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Much of the research on extracting rules from a large amount of data has focused on the
extraction of a general rule that covers as many data as possible. In the field of health
care, where people’s lives are at stake, it is necessary to diagnose appropriately without
overlooking the small number of patients who show different symptoms. Thus, the excep-
tional rules for rare cases are also important. From such a viewpoint, multiple rules, each
of which covers a part of the data, are needed for covering all data. In this paper, we
describe the extraction of such multiple rules, each of which is expressed by a tree struc-
tural program. We consider a multi-agent approach to be effective for this purpose. Each
agent has a rule that covers a part of the data set, and multiple rules which cover all
data are extracted by multi-agent cooperation. In order to realize this approach, we pro-
pose a new method for rule extraction using Automatically Defined Groups (ADG). The
ADG, which is based on Genetic Programming, is an evolutionary optimization method of
multi-agent systems. By using this method, we can acquire both the number of necessary
rules and the tree structural programs which represent these respective rules. We applied
this method to a database used in the machine learning field and showed its effectiveness.
Moreover, we applied this method to medical data and developed a diagnostic system for
coronary heart diseases.

Keywords: evolutionary computation, genetic programming, multi-agent system, rule extrac-
tion

1. Introduction

Due to the advance of information technology
in recent years, patient diagnostic data in hospi-
tals have been accumulated in databases. When
deciding a treatment policy such as the necessity
for surgery for a patient, the decision is based
on the patient’s current health. It is important

to understand the general tendency of diseases
from stored data, and to use this information in
order to determine the treatment policy for new
patients. Discovering effective diagnostic rules
from a large amount of data in a database is
a worthwhile but challenging effort which would
help doctors administer medical treatment (Ichim-
ura et al., 1995, 2001, 2003 a, b).
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However, there are some problems in real-
izing this goal. One problem results from the
complexity of medical data. Diagnoses by doc-
tors are based on various information, such as
the numerical results of various tests, X-rays or
endoscope images, palpations of diseased parts,
patients’ complexions, and so on. All of this
information, including diagnostic results, are accu-
mulated in a medical database. However, it is
difficult to add all information to the database
in a consistent, impartial manner. For example,
sense information such as palpations of diseased
parts or patients’ complexions are biased by the
doctor’s subjective judgment. Image information
may be converted into checklists of the fea-
tures most important to the doctor. Occasion-
ally, a special examination that is not included
in the database could be performed. Thus, the
data accumulated in the medical database may be
missing a part of the information used when doc-
tors diagnosed a disease. As another complexity
of medical data, consider the case that a doctor
diagnoses a progressive disease. When the disease
progresses, it may be called by another name.
However, the examination results of these dis-
eases show similar tendencies. In another situa-
tion, a doctor may have to judge if the numerical
result of a medical test is considered in the nor-
mal range or an abnormal range, which would
indicate the necessity of treatment. In these sit-
uations, the doctor has a choice of diagnostic
results (e.g., Disease A or B, normal or abnor-
mal.). However, the borderline between two states
or results is often ambiguous. Therefore, the judg-
ments may be influenced by the doctor’s experi-
ence. In addition, the medical data is imprecise
information about a living body, and involves
the influence of patients’ personal equations, the
doctors’ measurement skills, and the noise of
the measuring instruments. For these reasons,
medical databases often include exceptional,
inconsistent or incomplete data. Knowledge dis-
covery from such medical databases is more diffi-
cult than that from standard test problems in
the machine learning field. In this research, we
focus particularly on the handling of exceptional
data. Much research on extracting rules in the
machine learning field has focused on the extrac-
tion of a general rule that covers as many data
as possible. Some data which do not satisfy a

general rule may be abandoned as exceptional
data or noise. However, because medical treat-
ment is a field where people’s lives are at stake,
knowledge that can be used for a small num-
ber of patients with exceptional symptoms is also
very important. A key point to the achievement
of high-quality medical treatment is whether such
patients are treated appropriately without missing
any symptoms. From such a viewpoint, multiple
rules, each of which covers a part of the data, are
needed to cover all data. In this paper, we plan to
extract multiple rules, including exceptional rules,
from a database.

Another problem for realizing scientific diagno-
ses is the management of medical data. Because
medical data relates to a patient’s privacy, an
actual database cannot be offered to researchers
on machine learning. In order to offer the med-
ical database to researchers, people in the medi-
cal field need to construct a modified database in
which data violating patient privacy are deleted.
Moreover, it is necessary to have a database
which contains a large amount of data that has
accumulated for many years from the same view-
point, such as the collection of patient data from
continuing examinations and long-term observa-
tions of disease progress in specific patients. Thus,
it is impossible to wrestle with the important
problem of acquisition of diagnostic knowledge
Without the cooperation of medical people and
a reliable database. Therefore, researchers have
employed open scientific databases (e.g., Iris plant
database, Monk database) for the verification of
their proposed methods. As a result, neither a
comparison nor an examination of various rule
extraction methods on actual complicated prob-
lems such as a medical database has been done.
In order to resolve this impasse, Suka et al.
(2004) developed open medical databases which
reproduce real-world data related to the devel-
opment of coronary heart diseases. This is very
meaningful because we can discuss the advanta-
ges and disadvantages of various methods for an
actual complicated health care problem. In this
paper, we perform experiments using the medical
databases.

