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Pre-eclampsia is a multi-system disorder of pregnancy with major maternal and perinatal implications. Emerging therapeutic

strategies are most likely to be maximally effective if commenced weeks or even months prior to the clinical presentation of the

disease. Although widespread plasma alterations precede the clinical onset of pre-eclampsia, no single plasma constituent has

emerged as a sensitive or specific predictor of risk. Consequently, currently available methods of identifying the condition prior to

clinical presentation are of limited clinical use. We have exploited genetic programming, a powerful data mining method, to identify

patterns of metabolites that distinguish plasma from patients with pre-eclampsia from that taken from healthy, matched controls.

High-resolution gas chromatography time-of-flight mass spectrometry (GC-tof-MS) was performed on 87 plasma samples from

women with pre-eclampsia and 87 matched controls. Normalised peak intensity data were fed into the Genetic Programming (GP)

system which was set up to produce a model that gave an output of 1 for patients and 0 for controls. The model was trained on 50%

of the data generated and tested on a separate hold-out set of 50%. The model generated by GP from the GC-tof-MS data identified

a metabolomic pattern that could be used to produce two simple rules that together discriminate pre-eclampsia from normal

pregnant controls using just 3 of the metabolite peak variables, with a sensitivity of 100% and a specificity of 98%. Thus, pre-

eclampsia can be diagnosed at the level of small-molecule metabolism in blood plasma. These findings justify a prospective

assessment of metabolomic technology as a screening tool for pre-eclampsia, while identification of the metabolites involved may

lead to an improved understanding of the aetiological basis of pre-eclampsia and thus the development of targeted therapies.

KEY WORDS: pre-eclampsia; mass spectrometry; GC-MS; metabolomics; machine; learning; genetic programming; prognosis;

diagnosis; classification.

1. Introduction

Pre-eclampsia is an important cause of maternal
morbidity and mortality. The World Health Organiza-
tion estimates that worldwide over 100,000 women die
from pre-eclampsia each year, and the condition has
been the most important cause of maternal death in the
UK over recent decades (Hibbard and Milner, 1994;
Lewis, 2001). Recent CESDI reports cite 1 in 6 stillbirths
and 1 in 6 sudden infant deaths as occurring in preg-
nancies complicated by maternal hypertension, and the
condition is responsible for the occupancy of approxi-
mately 20% of special care baby unit cots (CESDI,
1998).

Although the precise aetiology of pre-eclampsia is
poorly defined, there is accumulating evidence for a
pathogenic model of pre-eclampsia, whereby inappro-
priate adaptation of the interface between the maternal

vasculature and the developing placenta early in preg-
nancy leads to the development of a poorly perfused
feto-placental unit (Pijnenborg et al., 1991; Hayman
et al., 1999). In this model, continuing poor perfusion of
the placenta is proposed to result in the secretion of a
factor(s) into the maternal circulation. These factors are
thought to cause ‘‘activation’’ of the vascular endothe-
lium and the clinical syndrome of pre-eclampsia results
from widespread changes in endothelial cell function in
both small and large vessels (Rodgers et al., 1988;
Roberts et al., 1989; Kenny et al., 2002). Equivalently,
or in addition, one might imagine that plasma normally
contains a factor(s) that maintains standard endothelial
function but which is absent in pre-eclampsia.

Thus, it is clear that as pre-eclampsia originates early
in pregnancy, potential therapies are most likely to be
maximally effective if commenced weeks or even months
prior to the clinical presentation of the disease. There
are currently several candidate pharmacological thera-
pies under investigation. However, targeted intervention
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is impractical as currently available tests (such as
Doppler ultrasound waveform analysis of the uterine
arteries) that seek to identify the condition prior to
clinical presentation have low sensitivities, and are thus
of limited clinical use.

Biomarkers, including surrogate markers, are well-
recognised to be of great value in human disease
diagnosis (Lesko and Atkinson, 2001; Frank and
Hargreaves, 2003), and functional studies at the level of
gene expression (transcriptomics) and protein transla-
tion (proteomics) have recently enjoyed some success in
the early detection and diagnosis of cancer and its sub-
types (Golub et al., 1999; Petricoin et al., 2002).

