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Missing data imputation through GTM as a mixture of t-distributions
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Abstract

The Generative Topographic Mapping (GTM) was originally conceived as a probabilistic alternative to the well-known, neural network-
inspired, Self-Organizing Maps. The GTM can also be interpreted as a constrained mixture of distribution models. In recent years, much attention
has been directed towards Student t-distributions as an alternative to Gaussians in mixture models due to their robustness towards outliers. In this
paper, the GTM is redefined as a constrained mixture of t-distributions: the t-GTM, and the Expectation–Maximization algorithm that is used to
fit the model to the data is modified to carry out missing data imputation. Several experiments show that the t-GTM successfully detects outliers,
while minimizing their impact on the estimation of the model parameters. It is also shown that the t-GTM provides an overall more accurate
imputation of missing values than the standard Gaussian GTM.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Finite mixture models have become established in recent
years as a standard for generic non-linear statistical modelling
(McLachlan & Peel, 2000b). Their strength and flexibility
has been attributed to the fact that they “offer natural
models for unobserved population heterogeneity” (Böhning &
Seidel, 2003). As such, they are being used in classical data
analysis problems such as clustering, regression and probability
distribution modelling. Gaussian mixture models have received
special attention due to their computational convenience
(McLachlan & Peel, 2000a) for dealing with multivariate
continuous data. The usefulness of these models is reinforced
by the wide spectrum of their applications, from medicine (Yau,
Lee, & Ng, 2003) to ecology (Ter Braak, Hoijtink, Akkermans,
& Verdonschot, 2003) and marketing (Wedel & Kamakura,
2000) to name just a few. For more general reviews see, for
instance, Böhning (1999) and McLachlan and Peel (2000b).

Over recent decades, neural networks have steadily veered
away from biologically plausible, mostly deterministic models,
based on heuristic methods, towards stochastic models with
solid grounds on probability theory (Bishop, 1995; MacKay,
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1995). The model on which this paper focuses, Generative
Topographic Mapping (GTM: Bishop, Svensén, & Williams,
1998a), is an example of this, as it was originally conceived
as a probabilistic alternative to the originally bio-inspired
Self-Organizing Maps (SOM: Kohonen, 2001). The GTM can
also be interpreted as a constrained mixture of distributions.
This definition as a constrained model makes it less flexible
than general mixtures, but this compromise of flexibility is
compensated by its multivariate data visualization capabilities.
Being a non-linear latent variable model, it generates a
description of the multivariate data in the form of a low-
dimensional manifold embedded in data space, which allows
for data visualizations comparable to those of the SOM, which
have been widely illustrated (Vesanto, 1999). The GTM is less
computationally demanding than standard Gaussian mixture
models, and its probabilistic setting enables the definition of
principled model extensions for, amongst others, time series
data (Bishop, Hinton, & Strachan, 1997), hierarchical structures
(Tiňo & Nabney, 2002), incomplete data (Carreira-Perpiñan,
2000; Sun, Tiňo, & Nabney, 2001), regularized models (Bishop,
Svensén, & Williams, 1998b; Vellido, El-Deredy, & Lisboa,
2003), and discrete data (Bishop et al., 1998b; Girolami,
2002).

The GTM was originally defined as a constrained mixture of
Gaussian distributions. It is well known (Peel & McLachlan,
2000; Shoham, 2002) that Gaussian mixture models lack
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robustness in the presence of outlier observations in the data
sample, which is a rather common feature in real-world
applications (Last & Kandel, 2001) and one that has attracted
considerable attention in recent literature (see, for instance,
Bashir and Carter (2005), Bullen, Cornford, and Nabney
(2003) and Castejón Limas, Ordieres Meré, Martı́nez de Pisón
Ascacibar, and Vergara González (2004)). Despite the fact that
this limitation may also affect the GTM (Tiňo & Nabney, 2002),
this model has been used—formulated as a constrained mixture
of Gaussians—for outlier detection (Bullen et al., 2003). An
alternative strategy for dealing with atypical data using the
GTM was proposed by Tiňo and Nabney (2002), relying on
the use of the model as the building block of an interactive
hierarchical structure.

Starting with the seminal work by McLachlan and Peel
(1998), several recent studies have suggested the use of
multivariate Student t-distributions as a robust alternative to
Gaussians for mixture models, as their longer tails prevent
outliers from unduly affecting the estimation of the model
parameters. Among them are models defined within a Bayesian
approach (Archambeau, Vrins, & Verleysen, 2004; Svensén
& Bishop, 2005), extensions to subspace mixture models (de
Ridder & Franc, 2003), and variants for dealing explicitly with
incomplete data (Wang, Zhang, Luo, & Wei, 2004) and for
robust data clustering (Shoham, 2002).

The occurrence of missing data is a pervasive problem in
many application areas, and especially acute in domains such
as surveys and census (Little & Rubin, 1987; Olinsky, Chen,
& Harlow, 2003) and, in general, in social and behavioural
sciences and fields in which complex measurements are
involved such as genetics and bioinformatics (Troyanskaya
et al., 2001), environmental sciences (Junninen, Niskaa,
Tuppurainenc, Ruuskanena, & Kolehmainen, 2004; Vicente,
Vellido, Martı́, Comas, & Rodriguez-Roda, 2004), or signal
processing (Cooke, Green, Josifovski, & Vizinho, 2001).
Methods that impute the missing values are therefore of
paramount importance for the successful analysis of such
data. Different methods are suitable for different types of
data (continuous, discrete, categorical) and for different
application fields, with no data imputation method being
suitable and successful throughout the universe of data types
and application areas. In this paper, we provide details on
how to integrate missing data imputation as part of the
GTM model fitting to data, when GTM is defined as a
constrained mixture of t-distributions. Data imputation arises
naturally as part of the Maximum-Likelihood estimation of
the GTM parameters via the Expectation–Maximization (EM:
Dempster, Laird, & Rubin, 1977) algorithm. The resulting
GTM model plays a double role: it deals robustly with outliers
while it simultaneously imputes missing values, allowing the
exploration of multivariate data through visualization at a
reasonable computational cost.

