
European Journal of Operational Research 169 (2006) 477–489

www.elsevier.com/locate/ejor
Solving feature subset selection problem by a Parallel
Scatter Search q

Félix Garcı́a López, Miguel Garcı́a Torres, Belén Melián Batista,
José A. Moreno Pérez *, J. Marcos Moreno-Vega

Dpto. de Estadı́stica, Investigación Operativa y Computación, Escuela Técnica Superior de Ingenierı́a Informática,

Universidad de La Laguna, 38271 La Laguna, Spain

Available online 7 October 2004
Abstract

The aim of this paper is to develop a Parallel Scatter Search metaheuristic for solving the Feature Subset Selection
Problem in classification. Given a set of instances characterized by several features, the classification problem consists
of assigning a class to each instance. Feature Subset Selection Problem selects a relevant subset of features from the
initial set in order to classify future instances. We propose two methods for combining solutions in the Scatter Search
metaheuristic. These methods provide two sequential algorithms that are compared with a recent Genetic Algorithm
and with a parallelization of the Scatter Search. This parallelization is obtained by running simultaneously the two com-
bination methods. Parallel Scatter Search presents better performance than the sequential algorithms.
� 2004 Elsevier B.V. All rights reserved.

Keywords: Scatter Search; Feature subset selection; Parallelization; Metaheuristics
0377-2217/$ - see front matter � 2004 Elsevier B.V. All rights reserv
doi:10.1016/j.ejor.2004.08.010

q This research has been partially supported by the projects
TIC2002-04242-C03-01 (70% of which are FEDER founds) and
TIC2002-10886E.

* Corresponding author. Tel.: +34 922 318186; fax: +34 922
318170.

E-mail addresses: jamoreno@ull.es (J.A. Moreno Pérez),
fcgarcia@ull.es (F. Garc�ıa López), mgarciat@ull.es (M. Garc�ıa
Torres), mbmelian@ull.es (B. Meli�an Batista), jmmoreno@
ull.es (J.M. Moreno-Vega).
1. Introduction

In a classification problem, the goal is to clas-
sify instances that are characterized by a set of fea-
tures. Then, the class to which each instance
belongs is determined. In supervised machine
learning, an induction algorithm is typically pre-
sented with a set of training instances (examples,
cases), where each instance is defined by a vector
of features and a class label. The task of the induc-
tion algorithm is to induce a classifier that will be
used to classify future cases. The classifier is a
ed.

mailto:jamoreno@ull.es
mailto:fcgarcia@ull.es
mailto:mgarciat@ull.es
mailto:mbmelian@ull.es
mailto:jmmoreno@

478 F. Garc�ia López et al. / European Journal of Operational Research 169 (2006) 477–489
mapping from the space of feature values to the set
of class labels. Since, in practical applications, the
set of features can be very large, in order to classify
future instances, it is important to select a smaller
subset of these features. As pointed in [10], this
dimensionality reduction has several advantages:
a reduction in the cost of acquisition of the data,
improvement of the comprehensibility of the final

classification model, a faster induction of the final

classification model and an improvement in classifi-

cation accuracy.
The feature subset selection problem consists of

finding a subset of the original set of features, such
that an induction algorithm using only these fea-
tures is able to generate a classifier with the best
performance. Selecting the optimal feature subset
is an NP-hard optimization problem [12]. There-
fore exact algorithms should not be used due to
the complexity of the problem. For example, deter-
mining the optimal binary decision tree is an NP-
hard problem [9]. Several heuristic algorithms have
been proposed for solving the feature subset selec-
tion problem. One of the most widely used meta-
heuristics are the Genetic Algorithms. These
algorithms have been proposed and analysed for
the feature subset selection problem in [7,17,
18,21]. The obtained results show that Genetic
Algorithms are appropriate methods for this pro-
blem. We propose the use of another evolutive
metaheuristic (Scatter Search [13]) to solve this
problem and compare one of our proposed Scatter
Search procedures with a recent Genetic Algo-
rithms. We have not found any reference about
the application of Scatter Search to the feature
selection.

Two different approaches for selecting the
subset of features can be considered: the wrapper
and filter approaches. The filter approach selects
the features using a preprocessing step that
ignores the induction algorithm. The main disad-
vantage of this procedure is that it ignores the
effect of the subset of features in the induction
algorithm. Two filter-based algorithms are RE-
LIEF [11] and FOCUS [3]. The first one assigns
a weight to each feature according to its rele-
vance for classifying. To do so it samples several
examples randomly and compares the example
with the two nearest examples of the same and
opposite class. The latter algorithm examines
all subsets of features by selecting the minimal
subset of features that is sufficient to classify
the examples.

In the wrapper approach, the induction algo-
rithm selects the optimal subset of features by it-
self. Two well known wrapper approaches are
forward subset selection (FSS) and backward sub-
set selection (BSS) [5]. FSS starts with an empty
subset of features and, at each step, it adds to
the subset the feature that most improves the clas-
sification. This process is iterated until no
improvement is possible. In BSS the initial subset
consists of all the available features and, at each
step, the worst feature is eliminated from the sub-
set. As in FSS, this process is repeated until no
improvement is possible. The Parallel Scatter
Search proposed in this paper is based on the
wrapper approach.