We plan to extract not only general diagnostic
rules but also exceptional diagnostic rules. More-
over, we intend not only to improve the pre-
diction accuracy but also to acquire useful and
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comprehensible knowledge. Genetic Programming
(GP) (Koza, 1992) is used for the rule extrac-
tion method. Moreover, we also use a multi-agent
approach for the rule extraction. We assume that
some agents extract a general rule from fre-
quently observed data and other agents extract
exceptional rules from a small quantity of excep-
tional data. By the cooperation of multiple agents,
rules that cover all of the data are extracted.
In order to realize these rules, we use an opti-
mization method called Automatically Defined
Groups (ADG) (Hara and Nagao, 1999, 2002;
Hara et al., 2003, 2004), which was derived from
Genetic Programming. The ADG has been pro-
posed with the goal of the realization of effec-
tive cooperative behavior among heterogeneous
agents. This method can optimize both the group
structure of agents and the action rule of each
group.

The contents of this paper are as follows. In
Section 2, we describe GP and rule extraction
using GP. In Section 3, we explain some con-
ventional models for cooperative problem-solv-
ing and ADG. In Section 4, we propose a new
method using ADG for rule extraction, and show
its effectiveness with a preliminary experiment on
the Monk database. In Section 5, we apply this
method to a medical database for coronary heart
diseases. In Section 6, we describe our conclu-
sions.

2. Rule extraction by genetic programming

2.1. Genetic programming

In the process of evolution of living things, genetic
code is transmitted from parents to children. As
the genetic code is transmitted, recombination
and mutation of the genes occur. As a result, the
genetic code of some children is different from
their parents. This variability of generations is
repeated according to the principle of the survival
of the fittest. This principle means that individ-
uals that adjust better to the environment sur-
vive and reproduce at a higher rate, and less fit
individuals survive, and reproduce at a lower rate.
Living things thus evolve by these processes.

Evolutionary computations are optimization
algorithms based on the mechanics of the evo-

lution of living things. We prepare multiple indi-
viduals that represent candidate solutions for a
given problem, and try to generate more suitable
solutions by the repetition of genetic operations.
Genetic Programming is one of these evolution-
ary computations, and it was proposed by Koza
(1992). There are also Genetic Algorithms which
can optimize individuals that are mainly expressed
by one-dimensional bit strings (Holland, 1995;
Goldberg, 1989). GP is an enhanced method that
considers the tree structural program.

In GP, each individual representing a candidate
solution is expressed by the tree structural pro-
gram. The tree structural program corresponds
to the chromosome of living things. The sym-
bols of the tree structural program which can be
internal nodes are called functional symbols, and
the symbols which can be leaf nodes are called
terminal symbols. Depending on the particular
problem, the functions may be standard arith-
metic operations, standard logical functions, or
domain-specific functions. Depending on the set-
ting, tree structural programs can represent numer-
ical expressions, logical expressions, decision trees,
action control programs of robots, and so on.

A population in each generation consists of a
set of individuals. In the initial population, each
individual is created by the random combination
of functional and terminal symbols. Next, each
individual in the population is measured in terms
of how well it performs in a particular problem
environment. This value is called the fitness.

Genetic operations are performed based on the
fitness value. The basic operations in GP are selec-
tion, crossover and mutation. At first, individuals
for the next generation are selected by the selection
operation. Individuals with higher fitness will sur-
vive and reproduce at a higher rate. This reflects
the principle of natural selection. Next, the genetic
process of reproduction between two parental pro-
grams is performed to create new offspring pro-
grams from the two parental programs selected
in proportion to fitness. This operation is called
crossover. In a basic crossover operation, a node
is selected at random from each parental tree pro-
gram, and then subtrees with the nodes as root
nodes are exchanged. After that, mutation opera-
tions are performed on each individual. The sym-
bols of some nodes change to other symbols at
random by mutations. A new population is created



648 Hara et al.

by these operations. Then, evaluations and genetic
operations to this population are performed again.
The performance of the individuals improves with
this repetition. The acquired best individual may
be a solution or an approximate solution to the
problem.

2.2. Rule extraction from data containing multiple
rules

Classification is an important problem extensively
studied in several research areas, such as pattern
recognition, machine learning and data mining.
In the classification process, when the values of
the predictor attributes of an instance are given,
we have to predict the class of the instance. One
of the rule formats used in classification is the
IF THEN rule. The rule’s condition (IF) part is
made by the conjunction of multiple terms. Each
term is the combination of an attribute and the
value which can be taken. The following expres-
sion is an example of the IF THEN rule.

Rule1 : IF (Attribute a =1)∧ (Attribute b<2)

THEN (The data is Positive.)

This rule format has the advantage of being
intuitively comprehensible to the user. So, the
user can combine the knowledge contained in the
discovered rules with his own knowledge in order
to make intelligent decisions about a target clas-
sification problem—for example, to make a med-
ical diagnosis.

In GP, the list structure (tree structural program),
created by compositions of logical operators (AND)
and relational operators (=, >, <) as functional
symbols, along with attributes (Atta, . . . ,Attn)
and constants as terminals, can represent the
IF THEN rule. Each individual encodes the IF
part of a rule, but not the THEN part (the
predicted class). The reason for this is that in
a given GP run, all individuals represent the
rules predicting the same target class. For exam-
ple, if we use {AND,=,>,<} as functions and
{Atta, . . . ,Attn,Constant} as terminals, the fol-
lowing tree structural program can be created by
compositions of these functions and terminals.

(AND(= Atta 1)(< Attb 2)).

This expression is equivalent to Rule 1. Thus, GP
is used as one method for rule extraction.

However the knowledge of a data set is unlikely
to be sufficiently described by a single rule. The
following Rule 2, which is different from Rule 1,
may be needed. In this case, the class of instance
will be judged by Whether either of these rules is
satisfied.