This model is assessed in several experiments, aiming first to
ascertain whether it can successfully detect outliers and whether
it can minimize their impact on the estimation of the model
parameters. Secondly, it aims to test the results yielded by the
proposed missing data imputation procedure.
The rest of the paper is structured as follows. First, a brief
introduction to the GTM as a constrained mixture of Gaussians
is provided, together with details of the Maximum Likelihood
estimation of its parameters within the EM framework. This is
followed by the re-definition of GTM as a constrained mixture
of Student t-distributions (henceforth referred to as t-GTM).
Next, we describe the way missing data imputation can be
naturally handled as part of the EM algorithm used to determine
the t-GTM adaptive parameters. Results of several experiments,
designed to evaluate the robustness of the proposed model and
the reliability of the missing data imputation, are then provided
and discussed. The paper wraps up with some conclusions and
directions for future research.

2. The standard generative topographic mapping

The Generative Topographic Mapping (GTM: Bishop et al.,
1998a), originally formulated as a statistically principled
alternative to Self-Organizing Maps (SOM: Kohonen, 2001),
is a non-linear latent variable model that defines a mapping
from a low-dimensional latent space onto the multi-dimensional
space where the available data reside. The mapping is carried
through by a set of basis functions generating a (mixture)
density distribution. The functional form of this mapping is
defined as a generalized linear regression model:

y = Φ(u)W, (1)

where Φ is a set of M basis functions, Φ(u) =

(φ1(u), . . . , φM (u)), that can take diverse forms, depending
on the data requirements (e.g., Gaussians for continuous data,
Bernouilli distributions for binary data, or multinomials for
categorical data). These basis functions were originally defined
(Svensén, 1998) as spherically symmetric Gaussians φm(u) =

exp
{
−

‖u−µm‖
2

2σ 2

}
to deal with continuous data, with µm the

centres of the basis functions and σ their common width; W
is a matrix of adaptive weights wmd that define the mapping,
and u is a point in latent space. One of the main strengths
of the model resides on its data exploration capabilities
through visualization. In order to provide an alternative to the
visualization space defined by the characteristic SOM lattice,
and also to achieve computational tractability, the latent space
of the GTM is discretized as a regular grid of K latent points
uk defined by the probability

P(u) =
1
K

K∑
k=1

δ(u − uk), (2)

where δ is the Kronecker delta. The probability of a data point
x, given the latent space points uk and the adaptive parameters
of the model, which are the matrix W and the inverse variance
of the Gaussians β, is:

P(x|u, W, β) =

(
β

2π

)D/2

exp
{
−

β

2
‖y − x‖

2
}

. (3)
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Integrating the latent variables out, and using Eq. (2), we
obtain

P(x|W, β) =

∫
P(x|u, W, β)P(u)du

=
1
K

K∑
k=1

(
β

2π

)D/2

exp
{
−

β

2

∥∥yk − x
∥∥2
}

. (4)

According to this general description, the GTM is a
constrained mixture of Gaussians in the sense that all
the components of the mixture (where each latent point
corresponds to a component) are equally weighted by the term
1/K ; all components share a common variance β−1 (therefore
Σ = β−1I); and the centres of the Gaussian components
yk = Φ(uk)W do not move independently from each other,
as they are limited by the mapping definition to lie in a low-
dimensional manifold embedded in the D-dimensional space.

The complete log-likelihood can now be defined as

Lc(W, β|X) =

N∑
n=1

log

{
1
K

K∑
k=1

(
β

2π

)D/2

× exp
{
−

β

2

∥∥yk − xn
∥∥2
}}

(5)

and the EM algorithm can be used to obtain the Maximum
Likelihood estimates of the adaptive parameters W and β. Let
us first define, in the usual way, the matrix Z, whose indicators
zkn describe our lack of knowledge of which latent point uk is
responsible for the generation of data point xn . With this, the
complete log-likelihood in Eq. (5) can be re-defined as

Lc(W, β|X, Z) =

N∑
n=1

K∑
k=1

zkn log

[(
β

2π

)D/2

× exp
{
−

β

2

∥∥yk − xn
∥∥2
}]

. (6)

The expected value of zkn can be obtained in the E-step of
the algorithm using Bayes’ formula and Eq. (4):

ẑkn = P(k|xn, W, β) =

exp
{
−

β
2

∥∥yk − xn
∥∥2
}

K∑
k′=1

exp
{
−

β
2

∥∥yk′ − xn
∥∥2
} . (7)

Let us now rewrite Eq. (1) for each data dimension d as
yd =

∑M
m=1 φm(u)wmd . In the M-step, by setting the derivative

of Lc from Eq. (6) with respect to wmd to zero, and using
Eq. (7),

∂Lc

∂wmd
=

N∑
n=1

K∑
k=1

ẑkn

(
M∑

m′=1

φm′(uk)wm′d − xnd

)
φm(uk)

= 0, (8)

we obtain Wnew as the solution of the following system of
equations in matrix form:

ΦTGΦWnew
− ΦTẐX = 0, (9)
where Φ is a K × M matrix with elements φkm = φm(uk); Ẑ is
a matrix with elements ẑkn that, in the GTM literature, is know
as the responsibility matrix; and, finally, G is a diagonal square

matrix with elements gkk′ =

{∑N
n=1 ẑkn , k = k′

0 k 6= k′
.