We consider three paradigms of learning: the
Instance-Based Learning approach, the Bayesian
Learning procedures, and the Decision Tree meth-
ods [14]. The first approach uses the nearest exam-
ples to predict the label of the instance, given a set
of examples and an instance to be classified. In
particular, we use the instance-based algorithm
called IB1 [2], that classifies each instance with
the label of the nearest example. For the purpose
of classifying each instance with the label of the
nearest example, IB1 considers all the features,
although, in general, only a few of them are highly
relevant. The Bayesian Learning algorithms use
probability as an approach for classification. The
Naive Bayes classifier consists in using Bayes the-
orem to estimate ‘‘a posteriori’’ probabilities of
all possible classifications. For each instance, the
classification with the highest ‘‘a posteriori’’ prob-
ability is chosen. Decision trees classify instances
by testing the instance at each node it reaches.
The procedure starts at the root and, at each node,
moving down the trees branch according to the re-
sult of the test. Leaf nodes give the classification of
all instances that reach the leaf. We use the top–
down induction decision tree algorithm C4.5 de-
vised by Quinlan [16]. The C4.5 algorithm is an
improvement of the classical ID3 (Interactive
Dichotomer 3) algorithm for constructing decision
trees.

F. Garc�ia López et al. / European Journal of Operational Research 169 (2006) 477–489 479
Scatter Search [13] is an evolutionary algorithm
in which a set of solutions evolves due to mecha-
nisms of combination between solutions. Unlike
other strategies of combination of existing rules
like genetic algorithms, the search for a local opti-
mum is a guided task. In order to carry out this
strategy, given a population of solutions, a refer-
ence set (RefSet) is considered. This RefSet is gen-
erated attempting to intensify and diversify the
population of solutions. After combining the solu-
tions in the reference set, a local search procedure
is applied to the resulting solution, and the RefSet
is updated to incorporate both good and disperse
solutions. These steps are repeated until a stopping
condition is met.

Parallel implementations of metaheuristics ap-
pear quite naturally as an effective alternative to
speed up the search for approximated solutions
of combinatorial optimization problems. We show
that they not only allow solving larger problems or
finding improved solutions with respect to their
sequential counterparts, but also lead to more pre-
cise random algorithms. We say that a random
algorithm AlgA is more precise than a random
algorithm AlgB if, after running both algorithms
the same number of times, AlgA reaches objective
function values with less standard deviation. In
addition, we analyse the effect of running simulta-
neously several combination strategies by using
different processors.

Section 2 describes the feature subset selection
problem. The proposed sequential Scatter Search
is described in Section 3 and its parallelization in
Section 4. Finally, the computational experience
and conclusions are shown in Sections 5 and 6,
respectively.
2. The feature subset selection problem

Let A be a set of given instances, which are
characterized by d features X = {Xj : j = 1, . . . ,d}.
Each feature is either a nominal or a linear attri-
bute. An attribute is linear if the evaluation of
the difference between two of its values has sense
(being discrete or continuous); otherwise it is nom-
inal. Furthermore, each instance has a label that
indicates the class to which it belongs. In order
to carry out the task of classifying by means of
supervised learning, we consider the subset of in-
stances T � A in which labels are known and can
be used as training examples, and the subset
V = AnT of instances to be classified (validation
instances). The labels of V will only be used to
measure the performance of the classifier. In the
feature subset selection problem, the set of features
with the best performance must be obtained. The
accuracy percentage is often used to measure the
performance of a classifier. Then, the optimization
problem associated consists of finding the subset
S � {Xj : j = 1, . . . ,d} with higher accuracy per-
centage. However, this percentage can only be esti-
mated using the validation instances, since V is
only a subset of the set of instances to be classified.

The k-fold cross-validation method is widely
used to estimate the accuracy percentages of a sub-
set of features S on a given set of instances B. The
method proceeds in the following way. The set of
instances B is randomly divided into k disjoint
subsets of equal size B1,B2, . . . ,Bk and k trials
are carried out. In the trial i, Bi is considered the
test set and the training set is the union of the
other subsets Ti = BnBi. In each trial, the test in-
stances are classified using the learning algorithm.
The estimated accuracy percentage of the classifier
is the average of the accuracy percentages over all
the trials. The estimated accuracy percentage of a
subset of features S on a given set of instances B

using cross-validation is stated as follows:

fBðSÞ ¼ 100
ja 2 B : ~ca ¼ caj

jBj ; ð1Þ

where ca is the class of each instance a and ~ca is the
class assigned by the classifier.

In the computational experience we consider, as
inductive classifiers, the induction algorithm IB1,
the Naive Bayes algorithm, and the C4.5 Decision
Tree algorithm provided by the Weka Machine
Learning Project [20].