Rule 2 : IF (Attribute b=1)∧ (Attribute c>1)

THEN (The data is Positive.)

We encounter similar situations in medical data.
For instance, respective attributes represent a
patient’s condition, and the class of the instance
represents a result of diagnosis. If we apply sim-
ple GP to such problems, however, only a sin-
gle rule can be extracted. We cannot discover
multiple rules. It is important for the realization
of high-quality medical treatment to recognize
two or more possibilities. In order to solve this
problem, we propose a new method using ADG,
by which the clustering of data and rule extrac-
tion in each cluster are performed simultaneously.
This method uses a multi-agent approach. Next,
we describe the approach and ADG.

Incidentally, it is also possible to include the
OR symbol in the function set of GP in order to
represent multiple rules by a single tree. However,
when such a symbol setting is used, the rule is
not necessarily expressed by the disjunctive nor-
mal form. Therefore, it is difficult to understand
the rule. Moreover, extracting multiple rules with-
out using the OR symbol leads to the important
concept of the reliability of each rule. This idea is
described in Section 4.

3. Automatically defined groups

3.1. Co-operative problem-solving by multiple
agents

Co-operative problem-solving ,by multi-agent sys-
tems has attracted increasing attention in recent
years. In the field of artificial intelligence, a num-
ber of attempts to generate co-operative behav-
ior by means of Genetic Programming have been
made in domain such as multi-robot control, and
RoboCup soccer agents.

The acquisition of the action control rules of
multi-agents by GP are mainly classified into two
common methods. The first uses co-evolution,
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which means each agent is controlled by an indi-
vidual. We perform an evaluation of the individual
based on the agent’s actions, and improve the per-
formance of the team consisting of the respec-
tive agents. However, this method causes a credit
assignment problem. This means that it is difficult
to judge how much each agent contributes to the
success when the problem is solved by cooperation.

The other method generates a team consisting
of all agents, which together are considered an
individual of GP. We perform an evaluation of
the individual based on the performance of the
team. This method facilitates the evaluation and
can produce complex behavior such as the divi-
sion of labor, because all agents are evaluated
equally by the team’s performance, regardless of
their respective roles. Also, various models.(e.g.,
homogeneous model, heterogeneous model) have
been proposed for this approach and experiments
have been performed to compare the models
(Luke and Spector, 1996; Iba, 1996, 1997).

When all agents in the environment take actions
under identical rules, this team is called a homoge-
neous team. In GP, each agent refers to the same
tree, as shown in Fig. 1. All agents decide their
movements according to the same rules derived
from the GP tree. However, since each agent is sit-
uated in a different environment, it is possible that
each agent takes different actions according to the
environmental conditions and solves the problem
by cooperation with each other.

When each agent in the environment takes
actions under distinct rules, this team is called a
heterogeneous team. In GP, an individual main-
tains multiple trees, each of which is referred to by
the corresponding agent, as illustrated in Fig. 1. In
the heterogeneous model, various breeding strate-
gies (restricted breeding, free breeding, and so on)
have been proposed (Luke and Spector, 1996; Iba,
1996, 1997). Free breeding allows any member of
a team to freely breed with any other member
of another team. In restricted breeding, crossover
operations are restricted to corresponding branch
pairs. For example, restricted breeding allows team
member 1 to breed only with another team mem-
ber 1, and team member 2 to breed only with
another team member 2, and so forth. Generally,
restricted breeding works better than free breed-
ing from the viewpoint that the restriction fur-
ther promotes the preservation of diversity and

specialization of each agent since it divides team
members into separate breeding pools.

In order to solve a complex task requiring
teamwork, the sharing of roles among agents is
needed. Generally, it has been shown that the
performance of heterogeneous agents, in which
each member has distinct action rules, is higher
than that of homogeneous agents, because each
agent in the heterogeneous model is specialized
according to each role.

This multi-agent approach is effective in solv-
ing problems that seem to be unrelated to the
concept of agents. Soule applied a multi-agent
approach to even-parity problems and linear
regression problems and showed that the per-
formance of this approach is higher than that
of conventional solutions (Soule, 1999, 2000). In
these experiments, a solution is obtained by col-
lecting each agent’s output.

In this research, we apply the same idea, which
is the search for various solution by heteroge-
neous agents, to the domain of knowledge acqui-
sition from the data. We handle data containing
multiple rules in order to carry out the cluster-
ing of data as well as rule extraction from each
cluster. We use a multi-agent approach to reach
a solution. That is, the data are divided among
agents. This corresponds to the clustering of data.
And, each agent generates an approximate func-
tion for the assigned data. This corresponds to
the rule extraction in each cluster. As a result, all
rules are extracted by multi-agent cooperation.

In order to use this approach, however, we
do not know the number of rules hidden in
the data and how to allot the data to each
agent. Moreover, as we prepare abundant agents,
the number of tree structural programs in an
individual increases. Therefore, the search perfor-
mance declines.

3.2. Automatically defined groups

In order to solve the problems described in the
previous section, we have proposed an improved
GP method, ADG. The ADG optimizes both
the grouping of agents and the program of each
group in the process of evolution. By grouping
multiple agents, we can prevent the increases of
search space and perform an efficient optimiza-
tion. Moreover, we can easily analyze the agents’
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Fig. 1. Conventional models for multi-agent control.

behavior. The acquired group structure is utilized
for understanding how many roles are needed
and which agents have the same role. That is, the
following three points are automatically acquired
by using ADG.

– How many groups (roles) are required to solve
the problem?

– Which group does each agent belong to?
– What is the program of each group?