Maximizing Lc now with respect to β by setting the
corresponding derivative to zero,

∂Lc

∂β
=

∂

[
N∑

n=1

K∑
k=1

ẑkn

(
D
2 log

(
β
2

)
−

β
2

∥∥yk − xn
∥∥2
)]

∂β

=

N∑
n=1

K∑
k=1

ẑkn

(
D

β
−
∥∥yk − xn

∥∥2
)

= 0, (10)

we obtain the updated expression for the remaining adaptive
parameter, the inverse variance β:

(
βnew)−1

=
1

N D

N∑
n=1

K∑
k=1

ẑkn
∥∥yk − xn

∥∥2
. (11)

The GTM usually converges within a short number of iterations
of the EM algorithm.

3. GTM as a constrained mixture of student t-distributions:
The t-GTM

The definition of the GTM as a constrained mixture of
Gaussians limits its capability for handling outliers in a data
sample consisting of continuous, real-valued variables: the
presence of outliers is likely to negatively bias the estimation
of parameters W and β, and it is also likely to result in
extreme estimates of the posterior probabilities of component
membership (Peel & McLachlan, 2000). Here, the GTM is
redefined as a constrained mixture of Student t-distributions,
the t-GTM, aiming to increase the robustness of the model
towards outliers. The t-GTM is a constrained mixture for the
same reasons described in the previous section.

The mapping described by the generalized linear regression
model in Eq. (1) remains, and the basis functions Φ are
now Student t-distributions. Again assuming a single common
inverse variance β (Σ = β−1I) and equal weightings 1/K for
all components, the data distribution is defined as:

P(x|u, W, β, ν) =
Γ
(

ν
2 +

D
2

)
βD/2

Γ
(

ν
2

)
(νπ)D/2

×

(
1 +

β

ν
‖y − x‖

2
)−

ν+D
2

, (12)

where Γ (·) is the gamma function and the parameter ν =

(v1, . . . , vK )T represents the degrees of freedom for each
component k of the mixture, so that it can be viewed as a tuner
that adapts the level of robustness (divergence from normality)
for each component. A multivariate t-distribution converges to
a multivariate normal distribution when ν → ∞.



A. Vellido / Neural Networks 19 (2006) 1624–1635 1627
∂Lc

∂wmd
=

N∑
n=1

∂ log
{

1/K
K∑

k=1
Ck
(
1 + β/νk‖yk − xn‖

2
)− νk+D

2

}
∂wmd

=

N∑
n=1

1/K
K∑

k=1
Ck

(
−

νk+D
2

) (
1 + β/νk‖yk − xn‖

2
)− νk+D+2

2 (2β/νk) (φ(uk)wd − xnd)(−φm(uk))

1/K
K∑
k′

Ck′

(
1 + β/νk′‖yk′ − xn‖2

)− νk′ +D
2

=

N∑
n=1

K∑
k=1

(νk + D)β

νk
ẑkn

(
M∑

m′=1
φm′(uk)wm′d − xnd

)
φm(uk)

1 + β/νk‖xn − yk‖
2 = 0

Box I.
Integrating the latent variables out, and using the latent space
described before by Eq. (2):

P(x|W, β, ν) =

∫
P (x|u, W, β, ν) P (u) du

=
1
K

K∑
k=1

Γ
(

νk
2 +

D
2

)
βD/2

Γ
(

νk
2

)
(νkπ)D/2

×

(
1 +

β

νk

∥∥yk − x
∥∥2
)−

νk+D
2

. (13)

With this, the complete log-likelihood is expressed as:

Lc(W, β, ν|X) =

N∑
n=1

log

 1
K

K∑
k=1

Γ
(

νk
2 +

D
2

)
βD/2

Γ
(

νk
2

)
(νkπ)D/2

×

(
1 +

β

νk

∥∥yk − xn
∥∥2
)−

νk+D
2

 . (14)

Again, the use of the EM algorithm for the estimation of
parameters W and β requires re-writing the complete log-
likelihood as:

Lc(W, β, ν|X, Z) =

N∑
n=1

K∑
k=1

zkn log

Γ
(

νk
2 +

D
2

)
βD/2

Γ
(

νk
2

)
(νkπ)D/2

×

(
1 +

β

νk

∥∥yk − xn
∥∥2
)−

νk+D
2

 , (15)

where indicator variables Z have once more been introduced. In
the E-step, the responsibilities ẑkn now follow the expression:

ẑkn = P (k|xn, W, β, νk)

=

Ck

(
1 +

β
νk

∥∥yk − xn
∥∥2
)−

νk+D
2

K∑
k′=1

Ck′

(
1 +

β
νk′

∥∥yk′ − xn
∥∥2
)−

νk′ +D
2

, (16)
where

Ck = Γ
(

νk

2
+

D

2

)
βD/2

[
Γ
(νk

2

)
(νkπ)D/2

]−1
. (17)

Updated expressions for the adaptive parameters are
calculated in the M-step of the algorithm. Maximizing with
respect to wmd , by setting the derivatives of Eq. (14) with
respect to wmd to zero, we obtain the equation in Box I. This
leads to an equation, in matrix form, for the update of W that is
similar to Eq. (9):

ΦTG∗ΦWnew
− ΦTẐ

∗
X = 0, (18)

where

ẑ∗

kn =
νk + D

νk + β
∥∥yold

k − xn
∥∥2 ẑkn (19)

and ẑkn is defined by Eq. (16). Matrix G∗ has values g∗

kk′ ={∑N
n=1 ẑ∗

kn , k = k′

0 k 6= k′
. The new terms in Box I do not add any extra

computational burden with respect to Eq. (16), as they have
already been calculated in previous steps of the algorithm.