If IB1 is used, for each instance v in the test set,
we calculate its nearest example t in the training set
and then we consider that both of them belong to
the same class and have the same label (i.e., ~cv ¼ ct
with ct the label of t and ~cv the label of the class
assigned to v). The distance function considered
was the heterogeneous Euclidean overlap metric

480 F. Garc�ia López et al. / European Journal of Operational Research 169 (2006) 477–489
(HEOM), which can handle both nominal and lin-
ear attributes [19]. The overlap metric was applied
to nominal attributes, and the normalized Eucli-
dean distance was considered for linear attributes.
Let t = (t1, t2, . . . , td,ct) be an example with value ti
for the ith feature and label ct, and let
v = (v1,v2, . . . ,vd,cv) be an instance, with similar
notation. Let S � {Xj : j = 1, . . . ,d} be the feature
subset considered. The distance between t and v

is defined as

distHEOMðt; vÞ ¼
X
X j2S

dist2ðtj; vjÞ

with

distðtj; vjÞ ¼
1 if tj or vj is unknown;

distsðtj; vjÞ if X j is nominal;

distrðtj; vjÞ if X j is linear;

8><
>:

where dists is the overlap metric and distr is the
normalized Euclidean distance. That is

distsðtj; vjÞ ¼
0 if tj ¼ vj;

1 otherwise

�

and

distrðtj; vjÞ ¼
jtj � vjj

maxj �minj
;

where maxj and minj are respectively the maximum
and minimum values of the feature Xj in the train-
ing set. Note that, since the validation set is as-
sumed unknown, the normalized distance can be
greater than 1 for instances out of the training set.

The Naive Bayes Classifier is a practical method
very appropriated when the attributes that de-
scribe the instances are conditionally independent
given the classification. Given the attributes
t = (t1, t2, . . . , td) that describe an instance, the
most probable class is

ct ¼ argmax
c2C

PðcjX 1 ¼ t1;X 2 ¼ t2; . . . ;Xd ¼ tdÞ:

By Bayes theorem

ct ¼ argmax
c2C

PðX 1 ¼ t1;

X 2 ¼ t2; . . . ;Xd ¼ td jcÞP ðcÞ:
Then, assuming the conditional independence, the
Naive Bayes classifier is stated as

ct ¼ argmax
c2C

P ðcÞ
Yd
j¼1

P ðX j ¼ tjjcÞ:

In practical applications the theoretical proba-
bilities are replaced by their estimations. Each
probability is estimated by the corresponding fre-
quencies in the training set. One of the two major
objections to this method is the case where none of
the training instances in a given class have an attri-
bute value. If P ðX j ¼ tjjcÞ ¼ 0 then every instance
with this value cannot be classified in class c.
Therefore, modified estimations of these probabil-
ities are used. The other major objection is that the
conditional independence assumption is often vio-
lated in real applications. However, it works well
even in that case because it is only needed that

argmax
c2C

PðX 1 ¼ t1; . . . ;Xd ¼ td jcÞPðcÞ

¼ argmax
c2C

P ðcÞ
Yd
j¼1

P ðX j ¼ tjjcÞ

and the feature selection procedure helps to choose
those attributes that are conditionally independent
given the classification.

The C4.5 algorithm is an improvement of the
classical ID3 (Interactive Dichotomer 3) method
for constructing a decision tree. The improvement
includes a method for dealing with numeric attri-
butes, missing values, noisy data, and generating
rules for trees. The basic ID3 is a ‘‘divide and con-
quer’’ method that works as follows. Firstly, it se-
lects an attribute test to place at the root node and
make a branch for each possible result of the test.
Usually, each test involves only an attribute and
one branch is made for each possible value of the
attribute. This splits up the training set into sub-
sets and the process is repeated recursively with
each branch, using only those instances that actu-
ally reach the branch. When all the instances at a
node have the same classification, stop developing
that part of the tree.

The algorithms determine the test to place at
each node. The ID3 uses the information gain cri-
terion to construct the decision tree. The informa-
tion gain is measured by the purity of the set of

Fig. 1. Sequential Scatter Search metaheuristic pseudocode.

F. Garc�ia López et al. / European Journal of Operational Research 169 (2006) 477–489 481
instances corresponding to each branch. The pur-
ity of a set of instances is measured by the amount
of information required to specify the class of one
instance that reaches the branch. The use of the
gain ratio is one of the improvements that were
made to ID3 to obtain the C4.5 algorithm. The
gain ratio is a modification of the information gain
measure to compensate that it tends to prefer attri-
butes with large number of possible values. The
gain ratio takes into account the number and size
of the daughter nodes into which a test splits the
training set.

For the purpose of guiding the search for the
best subset of features (training) and measuring
the effectiveness of a particular subset of features
after the search algorithm has chosen it as solution
of the problem (validation), the function (1) for
2-fold cross-validation is used. To guide the
search, fT(Æ) is considered and to measure the effec-
tiveness, fV(Æ) is used. In validation, we consider
5 · 2 cross-validation (5 · 2 cv) [6] that consists
of dividing the set V into 2-folds and then conduct-
ing two trials. This is done for 5 random arrange-
ments of V. However, in training, we use 1 · 2 cv,
where only one arrangement is done.
3. Application of SS to the feature subset

selection problem

The aim of this section is to describe the charac-
teristics of the proposed Scatter Search. Scatter
Search (SS) [13] is a population-based metaheuris-
tic that uses a reference set to combine its solutions
and construct others. The method generates an ini-
tial reference set from a population of solutions.
Then, several subsets are selected from this refer-
ence set. The solutions of each selected subset are
combined to get starting solutions to run an
improvement procedure. The result of the
improvement can motivate the updating of the ref-
erence set and even the updating of the population
of solutions. The process is iterated until a stop-
ping condition is met.