A team that consists of all agents is regarded
as one GP individual. One GP individual main-
tains multiple trees, each of which functions as
a specialized program for a distinct group, as
shown in Fig. 2. We define a group as the set of
agents referring to the same tree for the .deter-
mination of their actions. All agents belonging to
the same group use the same program.

When an initial population is generated, agents
in each GP individual are divided into random
groups, as shown in Fig. 3. The upper left-hand
individual in Fig. 3 is a simple representation of
the individual in Fig. 2. Each GP individual rep-
resents a multi-agent system.

Basically, crossover operations are restricted to
corresponding tree pairs. For example, a tree referred
to by an agent 1 in a team breeds with a tree referred
to by an agent 1 in another team. However, we con-
sider the sets of agents that refer to the trees used
for the crossover. The group structure is optimized
by dividing or unifying the groups according to the
relationship of the sets. Individuals search for solu-
tions as their group structures gradually approach
the optimal structure.

The concrete processes are as follows: We arbi-
trarily choose an agent for two parental individuals.
A tree referred to by the agent in each individual
is used for crossover. We use T and T ′ as expres-

sions of these trees, respectively. In each parental
individual, we decide a set A(T ), which is the set
of agents referring to the selected tree T . When
we perform a crossover operation on trees T and
T ′, there are the following three cases.

Type a: If the relationship of the sets is A(T )=
A(T ′), the structure of each individual is unchanged.

Type b: If the relationship of the sets is A(T )⊃
A(T ′), the division of groups takes place in the
individual with T , so that only the tree referred
to by the agents in A(T )∩A(T ′) can be used for
crossover. The individual which maintains T ′ is
unchanged.

For example, Fig. 4 shows the case in which the
trees referred to by agent 2 are used for crossover.
When we examine the sets of agents which refer
to the trees, the set for the first parent is {2}
and the set for the second parent is {1, 2, 3, 4}.
The set for the second parent includes the set for
the first parent. The subtree used for crossover
in the first parent is considered to be the special
program to agent 2. If we perform the crossover
operation, this operation affects not only the pro-
gram of agent 2 but also the program of agents
1, 3, 4 in the second parent. Such an influence is
considered unfavorable. Therefore, in the second
parent we generate a new tree, which is the same
tree that agent 2 refers to, and we shift agent 2
to the new group referring to the new tree. As a
result, the division of groups takes place so that
only the tree referred to by agent 2 can be used
for crossover, and then we perform a crossover
operation.

Type c: If the relationshp of the sets is A(T ) �⊃
A(T ′) and A(T ) �⊂A(T ′), the unification of groups
takes place in both individuals so that the agents
in A(T )∪A(T ′) can refer to an identical tree.

For example, Fig. 4 shows the case in which
the trees referred to by agent 1 are used for cross-
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Fig. 2. Concept of automatically defined groups.

Fig. 3. Population of ADG.

Fig. 4. Examples of crossover. (Type a) is not shown because the structure of each individual is unchanged.

over. When we examine the sets of agents which
refer to the trees, the set for the first parent is
{1, 2} and the set for the second parent is {1,
3}. One set does not contain another set of each
other. Agents 1 and 2 have the same action con-
trol rules in the first parent, and agents 1 and 3
have the same action control rules in the second
parent. We consider that agents 1, 2, 3, which are
elements of the union of these sets, need to have

the same action control rules in the offspring of
the parents from the viewpoint of preservation of
the characteristics. Therefore, in both parents we
perform the unification of groups so that agents
1, 2, 3 can refer to the same tree, and then we
perform a crossover operation.

As mentioned above, the difference between the
sets of agents referring to the trees used for cross-
over causes the division or unification of groups.
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Therefore, if all individuals converge to the same
group structure, the changes of the group structure
do not take place. So, group mutation operations
are introduced into this method. The group muta-
tion operation shifts an agent to an arbitrarily
selected group, with a probability equal to the
group mutation rate. This operation works as an
accelerator for the change of the group structure
by the crossover operations. So, we perform group
mutation operations before crossover operations.

We expect that, by using this method, the search
works efficiently and an adequate group structure
is acquired. Besides, the acquired group structure
becomes a clue for understanding the cooperative
behavior and necessary division of labor.

4. Extracting multip1e rules from data

4.1. Concept of the proposed method using ADG

In this section, we describe how to apply ADG
to rule extraction. Each agent group in an indi-
vidual of ADG represents experts who use the
tree structural program as the classification rule
of data. Fitness is defined from mainly two view-
points. One is the minimization of prediction
errors. In the training data, each group predicts
a class of an instance based on its attributes.
If one or more groups judge that the instance
belongs to the target class, the instance is clas-
sified into the target class. To classify the target
class’s instance into another class or to classify
a non-target class’s instance into the target class
is regarded as mis-classification. We minimize the
number of mis-classifications for all data.

The other viewpoint of fitness is load balanc-
ing among agents. The quantity of data which
an agent takes charge of is considered to be the
agent’s load. That is the load corresponds to
the number of data which a certain group takes
charge of divided by the number of agents that
belong to the group.

We calculate the variance of the load in all
agents. Fitness is defined as the weighted sum of
the prediction error and load balancing. We min-
imize the fitness by evolution.

In addition, in order to inhibit the redundant
division of groups, the fitness is multiplied by the
penalty γ G−1(γ > 1) according to the increase of
the number of groups, G, in the individual.