The maximization with respect to parameter β leads to a
special case of the updated formula for general mixtures of
t-distributions:(
βnew)−1

=
1

N D

N∑
n=1

K∑
k=1

ẑkn (νk + D)

×

(
νk + βold

∥∥ynew
k − xn

∥∥2
)−1 ∥∥ynew

k − xn
∥∥2

,

(20)

where ynew
k = Φ(uk)Wnew. For the standard Gaussian GTM

(Svensén, 1998), Eq. (11) can be interpreted as the off-manifold
variance of the model being updated to the averaged distance
between data points and mixture component centres, where this
distance is weighted by the posterior probabilities ẑkn . Notice
that Eq. (20) implies the existence of a further weighting term
(νk + D)(νk + βold

‖ynew
k − xn‖

2)−1 for the t-GTM, which,
according to Peel and McLachlan (2000), will be small for data
outliers. As a result, the impact of outliers on the estimation of
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the variance parameter will be effectively minimized. This is
due to the overall longer distances between outlier observations
and the centres of the mixture components ynew

k , which, in turn,
are the result of the same weighting term operating in Eq. (19)
and affecting the re-estimation of matrix W. This leaves us with
parameter ν, for which optimization is less straightforward.
Different approaches might be considered: an approximation
for general mixture models was proposed by Shoham (2002)
for a common ν for all mixture components (i.e. ∀k, νk = ν).
Alternatively, ν might be kept fixed, running experiments for a
range of its possible values and selecting that which maximized
the complete log-likelihood.

3.1. Related work

The use of multivariate Student t-distributions as a robust
alternative to Gaussians for finite mixture models was first
proposed by McLachlan and Peel (1998). In this seminal work,
details of the Maximum Likelihood estimation of the mixture
using the EM algorithm (and constrained versions, such as
ECM) were provided.

Since then, several recent studies have suggested the use of
multivariate Student t-distributions as a robust alternative to
Gaussians for mixture models, following different approaches
and with diverse goals: The work of Shoham (2002) focused
on improved versions of the classic EM algorithm based
on deterministic annealing (DAEM: Ueda & Nakano, 1998)
to improve algorithm convergence. In Archambeau et al.
(2004), the regularized Mahalanobis distance was proposed for
finite mixtures of t-distributions to avoid common numerical
difficulties encountered with standard EM. A variant of this
model that goes beyond EM and is defined within a Bayesian
approach was presented by Svensén and Bishop (2005); here,
a tractable variational inference algorithm for the model is
derived, which also allows for the automatic determination
of the appropriate number of mixture components; the model
was tested only on univariate data sets. Model extensions to
deal explicitly with incomplete data have also been developed
(Wang et al., 2004), taking advantage of the inherent capability
of the EM algorithm to deal with missing data. This is the same
approach as followed in this paper, with the main difference that
t-GTM allows for the visualization of the regenerated full set
of multivariate data. The work of de Ridder and Franc (2003)
is conceptually closer to t-GTM, as they combine the ideas of
robust modelling by t-distributions and probabilistic subspace
mixture models (of which GTM is a nonlinear example), with
a focus on mixtures of Probabilistic Principal Component
Analyzers (PPCA: Tipping & Bishop, 1999).

4. Missing data imputation through t-GTM

It has been shown how the GTM model, defined
as a constrained mixture of either Gaussian or Student
t-distributions, can be fitted to the data using the EM algorithm.
As stated in Ghahramani and Jordan (1994), “the problem of
estimating mixture densities can itself be viewed as a missing
data problem”. In the previous sections, the matrix Z of
indicators—describing our lack of knowledge of which latent
point uk is responsible for the generation of data point xn—was
treated as missing data. In this section, we see how the missing
data themselves can be explicitly dealt with and imputed as part
of the own EM procedure for the t-GTM.

For that, we follow Sun et al. (2001) and consider two
separate submatrices: Xo, consisting of the observed data
represented by superscript o, and Xm , consisting of the missing
data represented by superscript m. No constraint has been
imposed on the pattern followed by the missing values. The
expectation step of the EM algorithm includes the calculation
of the expected complete log-likelihood. The definition of
submatrices Xo and Xm entails a modification of Eq. (15),
which now becomes:

Lc
(
W, β, ν|Xo, Xm , Z

)
=

N∑
n=1

K∑
k=1

zkn

× log

Ck

[
1 +

β

νk

(∥∥yo
k − xo

n
∥∥2

+
∥∥ym

k − xm
n
∥∥2
)]−

νk+D
2

 ,

(21)

given that we are defining a common variance for all mixture
components and, therefore, using an isotropic covariance
matrix Σ = β−1I that excludes values involving both
observed and missing data. The sufficient statistics that must
be calculated prior to the M-step are: the expected values of
the unknown indicator variables E[zkn|xo

n, W, β, νk], which are
precisely the posterior probabilities in Eq. (16), calculated using
only the observed data:

ẑkn = P (k|xn, W, β, νk)

=

Ck

(
1 +

β
νk

∥∥yo
k − xo

n

∥∥2
)−

νk+D
2

K∑
k′=1

Ck′

(
1 +

β
νk′

∥∥yo
k′ − xo

n

∥∥2
)−

νk′ +D
2

, (22)

and the interactions between the indicator variables and the
first and second moments of xm

n : E
[
zknxm

n |xo
n, W, β, νk

]
and

E[zknxm
n xmT

n |xo
n, W, β, νk]. We first define (Ghahramani &

Jordan, 1994; Sun et al., 2001) the expectation

E
[
xm

n |zkn = 1, xo
n, W, β, νk

]
= x̂m

kn =
(
ym

k

)old
, (23)

where old stands for calculations obtained in the previous
algorithm iteration. This way, we obtain

E
[
zknxm

n |xo
n, W, β, νk

]
= ẑkn x̂m

kn (24)

and

E
[
zknxm

n xmT

n |xo
n, W, β, νk

]
= ẑkn

((
β−1

)old
+ x̂mT

kn x̂m
kn

)
,

(25)

where, for both Eqs. (24) and (25), ẑkn is given by Eq. (22).
The missing data imputation is now straightforward—it is
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performed according to:

E
[
xm

n |xo
n, W, β, νk

]
=

K∑
k=1

ẑkn E
[
xm

n |zkn = 1, xo
n, W, β, νk

]
=

K∑
k=1

ẑkn
(
ym

k

)old
. (26)

This imputation procedure completes the data and allows
their full visualization on the low-dimensional latent space.