The pseudocode of the Sequential Scatter
Search is described in Fig. 1. The high level proce-
dures used for developing the Scatter Search are
the following.
3.1. CreatePopulation

This procedure creates the initial population
(Pop), which must be a wide set consisting of dis-
perse and good solutions. Several strategies can
be applied to get a population with these proper-
ties. The solutions to be included in the population
can be created, for instance, by using a random
procedure to achieve a certain level of diversity.
For the feature subset selection problem, the solu-
tion space size depends on the number of features
of the problem. Therefore, the size of the initial
population is fixed depending on the number of
features. We consider jPopj = d2, where d is the
number of features.

In order to build a solution, we use the vector of
weights of the features P(X) = (P(X1), . . . ,P(Xd)),
given by P(Xj) = fT({Xj}). These weights indicate
the quality of the feature for classifying by itself.
Let L be the set of features Xj with the highest
weights P(Xj). The proposed strategy consists in
iteratively selecting at random one of the jLj best
possible features (according to P) while its inclu-
sion improves the set. The algorithm is stated in
Fig. 2.

3.2. GenerateReferenceSet

A set of good representative solutions of the
population is chosen to generate the reference set
(RefSet). The good solutions are not limited to
those with the best objective function values. The
considered reference set consists of RefSetSize1

Fig. 2. Building strategy.

482 F. Garc�ia López et al. / European Journal of Operational Research 169 (2006) 477–489
solutions with the best values of f and RefSetSize2
diverse solutions. Then RefSetSize = RefSet-

Size1 + RefSetSize2. The reference set is generated
by selecting first the RefSetSize1 best solutions in
the population and secondly adding RefSetSize2
times the most diverse solution in the population.
Let C be the set of features that belong to any solu-
tion already in the reference set; i.e.,

C ¼
[

S2RefSet
S:

The diversity of each solution S is given by the
symmetric difference between S and C defined as
follows:

DivðSÞ ¼ DiffðS;CÞ ¼ jðS [CÞ n ðS \ CÞj:
The algorithm proposed to generate the reference
set is described in Fig. 3.

3.3. SelectSubset

We consider, as usually in the applications of
Scatter Search, all the subsets of two solutions in
the current reference set of solutions. The solutions
in the subsets are then combined to construct other
solutions.
Fig. 3. Generating the reference set.
3.4. CombineSolutions

The combination procedure tries to combine
good characteristics of the selected solutions to
get new current solutions. The aim is to get good
solutions, which are not similar to those already
in the reference set.

We consider two combination methods, which
are both greedy strategies. Let S1 and S2 be the
solutions in the subset. Each combination method
generates two new solutions, S0

1 and S0
2. We will

refer to the first strategy as greedy combination
(GC) and to the second as reduced greedy combi-
nation (RGC). They both start by adding to the
new solutions S0

1 and S0
2 the features common to

S1 and S2. Then at each iteration one of the
remaining features in S1 or S2 is added to S0

1 or
S0
2. The reduced version only considers those fea-

tures that have appeared in good solutions found
during the search procedure. The description of
the greedy combination (GC) is stated in Fig. 4.

The reduced greedy combination strategy
(RGC) differs from the first one in that, instead
of considering the whole set of features in
C = (S1 [S2)n(S1 \ S2), it only uses the features
with the highest accuracy percentages. The initial
set C is reduced by applying the following proce-
dure. Let Q be a weights vector defined in the fol-
lowing way. For each feature Xj 2 C, Q(Xj) is the
average estimated accuracy percentage of all the
solutions containing the feature Xj. Then, Q(Xj)
is stated as follows:

QðX jÞ ¼
1

jfi : X j 2 Sigj
X

fi:X j2Sig
f ðSiÞ:

Let Q be the average of the values Q(Xj) such that
Xj 2 C,

Fig. 4. The GC combination.

Fig. 5. The improving method.

F. Garc�ia López et al. / European Journal of Operational Research 169 (2006) 477–489 483
Q ¼ 1

jCj
XjCj
j¼0

QðX jÞ:

The strategy RGC uses the features Xj 2 C such
that QðX jÞ P Q.

3.5. ImproveSolutions

The ImproveSolutions method is applied every
solution, S, generated by the combination method
explained above. Let CA be the set of features that
do not belong to the solution S. Then, the features
Xj 2 CA are ordered according to their weights
P(Xj). The improving method is described in Fig. 5.

The aim of the method is to add to the solution
those characteristics that improve it. All the solu-
tions reached by the ImproveSolutions method
are recorded in a set, ImpSolSet, which is then
used to update the reference set.
3.6. UpdateReferenceSet

Finally, after obtaining all the improved solu-
tions, RefSet is updated according to intensity
and diversity criteria. First of all, we select the
jRefSetj/2 best solutions from RefSet [ImpSolSet.
Then, RefSet is updated according to the diversity
criterium by applying the procedure explained in
3.2.

Fig. 6. Parallel Scatter Search pseudocode.

484 F. Garc�ia López et al. / European Journal of Operational Research 169 (2006) 477–489
4. Parallel Scatter Search

Although metaheuristics provide quite effective
strategies for finding approximate solutions to
combinatorial optimization problems, the compu-
tational times associated with the exploration of
the solution space may be very large. With the pro-
liferation of parallel computers, parallel imple-
mentations of metaheuristics appear quite
naturally as an alternative to speedup the search
for approximate solutions. Moreover, parallel
implementations also allow solving larger prob-
lems or finding improved solutions, with respect
to their sequential counterparts, due to the parti-
tioning of the search space.