Candidate proteins have been investigated as risk
determinants for pre-eclampsia, both in isolation and in
combination with other markers, but have limited sen-
sitivity and specificity (Hayman et al., 1999). Pre-
eclampsia is undoubtedly a multisystem disorder, and
the manifestations of the disease seem unlikely to be
related to a single protein. Consequently, analytical
methods devised to detect specific changes miss a wide
range of other substances which will be numerous and
may be significantly more important as surrogate (or
even aetiological) markers. Although the metabolome is
certainly ‘‘complementary’’ to transcriptomics and pro-
teomics, it might be seen to have special advantages. In
particular, it is known from both the theory underlying
metabolic control analysis (Kell and Mendes, 2000) and
from experiment (Raamsdonk et al., 2001) that,
although changes in the quantities of individual enzymes
might be expected to have little effect on metabolic
fluxes, they can and do have significant effects on the
concentrations of numerous individual metabolites. In
addition, the metabolome is further down the line from
gene to function and so reflects more closely the activities
of the cell or organism at a functional level. Thus, as the
‘‘downstream’’ result of gene expression, changes in the
metabolome are expected to be amplified relative to
changes in the transcriptome and the proteome
(Urbanczyk-Wochniak et al., 2003). In addition, meta-
bolic fluxes are not regulated by gene expression alone,
and metabolites are increasingly recognised as important
signalling molecules (Shi et al., 2003). Given recent suc-
cesses in disease diagnosis using NMR analyses of the
metabolome (e.g., Brindle et al., 2002), it was therefore of
interest to enquire as to whether a metabolomics
approach (Oliver et al., 1998; Harrigan and Goodacre,
2003; Bino et al., 2004; Goodacre et al., 2004; Kell, 2004,
2005; van der Greef et al., 2004; Whitfield et al., 2004;
Brown et al., 2005; Kell et al., 2005), in which as many
metabolites as possible are measured, might permit a
distinction between plasma from women with pre-
eclampsia and that from normal pregnant women.

Gas Chromatography-Mass Spectrometry (GC-MS)
provides the high resolution separation of metabolites
by gas chromatography and sensitive detection by mass
spectrometry that is most appropriate for complex bio-

logical fluids (e.g., Jellum et al., 1981; Goodacre et al.,
2004; Dunn and Ellis, 2005; Dunn et al., 2005). The
variant used here employs a GC-tof-MS instrument
(Fiehn et al., 2000) optimised using a closed-loop algo-
rithm (O’Hagan et al., 2005), allowing the detection, in a
non-biased manner, of up to 900 metabolite peaks in
some 20 min. This allows metabolites of interest
(including disease biomarkers) to be detected and
quantified without a priori knowledge of what they are
and then to determine which, if any, are significant for
the problem of interest (see Kell and Oliver, 2004). In
health-related fields GC-MS has been used for a number
of years in a range of applications, including the diag-
nosis of inborn errors of metabolism (Rashed, 2001).

Fourier transform infrared (FT-IR) spectroscopy
involves the observation of molecules that are excited by
an infrared beam, resulting in an infrared absorbance
spectrum which – as with most NMR approaches –
represents a ‘‘fingerprint’’ characteristic of any chemical
or biochemical substance (Ellis et al., 2002), and has
been previously used in metabolome profiling (Harrigan
and Goodacre, 2003). Its main advantages are that it is
very rapid (taking seconds), reagentless and non-
destructive. FT-IR has been applied to a wide-range of
biological studies including clinical ones (Ellis et al.,
2003). Results using FT-IR will be reported elsewhere.

Profiles generated from these techniques can contain
hundreds or even thousands of data points, necessitating
sophisticated analytical tools. We aimed to use these
high-dimensional GC-tof-MS data to define an opti-
mum discriminatory metabolomic pattern that would
distinguish plasma from women with a known diagnosis
of pre-eclampsia from plasma taken from matched
controls.