In the maximization step of the EM algorithm, we use those
now reconstructed data consisting of the combination of the
observed and imputed subsets, which we call Xrec (where rec
stands for reconstructed), to obtain Wnew as the solution of a
modified version of Eq. (18):

ΦTG∗ΦWnew
− ΦTẐ

∗
Xrec

= 0. (27)

Note that the elements ẑ∗

kn of Z∗, and also basis of the
calculation of the elements of G∗, are now calculated as

ẑ∗

kn =
νk + D

νk + β

(∥∥∥yo,old
k − xo

n

∥∥∥2
+

∥∥∥ym,old
k − xm

n

∥∥∥2
) ẑkn . (28)

This matrix of weights Wnew can be used to update
the generated mixture component centres as

(
ym

k

)new
=

(WnewΦ (uk))
m and

(
yo

k

)new
= (WnewΦ (uk))
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This completes the account of modifications of the EM
procedure described in the previous section that are necessary
to implement missing data imputation as an integral part of it.

5. Experiments

The experiments, performed on several data sets, were
divided according to two main goals. The first was to illustrate
the effect of using t-distributions instead of Gaussians in
the definition of the GTM model. Therefore, it focused on
the model’s robustness towards outliers, ignoring, at this
stage, the possible incompleteness of the data. In accordance
with Peel and McLachlan (2000), we expected to see less
extreme estimates of the posterior probability of the mixture
components (latent space points of the t-GTM) given the
data, expressed by Eq. (16), than those obtained for the GTM
described as a constrained mixture of Gaussians, expressed by
Eq. (7). For this experiment, and following Wang et al. (2004),
we used an augmented version of Fisher’s Iris data set, available
from the U.C.I. Machine Learning Repository.1 We also used
a data set of single-voxel Magnetic Resonance Spectra (MRS)
measured in vivo from several human brain tumours and cystic
growths.

The second goal concerned two aspects. It first aimed
to assess whether the missing data imputation procedure
was robust enough to avoid the adverse effect of data
incompleteness on the identification of outliers. At this stage,
we used the augmented version of the Iris data set of the first
experiment, as well as a second, bigger, augmented version.
Moreover, the brain tumour set, the blue crab data set of
Campbell and Mahon (1974), and the multi-phase flow pipeline
data set,2 were also used. Secondly, it aimed to investigate
how the t-GTM imputed the missing values and whether
there was any difference between the way it did it for values
corresponding to outliers and the way it did it for values
corresponding to data dense regions. We also benchmarked the
t-GTM with the standard Gaussian GTM.

All the aforementioned data sets are described in summary
next.

5.1. Data sets

The Iris data set is considered first. It consists of 150
observations and 4 variables (sepal and petal lengths and
widths) describing three iris flower species (Setosa, Versicolor
and Virginica). For the experiments corresponding to the first
goal described in the previous paragraphs, it was augmented
by five artificially added outliers, prior to data normalization,
sampled from a uniform distribution and with at least the value
for one of the variables falling neatly outside the range spanned
by the original variable. For the experiments corresponding
to the second goal, a second set based on the Iris data,
augmented this time by 20% of outlier instances, sampled from
an artificially generated uniform distribution, was created.

For both types of experiments, a data set of single-
voxel Magnetic Resonance Spectra from several human brain
tumours and cystic growths was also used. These data
consist of 98 spectra acquired in vivo for five tumour types:
Astrocytes, Glioblastomas, Metastases, Meningiomas, and
Oligodendrogliomas, and for cystic growths. The latter have a
distinctive metabolic profile, quite different from the tumours
themselves, characterized by high levels of lactate. Given their
different but inhomogeneous composition, most of these cystic
regions are likely to be outliers with respect to the tumours. The
spectra were originally digitised, sampling the region known

1 www.ics.uci.edu/˜mlearn/MLRepository.html.
2 Available from the GTM homepage at Aston University, UK:

www.ncrg.aston.ac.uk/GTM/.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ncrg.aston.ac.uk/GTM/
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to contain clinically relevant metabolic information, into 194
frequency intensity values. In Huang, Lisboa, and El-Deredy
(2003), a method based on Multivariate Bayesian Variable
Selection provided a parsimonious and predictive description
of the data in the form of six frequency intensities, assigned to
Fatty Acids, Lactate, a compound-unassigned peak, Glutamine,
Choline, and Taurine-Inositol. The data used in this study
consist of these six variables.

For the experiments corresponding to the second goal
described in the previous paragraphs, two extra sets were used,
which had also been considered in similar studies: the blue crab
data set, used in Peel and McLachlan (2000), and the multi-
phase flow pipeline data set, used, for instance, in Tiňo and
Nabney (2002). The crab data3 consist of five morphological
measurements on 200 specimen observations of crabs of genus
Leptograpsus. The pipeline data set, generated synthetically,
simulates the flow in an oil pipeline, which takes one out
of three possible configurations: horizontally stratified, nested
annular, or homogeneous mixture flow. It consists of 1000
observations and 12 variables. Following a similar procedure to
the one sketched in Svensén and Bishop (2005), we added 20%
of outliers to both data sets (after normalization), drawn from a
uniform distribution on [−10, 10] along each dimension.

5.2. Experimental settings

For both the GTM as a constrained mixture of Gaussians and
the t-GTM, the adaptive parameters W and β were initialized,
following a standard procedure (Bishop et al., 1998a). Matrix
W was initialized to minimize the difference between the
centres of the Gaussian distributions in data space yi and the
projections into data space that would be generated by a partial
PCA, y′

i = V2ui , where the columns of matrix V2 are the two
principal eigenvectors (given that the latent space considered
here was two-dimensional). This way, the replicability of the
results was ensured. The variance β−1 was initialized as the
larger of either the third principal component obtained in the
PCA procedure or half the average minimum distance between
latent points.