Therefore, parallelism is a possible way not only
to reduce the running time of local search algo-
rithms and metaheuristics, but also to improve
their effectiveness and precision. The first parallel-
ization of Scatter Search has been proposed by
Garcı́a et al. [8]. The authors considered three par-
allel strategies in order to reduce the running time
of the algorithm and increase the exploration in
the solution space. Moreover, some of these strat-
egies improved the quality of the solutions.

In this paper, we consider another straightfor-
ward parallel strategy to improve the precision of
the Scatter Search metaheuristic without increas-
ing the running time. We can obtain more precise
implementations of Scatter Search by using differ-
ent combination methods and parameter settings
at each processor, leading to high quality solutions
for different classes of instances of the same prob-
lem, without too much effort in parameter tuning
and with the same execution time as the sequential
algorithm.

Fig. 6 shows the pseudocode of our parallel
implementation. Our Parallel Scatter Search
(PSS) applies a different combination method (de-
noted by CombineSolutionsr) at each processor
(r = 1, . . . ,npr). Since we have developed two alter-
native combination methods, in the computational
experience presented in Section 5, npr = 2.

The development of several combination meth-
ods for the Scatter Search metaheuristic has been
utilized in previous works. For example, Campos
et al. [4] designed different combination methods
for a sequential implementation of Scatter Search
for the linear ordering problem. They also assessed
the relative contribution of each method to the
quality of the final solution. Based on the results
obtained, they used the combination method that
presented a better performance. However, in this
paper we run two combination methods simulta-
neously by using two processors. Scatter search re-
quires high computational times, complicating the
sequential execution of several consecutive combi-
nation methods. The goal of the proposed parallel-
ization is to achieve an improvement of the quality
of the solution, using the same computational time
used by the sequential algorithm.
5. Computational results

The objective of the computational experiments
is to show the performance of the Scatter Search in
searching for a reduced set of features with high
accuracy. Firstly, we compared a Scatter Search
with a Genetic Algorithm using three standard
classifiers (IB1, Naive Bayes and C4.5). The data
showed a superiority of the Scatter Search over
the Genetic Algorithm. Moreover, the computa-
tional experience carried out corroborates that
the comparisons of the Scatter Search metaheuris-
tic and the Genetic Algorithm is similar when
using any of these classifiers. This means that
any of the three considered classifiers (IB1, Naive
Bayes and C4.5) can be used to analyse the effi-
ciency of these metaheuristics. Then, we designed

F. Garc�ia López et al. / European Journal of Operational Research 169 (2006) 477–489 485
an experiment to find the suitable values for the
parameters of our Scatter Search implementation.
Finally, we compared both Sequential Scatter
Search algorithms with the parallel procedure
using the parameters obtained.

The datasets considered in our computational
experiments were obtained from the UCI reposi-
tory [15], from which full documentation about
all datasets can be obtained. We chose them taking
into account their size and use in machine learning
research. The selected datasets have more than 300
instances because small datasets can motivate
overfitting. An induction algorithm overfits the
dataset if it models the training examples too well
and its predictions are poor. Table 1 summarises
the characteristics of the chosen datasets. The first
two columns correspond to the name of the data-
sets as it appears in the UCI repository and the
identifier (Id) used in forthcoming tables. The
intermediate three columns show the total number
of features, the number of nominal features and
the number of (numerical) linear features. Finally,
the last two columns summarise the number of in-
stances and classes in the dataset.

We use the 5 · 2 cross-validation method to
measure the accuracy percentage of the resulting
subset of features selected by the algorithms. How-
ever, in order to increase the efficiency of the
search, during the learning process only 1 · 2
cross-validation was considered. To perform the
comparisons between classifiers we used the F-test
Table 1
Summary of general characteristics of datasets

DataBase Id Features

All N

Heart (Cleveland) HC 13
Soybean Large SbL 35 2
Vowel Vw 10
Credit Screening Cx 15
PimaIndianDiabetes Pm 8
Anneal An 38 2
Thyroid (Allbp) TAb 28 2
Thyroid (Sick-Euthyroid) TSE 25 1
BreastCancer BC 9
Ionosphere Io 34
HorseColic HoC 21 1
WisconsinBreastCancer WBC 30
(see [1]) at statistical significance level of 0.95. The
F-test is a better test than the classical two-tailed t-
test for comparing classifiers.

In order to analyse the influence of the classifi-
ers in the performance of the metaheuristic algo-
rithms, we solved several problems with both
algorithms using the IB1, Naive Bayes and C4.5
classifiers. Table 2 shows the results obtained with
Sequential Scatter Search Greedy Combination
(SSS-GC) and Genetic Algorithm. The data shown
in the table correspond to values of the parameters
jLj = d/2 and jRefSetj = 5 in the SSS-GC. The Ge-
netic Algorithm applied is that provided by Weka
[20] with rank-based selection strategy and the
parameter setting proposed by Yang and Honavar
[21]. Namely, the values of the parameters are pop-
ulation size 50, number of generations 20, proba-
bility of cross-over 0.6, probability of mutation
0.001 and probability of selection of the highest
ranked individual 0.6. For each method, we show
average accuracy percentages, average number of
features and standard deviations over 10 runs for
each dataset. We also report the average results
over all the datasets considered.