Table 1. Attributes of Monk database

Attribute Value

head shape 1=round; 2=square; 3=octagon
body shape 1=round; 2=square; 3=octagon
is smiling 1=yes; 2=no
holding 1=sword; 2=balloon; 3=flag
jacket color 1=red; 2=yellow; 3=green; 4=blue
has tie 1=yes; 2=no
class 0=False; 1=True

The features of this method are as follows.

– In conventional methods, most of the research
has focused only on problems of clustering
or rule extraction from data that have already
been classified. The object of this research is
the data containing multiple rules, and the
clustering of data and the rule, extraction in
each cluster are performed Simultaneously.

– The number of rules hidden in the training
data can be automatically acquired. Moreover,
as a result of load balancing among agents,
the ratio of the number of agents in each
group corresponds to the ratio of the appear-
ance of each rule. Therefore, we can under-
stand the probability of the appearance of
each rule.

4.2. Preliminary experiment on a monk database

In this section, we describe the detail of rule
extraction. We applied this method to a database
in the machine learning field, the Monk database
(Thrun et al., 1991) and showed the method’s
effectiveness. This database contains attributes for
artificial robots. As shown in Table 1, each robot
has six attributes, and it is classified into a
positive or negative class based on hidden knowl-
edge. Table 2 shows examples of data in the data-
base. The task of the Monk problem is to acquire
rules for judging whether each robot belongs to
the positive class.

In the Monk database, there are three data
sets. We use the Monk 1 data set for this prelim-
inary experiment. The Monk 1 data set has 124
examples in the training set, which contains 62
positive examples, and 62 negative examples. The
testing set has 432 examples, Which consist of 216
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Table 2. Examples of data in the Monk database

Class head shape body shape is smiling holding jacket color has tie

positive 1 2 1 1 1 2
positive 3 3 1 2 3 2
negative 1 2 1 1 2 1
negative 2 3 2 3 3 2

positive and 216 negative examples. The hidden
knowledge for classification in this database is
(head shape = body shape) or ( jacket color = 1).
There are no mis-classifications in either the train-
ing or the testing set.

In order to judge whether each instance is
regarded as a positive case, we need to find log-
ical expressions which only the data in positive
cases can satisfy. The logical expression is made
by the conjunction of multiple terms. Each term
is the combination of an attribute item and the
value which can be taken. The following expres-
sion is an example.

(head shape=1)∧(is smiling=2)∧(holding�=1)

The logical expression has to return false for neg-
ative cases.

Multiple trees in an individual of ADG repre-
sent the respective logical expressions. The train-
ing data set contains two classes, and each data
in the training set is input to all trees in the
individual. Then, calculations are performed to
determine whether the data satisfy each logical
expression. The input data is regarded as posi-
tive if one or more logical expressions in the indi-
vidual return true. Conversely, the input data is
not regarded as positive if all logical expressions
in the individual return false. If some data are
not classified by the current logical expressions
properly, new trees may be created by evolution
and the data would be shared by them. Individu-
als are optimized so that one in the multiple tree
programs can return true for positive cases and
all trees can return false for negative cases.

The concept of each agent’s load arises from
the cooperative problem-solving by multiple
agents. The load’is calculated from the adopted
frequency of each group’s rule and the number
of agents in each group. The adopted frequency
of each rule is counted when the rule success-
fully returns true for each positive data. If mul-
tiple trees return true for a positive data, the

tree with, more agents is adopted. When the kth
agent belongs to group g, the load of the agent is
defined as follows.

wk= (adopted frequency of g)×Nagent

(Number of agents which belong to g)×Nall adoption

.

In this equation, Nagent represents the number of
all agents in one GP individual, and Nall adoption

represents the sum of the adopted frequencies
of all groups. By balancing every agent’s load,
more agents are allotted to the group that has
a greater frequency of adoption. On the other
hand, the number of agents in the less adopted
group becomes small. Therefore, we can acquire
important knowledge about the ratio of use of
each rule. The ratio indicates how general each
rule is for judgment of the classification. More-
over, when negative cases are judged to be true
through a mistake of a rule, it is thought that the
number of agents who support the rule should be
small.

To satisfy the requirements mentioned above,
fitness f is calculated by the following equation.
We Maximize f by evolution.

f = −miss target data

Npositive

−α
misrecognition

Nnegative

−β

∑
Nnegative

f ault agent

misrecognition×Nagent

− δVw.

In this equation, Npositive and Nnegative represent
the number of positive cases and negative cases
in the database, respectively. miss target data is
the number of missing data in the target pos-
itive data that should have been judged to be
true. misrecognition is the number of mistakes
through which negative data is regarded as posi-
tive. When the rule returns true for negative data,
fault agent is the number of agents who support
the wrong rule in each data. So, the third term
represents the average rate of agents who sup-
port the wrong rules when misrecognition occurs.
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Vw is the variance of every agent’s load. In addi-
tion, in order to inhibit the redundant division,
of groups, f is multiplied by γ G−1(γ >1) accord-
ing to the increase of the number of groups, G, in
the individual.

By evolution, one of the multiple trees learns
to return true for a data in the positive cases, and
all trees learn to return false for negative cases.
Moreover, agents are allotted to the respective
rules according to the adopted frequency, and the
allotment to a rule with more misrecognition is
restrained. Therefore, the rule with more agents is
the typical and reliable rule, and the rule with less
agents is the exceptional rule for the rare case.

The following points are, regarded as advanta-
ges of ADG.

– ADG enables us to extract rules for excep-
tional data which is likely to be missed by a
single rule.

– It is easy to judge by the number of agents
whether the acquired rules are typical rules or
exceptional rules.

– It is easy to understand the acquired rules,
because typical rules and exceptional rules are
clearly separated.