For all experiments outlined in the previous section, the
grid of GTM latent centres was fixed to a square layout of
5 × 5 nodes (i.e., 25 constrained mixture components). The
corresponding grid of basis functions φm was fixed to a 3 × 3
layout. Alternative layouts, in terms of shapes and sizes, are
indeed possible and several were tested without significant
differences (concerning the goals of the current analyses) being
observed.

In the second set of experiments, several levels of data
incompleteness were considered (5%, 10%, 15% and 20%) in
order to test the limits of the robustness of the missing data
imputation methods. Given that all the data sets selected for
the second experiment were originally complete, the selection
of those values that were artificially made missing for each
of them was randomly varied 30 times, in order not to bias

3 Available from Professor B. Ripley’s web site at
www.stats.ox.ac.uk/pub/PRNN/.
the results. Therefore, for each level of incompleteness, each
GTM model was fitted to the data 30 times. This procedure
was skipped over for the brain tumour data set for illustrative
purposes. In all experiments, a fixed value of ν, common to all
GTM mixture components, was used; preliminary tests were
run for a range of its possible values in order to select that which
maximized the complete log-likelihood in Eq. (21).

5.3. Results and discussion

Fig. 1 confirms the expectations regarding the first
experiment stated in the previous section. In accordance
with Peel and McLachlan (2000), we find that the posterior
probabilities of the mixture components (latent space points
of the t-GTM) given the data, expressed by Eq. (16), for
the outliers artificially added to the Iris data set are much
smaller than those obtained for the GTM described as a
constrained mixture of Gaussians, expressed by Eq. (7). The
same behaviour can also be observed, in Fig. 2, for an
outlier cystic growth region of the brain tumour data set.
In comparison, both variants of the GTM generate narrowly
peaked posterior probabilities for instances belonging to the
three classes of the original Iris data set. It can also be seen
that these probabilities are narrower for the GTM defined as
a constrained mixture of Gaussians. In fact, it is common, for
this model, to find that the posterior probability in Eq. (7)
is concentrated in a single component (Bishop et al., 1998b).
This is not uncommon in the case of the t-GTM, although
it is not unusual either to find posterior probabilities that are
slightly spread across two or three components in neighbouring
positions of the latent space.

As mentioned previously, a multivariate t-distribution
converges to a multivariate normal distribution in the limit
ν → ∞. Let us first calculate the maximum of the posterior
probability in Eq. (16) across all t-GTM mixture components
for each of the five outlier data instances added to the Iris data
set, and then calculate their mean over these instances. This is
illustrated in Fig. 3, where such a mean is displayed against
increasing values of parameter ν. As expected, these maximum
posterior probabilities increase monotonically as we get closer
to a multivariate normal distribution. Therefore, as ν increases,
the t-GTM loses its capability to minimize the influence of the
outliers on the overall parameter estimation process.

The focus is now shifted to the second goal of the
experiments, which first aims to answer the following question:
Is the missing data imputation process robust enough to avoid
the adverse effect of data incompleteness on the identification
of outliers? As mentioned in the previous section, according
to Peel and McLachlan (2000) a given data instance could be
considered as an outlier if the value of

On =

∑
k

ẑkn
ν + D

ν + β
∥∥yk − xn

∥∥2 (31)

was sufficiently small or, equivalently, the value of

O∗
n =

∑
k

ẑknβ
∥∥yk − xn

∥∥2 (32)

http://www.stats.ox.ac.uk/pub/PRNN/
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Fig. 1. Posterior probabilities of all 25 GTM components (latent nodes forming a 5 × 5 square grid), given several data instances. The top row corresponds to the
t-GTM. It displays, on the vertical axis, the posterior probabilities from Eq. (16) for three out the five outliers added to the original Iris data. The third row displays
the posterior probabilities for the same three outliers, as estimated from Eq. (7) by the Gaussian GTM. Whereas no mixture component takes the main responsibility
for the outliers in the first case, the responsibility for the outliers is highly peaked around a single component in the case of the Gaussian GTM. The second and
fourth rows, in turn for the t-GTM and the Gaussian GTM, correspond to the posterior probabilities for all components, given three data instances (one from each
of the Iris data set classes: Setosa, Versicolor and Virginica) of the original data set.
Fig. 2. Posterior probabilities of all 25 GTM components, given an extreme outlier of the brain tumour data set: cystic growth 5: left, t-GTM; right, Gaussian GTM
(G-GTM). Once again, the responsibility taken by all components of t-GTM is almost flat compared to the narrowly peaked one corresponding to the Gaussian
GTM.
was sufficiently large. Fig. 4 displays the histograms for the
statistic in Eq. (32) at different levels of data incompleteness
for the first augmented Iris data set. Bearing in mind that a
histogram is just a simplification for illustrative purposes, it can
be said that all five outliers are neatly isolated for levels of data
incompleteness of 5%, 10%, and 15%. At an incompleteness
level of 20%, one of the outliers is clearly not recognized as
such, whereas one of the instances belonging to the Virginica
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Fig. 3. Mean, over the five outliers in the first augmented Iris data set, of the
máximum of the posterior probability across all GTM mixture components
(i.e. meann=151,...,155{maxk=1,...,K {ẑkn}}) as a function of parameter ν. It
is calculated for a limited range of ν values (from 2 to 50). Note the almost
sigmoidal shape of the function.

class might well be considered as an outlier. It must be pointed
out that this specific data instance (119 in the original Iris data
set) has the highest observed value for variable Petal Length,
which is, most probably, the reason for the misclassification.
This is an indication of the fair robustness of the proposed
model for simultaneous missing data imputation and outlier
detection. To qualify this statement further, we now resort
to several other data sets. Paired histograms for the statistic
in Eq. (32), at different levels of data incompleteness from
5% to 20%, for the second augmented version of the Iris
data set, which includes 20% of outliers, are displayed on the
first two rows of Fig. 5. The histograms depicting outliers
and non-outliers (original data) are neatly separated, with
no overlapping, at all the evaluated levels of missing values
present, confirming the robustness of the proposed model
regarding outlier identification, even at rather high levels of
both data incompleteness and outlier presence. The last two
rows show similar and consistent results, in a more summarized
form, for the crabs and pipeline data sets.