The results shown in this table are similar for
both metaheuristics. In both cases, the classifier
that selects the smallest number of features is
C4.5 and IB1 provides the smallest reduction in
the set of features. The classifier that shows the
best percentages is Naive Bayes, but the differences
are not significant (at 95% level). These are known
Instances Classes

om Lin

7 6 303 2
9 6 307 19
0 10 528 11
9 6 690 2
0 8 768 2
9 9 798 5
2 6 2800 2
8 7 3163 2
0 9 699 2
0 34 351 2
4 7 368 2
0 30 569 2

Table 2
Accuracy and number of features for each classifier with the Genetic Algorithm (GA) and the Scatter Search (SS)

IB1 Naive–Bayes C4.5

Accuracy Features Accuracy Features Accuracy Features

Scatter Search (SSS-GC)

Cx 80.67 ± 2.10 6.60 ± 1.43 85.30 ± 1.41 5.10 ± 2.28 83.94 ± 2.17 4.7 ± 1.89
Hoc 81.63 ± 3.26 7.20 ± 2.25 82.83 ± 3.06 4.60 ± 0.70 83.75 ± 3.12 4.00 ± 1.49
Io 88.88 ± 3.30 6.50 ± 2.92 90.36 ± 3.16 8.30 ± 2.58 87.07 ± 3.81 5.00 ± 2.62
An 95.72 ± 1.71 11.40 ± 1.78 92.36 ± 2.43 9.40 ± 2.27 91.45 ± 2.19 8.40 ± 1.35

86.72 7.92 87.71 6.85 86.54 5.25

Genetic Algorithm (GA)

Cx 79.94 ± 2.87 7.30 ± 1.83 85.04 ± 1.05 6.50 ± 1.65 83.51 ± 1.26 5.60 ± 1.17
Hoc 80.49 ± 2.69 11.30 ± 2.83 82.01 ± 2.48 7.20 ± 2.25 83.86 ± 2.33 5.40 ± 1.71
Io 86.26 ± 2.94 9.60 ± 3.89 90.77 ± 1.59 12.70 ± 2.63 88.43 ± 2.19 10.80 ± 2.39
An 95.75 ± 1.54 18.90 ± 2.85 94.21 ± 1.22 20.70 ± 2.00 92.43 ± 2.03 15.90 ± 3.25

85.61 11.77 88.00 11.77 87.08 9.42

486 F. Garc�ia López et al. / European Journal of Operational Research 169 (2006) 477–489
properties of the classifier and do not depend on
the subset of selected features. Therefore, the con-
clusions would be similar using any classifier. We
use only the IB1 classifier to carry out the remain-
ing experiments.

Note that the results in Table 2 corroborate that
Sequential Scatter Search Greedy Combination
(SSS-GC) has a better performance than Genetic
Algorithm, getting always a significantly smaller
number of features for each classifier (at 95%
level). The same results were achieved when using
Sequential Scatter Search Reduced Greedy Com-
bination (SSS-RGC).

Table 3 summarises the results obtained by
modifying the values of some of the key parame-
ters of the Sequential Scatter Search procedures.
The considered parameters are the size of the ref-
erence set, jRefSetj, and the size of the list, jLj,
used in the constructive phase. We fixed jLj = 3,
d/2 and jRefSetj = 5, 10, if jLj = 3, and jRef-
Setj = 5, 10, d2, if jLj = d/2. The application of
the F-test over the results in Table 3 corroborate
that there is no significative difference (at 95%
level) between the percentages for the different
parameter combinations. However, the number
of features selected is significantly smaller (at
95% level) for jRefSetj = d2. Therefore, in the rest
of the computational experiments, we only con-
sider jLj = d/2 and jRefSetj = d2.

Table 4 shows a comparison between the accu-
racy of the Sequential Scatter Searches (SSS-GC
and SSS-RGC) and the Parallel Scatter Search
(PSS) using the IB1 classifier. For each method,
we provide average accuracy percentages and
standard deviations over 10 runs for each dataset.
The first average and standard deviation for each
dataset show the results obtained using all the fea-
tures. We also report, at the bottom, average re-
sults over all the datasets considered. From the
results obtained, the following observations can
be made. First of all, IB1 with all the features pro-
vides the best accuracy percentages, but the differ-
ence is not significant (at 95% level) in most
datasets. Secondly, PSS has higher precision than
both SSS-GC and SSS-RGC.

Finally, we analyse the number of features se-
lected by the algorithms. Table 5 shows the total
number of features of each dataset and the average
number of features selected with each algorithm
and their standard deviations. At the bottom we
give the average of these numbers over all the
datasets considered and the reduction percentages.
Both Sequential Scatter Search procedures have a
similar behavior. However, PSS uses a smaller
number of features and its standard deviation is
the lowest of all the considered algorithms. More-
over, the parallel SS reduces significantly (at 95%
level) the set of features selected by each sequential
SS to classify for some datasets. For example, for
TSE dataset, the number of features is reduced
from 5.10 to 1.90 in average. Considering the num-
ber of features of the best solution obtained by