2. Methods

2.1. Participants

Plasma samples were obtained from the GOPEC
archive. The GOPEC study was a British Heart Foun-
dation-funded multi-centre collaborative study involv-
ing ten University Departments of Obstetrics and
Gynaecology in the UK. Within this study, 1000 ‘‘low-
risk’’ Caucasian women who developed pre-eclampsia
were recruited and sampled between 1999 and 2003.
Specifically, women were included if they had a systolic
blood pressure ‡ 140 mmHg and diastolic pressure
‡90 mmHg on two occasions after the 20th week of
pregnancy and proteinuria >300 mg/L in a 24 h col-
lection, or 500 mg/24 h. Women with chronic hyper-
tension, a history of renal or cardiovascular disease,
diabetes mellitus including gestational diabetes, three or
more spontaneous abortions, a hydatidiform mole in the
index or earlier pregnancy, or a multiple pregnancy,
were excluded from the study. Eighty-seven women
within the archive who had donated blood to the study
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antenatally (after diagnosis and within a week prior to
delivery) were identified and were matched with 87
normal pregnant controls for maternal age, parity and
BMI and for gestational age at sampling. Controls were
obtained from antenatal clinics in Manchester and
Dundee, and their plasma samples were only retained
for this study if they subsequently experienced an
uncomplicated pregnancy.

2.2. Sample collection

Blood samples were taken at the time of recruitment.
Samples were collected into pre-cooled glass tubes con-
taining EDTA using the Vacutainer� system and
immediately centrifuged at 1500 g for 15 min at 4�C.
Plasma was then removed and stored in aliquots at
)80�C until required. The collection and storage con-
ditions were identical for samples taken from both
patients and controls.

2.3. GC-tof-MS

Sample preparation for GC-MS analysis was per-
formed as follows; 175 ll plasma was spiked with 50 ll
internal standard solution (1.53 mg/ml succinic d4 acid,
2.34 mg/ml malonic d2 acid, 1.59 mg/ml glycine d5,
0.76 mg/ml glucose 13C6; Sigma-Aldrich, Gillingham,
UK) and vortex-mixed for 15 s. Four hundred and fifty
micro litres of acetonitrile (AR grade; Sigma-Aldrich,
Gillingham, UK) were added followed by vortex mixing
(15 s) and centrifugation (13,385 g, 15 min) to depro-
teinise the samples. The supernatant was transferred to
an Eppendorf tube and freeze dried (HETO VR MAXI
vacuum centrifuge attached to a HETO CT/DW 60E
cooling trap; Thermo Life Sciences, Basingstoke, UK).
Two-stage sample chemical derivatisation was per-
formed on the dried sample. 80ll 20 mg/ml O-meth-
ylhydroxylamine solution was added and heated at 40�C
for 90 min followed by addition of 80ll MSTFA (N-
acetyl-N-[trimethylsilyl]-trifluoroacetamide) and heating
at 40�C for 90 min. Twenty microlitres of a retention
index solution (4 mg/ml n-decane, n-dodecane, n-pen-
tadecane, n-nonadecane, n-docosane dissolved in hex-
ane) was added and the samples were analysed using a
Agilent 6890 N gas chromatograph and 7683 autosam-
pler (Agilent Technologies, Stockport, UK) coupled to a
LECO Pegasus III electron impact time-of-flight mass
spectrometer (LECO Corporation, St Joseph, USA).
Optimised instrumental conditions for serum have been
described elsewhere (O’Hagan et al., 2005) and were
used here for plasma. Initial data processing of raw data
was undertaken using LECO ChromaTof v2.12 software
to construct a data matrix (metabolite peak vs. sample
no.) including response ratios (peak area metabolite/
peak area succinic-d4 internal standard) for each
metabolite peak in each sample. Each sample was
analysed only once.

2.4. Machine learning, statistical analyses
and visualisation

GC-tof-MS data, ratioed as above, were exported
together with their class memberships (pre-eclampsia or
normal) as an Excel table into the program The-gmax,
bio-edition (Predictive Solutions Ltd, Aberystwyth;
http://www.predictivesolutions.co.uk/). The program,
which encodes rules as trees and evolves them according
to the general principles described elsewhere (Kell, 2002;
Koza, 1992; Allen et al., 2004), was used according to
the manufacturer’s instructions. The functions used
were a mixture of arithmetic (+,),*,/, larger) and logi-
cal (£, >, AND, NOT, OR, XOR) operators. 50% of
the samples were used as a hold-out set. The program
ranks and reports the usage of each individual variable
in the 300 most successful rules; inspection of the results
from three independent runs showed that three variables
were the most important and were likely to be sufficient
for the discrimination, and these and other candidate
variables were analysed and visualised using the Spotfire
program (http://www.spotfire.com) to assess their dis-
criminating power by inspection (Kell et al., 2001).
From these plots, even simpler rules were derived and
are given in the text.