The same experiment was carried out for the brain
tumour data set and for several levels of incompleteness.
The corresponding histograms of Eq. (32) for some of these
levels show in Fig. 6 that, even at rather high levels of
incompleteness, the imputation behaves in a reasonably robust
manner, as similar cystic growth regions are singled out as
the most extreme outliers, which is discussed in more detail
elsewhere (Vellido, Lisboa, & Vicente, 2006). The existing
literature regards Lactate as a generically good discriminator
of tumour types and grades (Huang et al., 2003; Preul et al.,
1996), but it is known (Howe & Opstad, 2003) to discriminate
especially well between tumours and cystic growth regions.
The bottom plot in Fig. 6 partially illustrates this through a
representation of Lactate versus Glutamine, where the most
extreme cystic outliers singled out in the previous histograms
have been labelled.

We might expect that the missing data imputation procedure
associated with the t-GTM yielded different results depending
Fig. 4. Histograms of the statistic in Eq. (32), at different levels of data
incompleteness, for the first augmented Iris data set. They illustrate the
robustness of the model for outlier detection when data are incomplete. Results
are commented on in the main text. In a practical implementation, a threshold
value of this statistic might be set up to differentiate potential outliers.

on whether the missing values corresponded to outliers or
non-outliers. This was indeed the case. The first two rows of
Fig. 7 illustrate this by displaying, for different levels of data
incompleteness from 5% to 20% of the second augmented Iris
data set, the paired histograms of normalized errors

∥∥xn − xrec
n

∥∥
for both outliers and non-outliers, where xrec

n is data instance n
as reconstructed by the model and xn is the observed complete
data instance n. The majority of outliers show large errors
associated with the imputation of their missing values. The
level of data incompleteness, up to 20%, does not seem to have
a significant effect on the distribution of these errors. Similar
and consistent results, displayed in a more summarized manner
in the last two rows of Fig. 7, were found for the crabs and
the pipeline data sets. The interpretation of these results can
be eased by using an overall measure, such as the normalized

root mean squared error RMSE =

(
1
N

∑N
n

∥∥xn − xrec
n

∥∥2
)1/2

,

provided in two different circumstances: for all data, including
outlier instances, and for the added outliers only. The results
shown in Table 1 for the second augmented Iris set, the
crabs set, and the pipeline set, consistently summarize those
displayed in Fig. 7. From these results, it becomes clear that,
beyond identifying the outliers in a data set, the t-GTM is
capable of inhibiting their effect on the overall data model even
when data are incomplete. To qualify this statement further,
we compared the performance of t-GTM and the standard
Gaussian GTM. These results are also added to Table 1.
Overall, the t-GTM is shown to produce a more accurate
missing data reconstruction but, equally, if we pay attention
only to the reconstruction of the outliers (in brackets in Table 1),
the t-GTM also imputes the missing values better than the
Gaussian GTM. In spite of this, the percentage of the overall
error corresponding to the reconstruction of the outliers is
consistently smaller for the Gaussian model. In conclusion, the
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Table 1
Normalized root mean square error of the overall missing data reconstruction, and the outliers missing data reconstruction (in brackets, together with the percentage
of the former represented by the latter) for three data sets (Iris, crabs, and pipeline), two levels of missing values (10% and 20%), and two model variants (t-GTM
and Gaussian GTM)

10% missing values 20% missing values
t-GTM Gaussian GTM t-GTM Gaussian GTM

Iris data 6,401 (5,947; 92.91%) 7,944 (7,025; 87.88%) 6,944 (6,347; 91.40%) 8,257 (7,163; 86.75%)
Crabs data 6,588 (6,302; 95.66%) 8,795 (7,881; 89.61%) 7,495 (7,159; 95.52%) 9,619 (8,492; 88.28%)
Pipeline data 8,247 (7,493; 90.86%) 9,175 (7,980; 86.98%) 10,288 (9,327; 90.66%) 11,272 (9,768; 86.66%)

Mean results over 30 different random selections of the missing values.
Fig. 5. Paired histograms of the statistic in Eq. (32), at different levels of data
incompleteness, for the second augmented Iris set (first two rows) and for the
crabs and pipeline data sets (last two rows). Light grey identifies the original
data; dark grey identifies the added outliers. For all data incompleteness levels,
these are mean results over 30 different random selections of the missing values.
These histograms provide further evidence of the robustness of the model for
outlier detection when data are incomplete.

t-GTM would be the model choice if we aimed to minimize the
negative impact of outliers, or even to provide an overall better
missing data reconstruction. Nevertheless, it should be born in
Fig. 6. Top row: histograms of the statistic in Eq. (32) at two levels of data
incompleteness (10%: top left; 20%: top right) for the brain tumour data set.
The most extreme cystic growth region outliers have been labelled. Bottom
row: this is accompanied by a bi-plot, using the original data, of Glutamine
(horizontal axis) versus Lactate (vertical axis) where the same outliers have
been located.

mind that the t-GTM is likely to reconstruct outliers and non-
outliers in a more different way than its Gaussian counterpart.