Table 3
Accuracy and number of features with the several values of the parameters for both combinations

jRefSetj jLj = 3 jLj = d/2

5 10 5 10 d2

Sequential Scatter Search with Greedy Combination

Accuracy
Cx 78.64 ± 2.46 79.82 ± 3.33 80.67 ± 2.10 79.71 ± 2.82 83.28 ± 3.12
Hoc 81.03 ± 3.66 81.85 ± 3.24 81.63 ± 3.26 80.50 ± 4.04 76.69 ± 3.49
Io 89.17 ± 2.60 87.18 ± 2.12 88.88 ± 3.30 87.86 ± 1.86 87.75 ± 1.37
An 94.41 ± 4.88 94.68 ± 4.75 95.72 ± 1.71 95.63 ± 1.91 94.14 ± 3.16

85.80 85.88 86.82 85.91 85.46

Number of features
Cx 6.20 ± 0.79 6.60 ± 1.07 6.60 ± 1.43 6.50 ± 1.65 3.40 ± 1.43
Hoc 7.30 ± 1.49 8.80 ± 2.20 7.20 ± 2.25 8.30 ± 2.06 7.40 ± 2.41
Io 6.90 ± 2.28 7.00 ± 2.36 6.50 ± 2.92 7.10 ± 1.80 6.10 ± 1.37
An 9.90 ± 2.47 10.50 ± 2.17 11.40 ± 1.78 12.70 ± 2.21 8.90 ± 2.89

7.57 8.22 7.92 8.65 6.45

Sequential Scatter Search with Reduced Greedy Combination

Accuracy
Cx 80.46 ± 2.83 79.51 ± 3.30 80.35 ± 2.23 79.68 ± 3.44 83.91 ± 3.27
Hoc 80.71 ± 3.50 80.71 ± 3.53 78.59 ± 6.16 79.51 ± 3.94 77.94 ± 2.96
Io 87.98 ± 2.78 88.03 ± 2.47 87.23 ± 2.12 87.24 ± 2.37 87.12 ± 1.24
An 94.25 ± 4.84 95.14 ± 3.05 88.78 ± 16.63 95.86 ± 2.37 92.98 ± 2.68

85.85 85.84 83.73 85.57 85.48

Number of features
Cx 6.80 ± 1.32 7.10 ± 1.29 6.60 ± 3.12 6.80 ± 1.40 4.50 ± 2.27
Hoc 8.30 ± 1.34 8.40 ± 1.71 7.30 ± 1.89 7.90 ± 1.73 6.30 ± 2.16
Io 6.00 ± 1.83 6.90 ± 2.47 5.40 ± 2.17 7.20 ± 1.14 5.70 ± 1.06
An 9.90 ± 2.51 10.80 ± 2.39 10.20 ± 3.16 11.60 ± 1.40 8.20 ± 2.66

7.75 8.30 7.37 8.37 6.17

Table 4
Accuracy percentage and standard deviation in validation

Id All SSS-GC SSS-RGC PSS

HC 75.98 ± 3.10 74.99 ± 5.31 74.99 ± 5.68 74.91 ± 2.85
SbL 85.02 ± 4.18 82.41 ± 3.49 83.65 ± 3.65 80.53 ± 1.92
Vw 95.29 ± 1.66 93.58 ± 1.39 93.58 ± 1.39 93.64 ± 1.34
Cx 81.54 ± 2.31 83.28 ± 3.12 83.91 ± 3.27 83.39 ± 2.74
Pm 69.71 ± 2.68 67.92 ± 2.35 67.66 ± 2.42 68.10 ± 2.43
An 93.59 ± 1.09 94.14 ± 3.16 92.98 ± 2.68 91.49 ± 2.19
TAb 95.86 ± 0.24 95.53 ± 0.33 95.44 ± 0.44 95.44 ± 0.43
TSE 92.67 ± 0.68 95.09 ± 2.76 95.12 ± 2.78 93.58 ± 2.20
BC 95.48 ± 0.70 95.22 ± 1.07 94.88 ± 1.45 95.11 ± 0.90
Io 85.75 ± 1.30 87.75 ± 1.37 87.12 ± 1.24 87.35 ± 1.56
HoC 75.60 ± 1.99 76.69 ± 3.49 77.94 ± 2.96 76.96 ± 3.79
WBC 95.61 ± 0.82 94.66 ± 1.51 93.57 ± 2.23 93.67 ± 2.36

Average 86.84 ± 1.73 86.77 ± 2.45 86.74 ± 2.52 86.18 ± 2.06

F. Garc�ia López et al. / European Journal of Operational Research 169 (2006) 477–489 487

Table 5
Number of features selected for each algorithm

Id All SSS-GC SSS-RGC PSS

HC 13 6.30 ± 1.64 6.20 ± 2.10 5.56 ± 1.60
SbL 35 15.0 ± 2.71 16.5 ± 2.22 12.80 ± 1.81
Vw 10 7.70 ± 0.68 7.70 ± 0.68 8.00 ± 0.94
Cx 15 3.40 ± 1.43 4.50 ± 2.27 2.80 ± 2.62
Pm 8 4.10 ± 0.99 4.00 ± 0.94 4.20 ± 1.14
An 38 8.90 ± 2.89 8.20 ± 2.66 6.30 ± 2.06
TAb 29 2.80 ± 1.48 2.70 ± 1.83 2.00 ± 1.05
TSE 25 5.10 ± 2.47 5.10 ± 2.42 1.90 ± 1.20
BC 9 5.20 ± 1.62 4.78 ± 1.48 5.40 ± 1.71
Io 34 6.10 ± 1.37 5.70 ± 1.06 3.90 ± 0.88
HoC 21 7.40 ± 2.41 6.30 ± 2.16 4.50 ± 1.51
WBC 30 6.80 ± 2.53 5.50 ± 1.43 6.00 ± 2.63

