in progress involves the implementation of the multi-

stage idea into a model-based method. Classical and Bayesian

model-based approaches to clustering of gene expression

profiles will be studied and compared at a future date.

5 CONCLUSION

We have introduced an alternative approach to the clustering of

gene expression profiles, an approach that involves clustering in

a number of stages using a hierarchy of distance measures. This

enables the clustering method to deal with large datasets in a

systematic way.
We have shown that the distance measures are related to the

design of experiment employed and reflect different attributes

of the data. The multi-stage approach enhances the distinguish-

ing power of the distance measures, because it allows subtle

differences to not be masked by a more dominant attribute of

the gene expression profiles. Thus, the precision of clustering is

improved, as seen in the results displayed.
This clustering method is modified to accommodate missing

values and leads to an associated imputation method. The

multi-stage imputation method is simple and robust. It also

outperforms imputation methods within its league.
The multi-stage approach is not only theoretically grounded

but also biologically supported. It achieves this by putting

emphasis on shape similarity, so taking into account the fact

that co-expressed genes are co-regulated. Furthermore, it can

be used on incomplete datasets and brings with it the ability to

estimate the missing values.
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