Table 3 shows the GP functional and terminal
symbols. We impose constraints on the combi-
nation of these symbols, such as Strongly Typed
Genetic Programming (Haynes et al., 1995). Ter-
minal symbols do not enter directly in the argu-
ments of the and function. Attribute items such
as head shape enter only in arg 0 of eq and
not. Attribute values (1, . . . ,4) enter only in arg
1. Crossovers and mutations that break the con-
straints are not performed. The example rule
mentioned in the beginning of this section is rep-
resented by the following symbols:

(and(eq head shape 1)(and (eq is smiling 2)

(not holding 1))).

The parameter settings of ADG are as follows:
population size is 500, crossover rate is 0.9, muta-
tion rate per individual is 0.95, group mutation
rate is 0.01, and number of agents is 50. The
respective weights in Equation 1 are α = 1.0, β =
0.0001, δ =0.01, and γ =1.0001.

4.2.1. Experimental result

We performed an experiment with the settings
mentioned above. Fig. 5 shows the best fitness by
generation. As an experimental result, we obtain
a classification accuracy of 100.0% for both the
training data set and the test data set. In the last
generation, 50 agents in the best individual are
divided into four groups. We show the acquired
tree structural programs in the best individual
that correspond to the classification rules. Rules
are arranged according to the number of agents
that support each rule. Moreover, the rules shown
below are the ones from which obviously redun-
dant terms such as (not has tie 4) were pruned.

Rule 1 (23 Agents): (eq jacket color 1)
Rule 2 (11 Agents): (and (eq head shape 3)

(eq head shape 3))
Rule 3 (10 Agents): (and (eq head shape 2)

(and (eq body shape 2)
(not body shape 1)))

Rule 4 (6 Agents): (and (eq head shape 1)
(and (not body shape 2)
(not body shape 3)))

In the setting of this experiment, the compar-
ison between head shape and body shape cannot
be performed directly. Therefore, three rules are
needed to represent the concept (head shape =
body shape) using the three possible values.

Fig. 6 shows the change of the average num-
ber of groups in the population. The number of
groups corresponds to the number of extracted
rules. In the initial population, each individual is
assigned a random group structure. So, the num-
ber of groups is about nine at the initial genera-
tion. We can see from this figure that individuals
are optimized as the number of necessary rules is
determined.

Moreover, we examined which rule’s output is
adopted for the 62 positive data in the training
set. The counts of adoption are 29, 13, 12, and
8 for Rules 1–4, respectively. That is, the occur-
rence probabilities of each respective data type
are 46.8, 21.0, 19.4 and 12.9%. On the other
hand, the ratio of the agents distributed to each
group became 46.0, 22.0, 20.0, and 12.0%, respec-
tively. This result almost corresponds to the ratio
of the data appearance. Therefore, we can eas-
ily understand the occurrence probability of each
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Table 3. GP functions and terminals

Symbol # args Functions

and 2 arg0 ∧ arg1
eq 2 if (arg0 = arg1) return T else return F
not 2 if (arg0 �= arg1) return T else return F
head shape, . . . , has tie 0 attribute
1, 2, 3, 4 0 attribute value

Fig. 5. Change of the best fitness for the Monk problem.

rule by the number of agents. In addition, if a
group has few agents the group tends to vanish
through evolution. So, this mechanism is effec-
tive in inhibiting the generation of unnecessary
groups and finding valid rules.

Thus, we can confirm the effectiveness of this
method by a preliminary experiment. Next, we
apply this method to real medical data.

5. Extracting rules from medical database using
ADG

5.1. Coronary heart disease database

In this section, we apply the proposed method
to knowledge acquisition from medical data and
develop a diagnostic system. In the field of med-
icine, a lot of patient data have been accumu-
lated in databases. For example, the attributes
are patients’ conditions, diagnoses, and so on.

It is important to diagnose appropriately with-
out overlooking exceptional patients. We consider
the solution to this problem to be a key for the
achievement of high-quality medical treatment.
Extracting multiple rules by using our proposed
method will enable us to realize this achievement.
We intend not only to improve the prediction
accuracy but also to acquire useful knowledge by
analyzing the acquired diagnostic rules. We also
intend to acquire useful knowledge or medicine
by analyzing the acquired group structure and
rules in this experiment.

In this experiment, we use the database of cor-
onary heart diseases (Suka et al., 2004). Suka
et al. (2004) developed this coronary heart dis-
ease database for the purpose of evaluating prog-
nostic systems. The use of this database will
enable researchers to discuss the advantages and
disadvantages of different techniques.



656 Hara et al.

Fig. 6. Change of the average number of groups for the Monk problem.

Data in the coronary heart disease database
are divided into two classes: non-coronary heart
disease cases (non-CHD) and coronary heart dis-
ease cases (CHD). Each patient’s disorder is diag-
nosed according to the results of eight test items,
shown in Table 4. Examples of the data are
shown in Table 5. In this research, we construct
a diagnostic system which can classify data into
the appropriate class based on these eight tests.
The database consists of four training data sets
(Train A, Train X, Train Y, and Train Z) and one
testing data set (Test). The four training data sets
are designed to have different numbers of total
records or different proportions of CHD cases to
non-CHD cases, as shown in Table 6.

The original results of some test items are
provided as real values with various ranges. So,
we normalize each value. We find the maximum
value (max) and minimum value (min) of each
item in the training data set, and the ith item’s
value xi is normalized to Xi as follows:

Xi = (xi −mini)/(maxi −mini).