Average 22.25 6.57 ± 1.85 6.43 ± 1.77 5.28 ± 1.60

Reduction 100.00% 70.47% 71.10% 76.27%

488 F. Garc�ia López et al. / European Journal of Operational Research 169 (2006) 477–489
each algorithm, we conclude that PSS is the algo-
rithm that performs better.
6. Conclusions

In this paper, we propose a Scatter Search
metaheuristic for solving the Feature Subset
Selection Problem. We develop two combination
methods: the Greedy Combination and the
Reduced Greedy Combination. For the purpose
of using both combination methods simultane-
ously and increasing the exploration of the solu-
tions space, a parallelization of the Scatter
Search is developed. The parallelization consists
of running each combination method at a
different processor.

The obtained computational results corrobo-
rate the effectiveness of our parallelization. The
parallel SS achieves values of accuracy percentage
similar to both sequential SS algorithms, but uses
a smaller subset of features. Moreover, the parallel
algorithm is more precise than sequential
algorithms.
References

[1] E. Alpaydin, Combined 5 · 2 cv F test for comparing
supervised classification learning algorithms, Neural Com-
putation 11 (1999) 1885–1892.
[2] D.W. Aha, D.K. Amd, M.K. Albert, Instanced-based
learning algorithms, Machine Learning 6 (1991) 37–66.

[3] J.R. Anderson, M. Matessa, Explorations of an incremen-
tal, Bayesian algorithm for categorization, Machine Learn-
ing 9 (1992) 275–308.

[4] V. Campos, F. Glover, M. Laguna, R. Martı́, An exper-
imental evaluation of a scatter search for the linear
ordering problem, Journal of Global Optimization 21
(2001) 397–414.

[5] P. Devijver, J. Kittler, Pattern Recognition: A Statistical
Approach, Prentice Hall, 1982.

[6] T.G. Dietterich, Approximate statistical test for comparing
supervised classification learning algorithms, Neural Com-
putation 10 (7) (1998) 1895–1923.

[7] F. Ferri, V. Kadirkamanathan, J. Kittler, Feature subset
search using genetic algorithm, in: IEE/IEEE Workshop
on Natural Algorithms in Signal Processing, IEE Press,
1993, p. Essex.

[8] F. Garcı́a-López, B. Melián-Batista, J. Moreno-Pérez,
J.M. Moreno-Vega, Parallelization of the scatter search
for the p-median problem, Parallel Computing 29 (2003)
575–589.

[9] L. Hyafil, R.L. Rivest, Constructing optimal binary
decision trees is np-complete, Information Processing
Letters 5 (1) (1976) 15–17.

[10] I. Inza, P. Larrañaga, R. Etxeberria, B. Sierra, Feature
subset selection by Bayesian networks based optimization,
Artificial Intelligence 123 (2000) 157–184.

[11] K. Kira, L. Rendell, The feature selection problem:
Traditional methods and a new algorithm, in: In 10th
National Conference on Artificial Intelligence (AAAI-92),
MIT, 1992, pp. 129–134.

[12] R. Kohavi, G.H. John, Wrappers for feature subset
selection, Artificial Intelligence 97 (1–2) (1997) 273–324.

[13] M. Laguna, R. Martı́, Scatter Search: Methodology and
Implementations in C, Kluwer Academic Press, 2003.

F. Garc�ia López et al. / European Journal of Operational Research 169 (2006) 477–489 489
[14] T. Mitchell, Machine Learning, Series in Computer
Science, McGraw-Hill, 1997.

[15] P.M. Murphy, D.W. Aha, Uci repository of machine learn-
ing. URL http://www.ics.uci.edu/mlearn/MLRepository.
html.

[16] J. Quinlan, C4.5: Programs for Machine Learning, Morgan
Kaufmann, 1993.

[17] W. Siedlicki, J. Sklansky, A note on genetic algorithm for
large-scale feature selection, Pattern Recognition Letters
10 (1989) 335–347.

[18] H. Vafaie, K.D. Jong, Robust feature selection algo-
rithmsProceedings of the Fifth IEEE International Con-
ference on Tools for Artificial Intelligence, IEE Press, 1993,
pp. 356–363.

[19] D.R. Wilson, T.R. Matinez, Improved heterogeneous
distance functions, Journal of Artificial Intelligence
Research 6 (1997) 1–34.

[20] I. Witten, E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementa-
tions, Morgan Kaufmann, 2000.

[21] J. Yang, V. Honavar, Feature Subset Selection using a
Genetic Algorithm. Genetic Programming 1997: Proceed-
ing of the Second Annual Conference, Morgan Kaufmann,
1997.

http://www.ics.uci.edu/mlearn/MLRepository.html
http://www.ics.uci.edu/mlearn/MLRepository.html

	Solving feature subset selection problem by a Parallel Scatter Search
	Introduction
	The feature subset selection problem
	Application of SS to the feature subset �selection problem
	CreatePopulation
	GenerateReferenceSet
	SelectSubset
	CombineSolutions
	ImproveSolutions
	UpdateReferenceSet

	Parallel Scatter Search
	Computational results
	Conclusions
	References