6. Conclusions

Probabilistic models offer a consistent framework for
dealing with problems that entail uncertainty. When probability
theory lies at the foundation of a learning algorithm, the risk
that the reasoning performed in it is inconsistent in some cases
is lessened (Jaynes, 2003; Cerquides, 2004). For SOM, that
lack of a probabilistic framework is a limitation. The GTM
was defined as a probabilistic alternative to SOM precisely to
overcome such a limitation, while preserving its multivariate
data visualization and clustering advantages. Nevertheless, the
GTM, defined as a constrained mixture of Gaussians, shares
with its unconstrained counterparts (Gaussian mixture models)
its lack of robustness towards outliers.

In this paper, the GTM has been redefined as a mixture of
t-distributions, which are known to provide such robustness
towards outlier data. This redefinition simultaneously provides
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Fig. 7. Paired histograms of missing values estimation error, for the second
augmented Iris set, at different levels of data incompleteness (first two rows)
and for the crabs and pipeline data sets (last two rows). Light grey colour
identifies the original data; dark grey identifies the added outliers. For all data
incompleteness levels, these are cumulative results over 30 different random
selections of the missing values (notice that the different vertical scales of
the histograms, increasing with the percentage of missing values, are due to
the fact that observations with no missing values are not included in the error
calculation).

a procedure to impute missing information in case of data
incompleteness, based on a modification of the EM algorithm
for maximum likelihood estimation of the t-GTM parameters.

The experiments have highlighted the capability of
the t-GTM not only to identify outliers, but also to
effectively inhibit their possibly negative influence on the
fitting of the model to the data. It has also been shown
that the missing data imputation procedure embedded in
t-GTM provides reasonably accurate estimates. This is an
interesting result from the point of view of possible practical
applications of the model in which the available data were
incomplete: for some applications, the existence of outliers
might be an undesirable feature, and a model that identified
and inhibited their effect would be advantageous. Other
applications, though, might still consider the information
provided by outliers to be of qualitative interest; in such cases,
the t-GTM would still provide a reasonably accurate imputation
of their missing values.

An avenue for future research is the definition of criteria
to estimate automatically the adequate number of mixture
components for the t-GTM. This model can be used for
simultaneous multivariate data visualization and clustering,
but the number of latent points (or constrained mixture
components, with their associated data clusters) is largely
unconstrained, precisely for data visualization purposes. The
automatic estimation of the number of components, in this
case, could be a basis for an agglomerative procedure for
merging individual components into bigger clusters. These
bigger clusters are likely to be a more stable outcome for
practical data clustering applications.

Also, research should be devoted to overcome the problem of
convergence towards local maxima associated with the classical
EM algorithm, which affects both the standard GTM and the
t-GTM. In this direction, techniques based on deterministic
annealing EM (DAEM: Ueda & Nakano, 1998), split-and-
merge EM (SMEM: Ueda, Nakano, Ghahramani, & Hinton,
2000; Ueda & Ghahramani, 2002), or competitive EM (CEM:
Zhang, Zhang, & Yi, 2004) might be explored.
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Tiňo, P., & Nabney, I. (2002). Hierarchical GTM: constructing localized non-
linear projection manifolds in a principled way. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24, 639–656.

Tipping, M. E., & Bishop, C. M. (1999). Mixtures of probabilistic principal
component analyzers. Neural Computation, 11, 443–482.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani,
R., et al. (2001). Missing value estimation methods for DNA microarrays.
Bioinformatics, 17, 520–525.

Ueda, N., & Ghahramani, Z. (2002). Bayesian model search for mixture models
based on optimizing variational bounds. Neural Networks, 15, 1223–1241.

Ueda, N., & Nakano, R. (1998). Deterministic annealing EM algorithm. Neural
Networks, 11, 271–282.

Ueda, N., Nakano, R., Ghahramani, Z., & Hinton, G. E. (2000). SMEM
algorithm for mixture models. Neural Computation, 12, 2109–2128.

Vellido, A., El-Deredy, W., & Lisboa, P. J. G. (2003). Selective smoothing
of the generative topographic mapping. IEEE Transactions on Neural
Networks, 14, 847–852.

Vellido, A., Lisboa, P. J. G., & Vicente, D. (2006). Robust analysis of MRS
brain tumour data using t-GTM. Neurocomputing, 69(7–9), 754–768.

Vesanto, J. (1999). SOM-based data visualization methods. Intelligent Data
Analysis, 3, 111–126.

Vicente, D., Vellido, A., Martı́, E., Comas, J., & Rodriguez-Roda, I. (2004).
Exploration of the ecological status of mediterranean rivers: Clustering,
visualizing and reconstructing streams data using Generative Topographic
Mapping. In A. Zanasi, N. F. F. Ebecken, & C. A. Brebbia (Eds.), WIT
transactions on information and communication technologies: Vol. 33
(pp. 121–130). Southampton: WIT Press.

Wang, H. X., Zhang, Q. B., Luo, B., & Wei, S. (2004). Robust mixture
modelling using multivariate t-distribution with missing information.
Pattern Recognition Letters, 25, 701–710.

Wedel, M., & Kamakura, W. A. (2000). Market segmentation: conceptual
and methodological foundations (2nd ed.). Boston: Kluwer Academic
Publishers.

Yau, K. K. W., Lee, A. H., & Ng, A. S. K. (2003). Finite mixture regression
model with random effects: application to neonatal hospital length of stay.
Computational Statistics and Data Analysis, 41, 359–366.

Zhang, B., Zhang, C., & Yi, X. (2004). Competitive EM algorithm for finite
mixture models. Pattern Recognition, 37, 131–144.


	Missing data imputation through GTM as a mixture of  t -distributions
	Introduction
	The standard generative topographic mapping
	GTM as a constrained mixture of student  t -distributions: The  t -GTM
	Related work

	Missing data imputation through  t -GTM
	Experiments
	Data sets
	Experimental settings
	Results and discussion

	Conclusions
	Acknowledgements
	References