5.2. Applying ADG to the coronary heart disease
database

In order to judge whether each data is regarded
as a CHD case, we need to find logical expres-

sions which, only the data in CHD cases should
satisfy. The following expression is an example.

Rule for CHD:(TC>0.51)∧ (TC<0.68)∧ (DBP>0.49).

In this case, the logical expression has to return
false for non-CHD cases.

In coronary heart diseases, at present, there
are no clear rules for judgments based on bio-
chemical tests. In the medical field, the diagnoses
are largely dependent on each doctor’s experience.
Therefore, the diagnostic rule is not necessarily
represented by a single rule. Moreover, some data
can be classified into different results, even if the
results of the tests are the same. This database
contains such inconsistent data. We apply ADG
to the diagnoses of coronary heart diseases with
consideration of this background.

Multiple trees in an individual of ADG repre-
sent the respective logical expressions. Each data
in the training set is input to all trees in the
individual. As illustrated by Data 2 in Fig. 7,
the input data is regarded as a CHD case if
one or more logical expressions in the individ-
ual return true. In contrast, as illustrated by Data
1 in Fig. 7, the input data is not regarded as a
CHD case if all logical expressions in the individ-
ual return false. Individuals are optimized so that
one in the multiple tree programs can return true
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Table 4. Data items of the coronary heart disease database

Data item Symbol value

ID ID sequential number
Development of CHD CHD 0=No; 1=Yes
Cholesterol TC continuous value (mg/dl)
Systolic Blood Pressure SBP continuous value (mmHg)
Diastolic Blood Pressure DBP continuous value (mmHg)
Left Ventricular Hypertrophy LVH 0=None; l=Definite or Possible
National Origin ORIGIN 0=Native-born; 1=Foreign-born
Education EDUCATE 0=Grade School; 1=High School, not graduate;

2=High School, graduate; 3=Co11ege
Tobacco TOBACCO 0=Never; 1=Stopped; 2=Cigars or Pipes;

3=Cigarettes (<20/day); 4=Cigarettes(≥20/day)
Alcohol ALCOHOL continuous value (oz/mo)

Table 5. Examples of data in the coronary heart disease database

Case TC SBP DBP LVH ORIGIN EDUCATE TOBACCO ALCOHOL

CHD 217 129 97 0 0 0 2 16.6
CHD 215 207 110 0 1 0 4 8.4
non-CHD 236 142 92 0 1 2 4 13.9
non-CHD 176 124 117 0 0 3 2 27.2

Table 6. Training and testing data sets

Data sets #records #CHD #non-CHD CHD: non-CHD

Train A 13000 6500 6500 1 : 1
Train X 19500 6500 13000 1 : 2
Train Y 65000 6500 58500 1 : 9
Train Z 4000 400 3600 1 : 9
Test 13000 6500 6500 1 : 1

for CHD cases and all trees can return false for
non-CHD cases.

The load of each agent is calculated from the
adopted frequency of each group’s rule and the
number of agents in each group. The adopted
frequency of each rule is counted when the rule
successfully returns true for each CHD data. As
illustrated by Data 3 in Fig. 7, if multiple trees
return true for a CHD data, the tree with more
agents is adopted. When the k-th agent belongs to
group g, the load of the agent is defined as follows:

Wk = (adopted frequency of g)×Nagent

(Number of agents which belong to g)×Nall adoption

.

The fitness f is calculated by the following
equation, as in the Monk problem. We maximize
f by evolution.

f = −miss target data

NCHD

−α
misrecognition

Nnon−CHD

−β

∑
Nnon−CHD

f ault agent

misrecognition×Nagent

− δVw.

In this equation, NCHD and Nnon−CHD represent
the number of CHD cases and non-CHD cases in
the database, respectively. miss target data is the
number of missing data in the target CHD data
that should have been judged to be true. misrec-
ognition is the number of mistakes through which
non-CHD data is regarded as a CHD case. When
the rule returns true for non-CHD data, fault agent
is the number of agents who support the wrong
rule in each data. Vw is the variance of every
agent’s load. In addition, in order to inhibit the
redundant division of groups, f is multiplied by
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Fig. 7. Diagnostic system for a particular disorder.

γ G−1(γ >1) according to the increase of the num-
ber of groups, G, in the individual.

Table 7 shows the GP functional and terminal
symbols. We impose constraints on the combina-
tion of these symbols, as in the Monk problem.
Test items such as TC enter only in arg 0 of gt
and lt. Real values enter only in arg 1. The exam-
ple rule mentioned in the beginning of this sec-
tion is represented by the following symbols:

(and (gt TC 0.51) (and (lt TC 0.68)

(gt DBP 0.49))).

The parameter settings of ADG are as follows:
population size is 500, crossover rate is 0.9, muta-
tion rate per individual is 0.95, group mutation
rate is 0.04, and number of agents is 50. The
respective weights in Equation 2 are α = 1.0, β =
0.0001, δ =0.01, and γ =1.001.

5.3. Experimental results

In this section, ADG is applied to the training
data so that only CHD cases can satisfy the rules.
We describe the detail of an experiment using
Train Z, which consists 400 CHD cases and 3600
non-CHD cases.

Fig. 8 shows the best fitness, and Fig. 9 shows
the average group number by generation. We
can see from these figures that individuals are
optimized as the number of necessary rules is
searched for and determined.

As a result, 50 agents in the best individual
are divided into 12 groups. We show the acquired
rules in the best individual. Rules are arranged

according to the number of agents that support
each rule, and each terminal real value is trans-
formed to the original range. The rules with more
agents are frequently adopted rules. The rules
with fewer agents are rules for exceptional data.

Rule 1 (19 Agents): (SBP>179)

Rule 2 (7 Agents): (LVH=1)

Rule 3 (6 Agents): (TC > 199) ∧ (SBP >

141) ∧ (DBP > 99) ∧ (DBP < 112) ∧(LVH = 0) ∧
(EDUCATE<3)∧ (ALCOHOL<34.54)

Rule 4 (6 Agents): (TC > 264) ∧ (SBP > 150) ∧
(TOBACCO>1) ∧(ALCOHOL<44 : 9)

Rule 5 (2 Agents): (TC > 168) ∧ (TC < 252) ∧
(SBP > 127) ∧ (DBP > 106) ∧(TOBACCO > 2) ∧
(ALCOHOL>19.0)

Rule 6 (2 Agents): (TC>310)

Rule 7 (2 Agents): (SBP>141)∧ (DBP>104)∧
(LVH = 0) ∧(EDUCATE < 2) ∧ (TOBACCO >

0)∧ (TOBACCO<3)

Rule 8 (2 Agents): (TC > 242) ∧ (TC < 296) ∧
(DBP>109)∧ (ORIGIN=1)∧ (TOBACCO>0)∧
(ALCOHOL>15 : 9)

Rule 9 (1 Agent): (TC > 214) ∧ (SBP > 152) ∧
(DBP>85) ∧(EDUCATE<1)∧ (TOBACCO<2)

Rule 10 (1 Agent): (DBP > 79) ∧ (DBP < 84) ∧
(ALCOHOL>37.5)

Rule 11 (1 Agent): (TC > 233) ∧ (SBP >

160)∧ (DBP>98)∧ (DBP<132) ∧(ORIGIN=0)∧
(EDUCATE<3)∧(ALCOHOL<35.1)

Rule 12 (1 Agent): (TC > 186) ∧ (TC < 330) ∧
(SBP>169)∧ (DBP>99) ∧(DBP<114)∧ (LVH=
0)∧ (TOBACCO>0) ∧(TOBACCO<3)

∧ (ALCOHOL<34.5)

The judgment accuracy for 4000 training data
is as follows. One or more rules return true for
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Table 7. GP Functions and terminals

Symbol #args Functions

and 2 arg 0 ∧ arg 1
gt 2 if (arg 0 > arg 1) return T else return F
lt 2 if (arg 0 < arg 1) return T else return F
TC, SBP, . . . , ALCOHOL 0 normalized test value
0.0 – 1.0 0 real value

Fig. 8. Change of the best fitness.

308 of 400 CHD cases, and all rules success-
fully return false for 2691 of 3600 non-CHD
cases. The recognition rate of the training data is
defined as follows.
(

1− miss target data +misrecognition

NCHD +Nnon-CHD

)

×100.0.

Therefore, the recognition rate of the training
data is 75.0%.

We examined which rule’s output is adopted
for the 308 successful data. The counts of adop-
tion of these twelve rules are 115, 46, 38, 36,
16, 13, 12, 10, 9, 7, 4, and 2, respectively. These
data result from the effects of the third and
fourth terms of the fitness equation. The ratio
of adopted frequencies of the respective rules
does not completely correspond to the ratio of
agents in each group, because there is a require-
ment to reduce the number of agents who sup-

port the rule with misrecognition data. However,
the rule with more agents tends to have a higher
adopted frequency. Both typical rules for frequent
cases and exceptional rules for rare cases were
extracted successfully. Moreover, this system was
applied to 13000 test data. As a result, it suc-
ceeded in the classification of 8655 cases. The rec-
ognition rate was 66.6%.

We also applied this method to other training
data sets (Train A, X, Y), and examined the per-
formance of each result for both training and test
data. Table 8 shows the recognition rates. The
parenthetic values in the table indicate the rec-
ognition rates for the test data set. The acquired
rules are represented by simple logical expres-
sions. So, we can easily acquire diagnostic knowl-
edge from the rules. However, the constraints of
the expressions may have a adverse influence on
the recognition rate. By modifying the GP sym-
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Fig. 9. Change of the average number of groups.

bols so that the rules can represent more com-
plex expressions (e.g., DBP > 1.2 SBP), we can
improve the recognition rate while keeping the
comprehensibility.

6. Conclusions and future work

In this research, we treated data containing mul-
tiple rules. We proposed a new method using
ADG for the purpose of the extraction of mul-
tiple rules. In this method, the clustering of data
and the rule extraction in each cluster are per-
formed simultaneously by multi-agent coopera-
tion. The grouping of agents and the allotment
of data to each group are optimized automat-
ically by evolutionary computation. We showed
the effectiveness of this method by an application
using medical data.

The values of parameters such as the redundant
group penalty affect the judgment whether the sys-
tem dispenses with a new rule for a certain data or
creates a new rule. We need to examine how to set
these parameters. Therefore, we are now planning
to verify the effectiveness of this method from the
viewpoint of information criteria.

The diagnostic rules were extracted mechani-
cally from only numerical data. Some rules may be

Table 8. Recognition rates

Data set Recognition rate

Train A 70.0% (67.8%)
Train X 70.2% (68.5%)
Train Y 70.1% (68.6%)
Train Z 75.0% (66.6%)

not accepted easily the field of medicine because
they may include incongruous combinations of
items beside the common sense of doctors. By
taking the knowledge of medical treatment into
account during the process of optimization, more
effective rules can be acquired. The optimization
by ADG using such knowledge is planned for
future work. In addition, we need to investigate the
usefulness of extracted rules from the viewpoint of
health care.
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