3. Results

3.1. Patients

A summary of the patient details for the two groups
(diseased/control) are detailed in table 1.

The pre-eclampsia group had significantly raised
mean arterial pressure (p<0.0001), which was taken as
the maximum recorded value in the 24 h immediately
preceding delivery, and a significantly shorter gestation
period than the normal pregnant group. Individual
birthweight ratios were calculated for each pregnancy.
These are dependent upon maternal ethnicity, height,
weight, parity and gestation at delivery, in addition to
fetal birthweight and sex (Gardosi, 1998), and were

Table 1

Demographic data for patients from whom plasma samples were taken

Normal outcome

n=87

Preeclampsia

n=87

Age 30 (19–43) 31 (19–41)

Parity 0 (0–2) 0 (0–2)

BMI (weight/height2) 25 (19–46) 26 (18–46)

Max (S) BP (mm Hg) 122 (96–147) 162 (138–220)*

Max (D) BP (mm Hg) 80 (60–93) 110 (90–140)*

Delivery gestation

(weeks+days)

40+4

(34+3 to 42+0)

37+0*

(26+3 to 41+1)

Birth weight (g) 3420 (2380–4420) 2410 (590–4300)*

IBR (centile) 34 (10–99) 8 (0–99)*

Median (range).

Pre-eclampsia vs normal outcome.

*p<0.0001.
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ranked to produce a centile. The pre-eclampsia group
had babies with significantly lower birthweights and
birthweight ratios than the normal pregnant group
(p<0.05).

3.2. Metabolome data

A typical GC-tof-MS trace of the plasma metabolo-
me is shown in figure 1.

The main part of the figure shows a typical GC-tof-
MS trace for the plasma from one of the diseased
patients taken at random. The data were deconvolved
using the Chroma-tof software and peaks were extracted
into MS-Excel. Application of genetic programming
using the program The-gmax suggested that three highly
discriminatory variables were labeled peaks 403, 415 and
427, and it was clear from a 3D plot of these (figure 2)
that essentially all the samples from women with pre-
eclampsia could be discriminated from the samples from
controls using just these three variables. Because of the
manner in which the plasma samples were deproteinised
and derivatised, we may be certain that these are
metabolites of low MW. This figure (and the inset of
figure 1) shows that indeed variable 427 was raised in
the disease, while variable 415 especially and 403 (in this
case) were lowered, relative to the controls.

A pair of rules that may be derived from inspection of
figure 2 is as follows:

Rule 1: IF 403<0.035 AND (IF 415<0.0005 OR IF
427>0.0005) THEN disease

Rule 2: IF 403>0.015 AND (IF 415<0.01) THEN
disease

Rule 1 gives two false positives and no false negatives,
while rule 2 has 100% sensitivity and specificity. This
important result shows that practically complete dis-
crimination (100% sensitivity and 98% specificity) of the
plasma samples may be made using these two rules that
feature just three metabolites. The identity of the
metabolites was sought using mass spectral library
searches but no certain identifications could be made at
this stage. This parallels the situation commonly found
in plants (Fiehn et al., 2000). However, in contrast to
proteome fingerprinting results (Petricoin et al., 2002),
we may be certain from their mass spectra that the
identity of metabolites that are given a number is the
same in all samples, and the significance of this is that a
comparatively simple metabolome strategy allows the
detection of this small number of discriminating
metabolites and enforces one’s concentration on them
for further study. This is in contrast to the pattern-rec-
ognition approach, in which it is not necessary (nor
usually possible) to identify the basis for any diagnostic
discrimination. It is also worth noting that the concen-
trations of the discriminatory metabolites bear no sim-
ple relationship to each other (so one is unlikely to be a
major breakdown product of another, whether in vivo or
during sample preparation or storage, nor of any other
normal plasma metabolite), and that for example, the
appearance of 427 in plasma from women with pre-
eclampsia is not obviously coupled to the loss of 415

Figure 1. GC-MS total ion chromatogram for diseased patient. Inserts show the single ion monitoring chromatograms for the three peaks of

interest (peak 427, peak 403 and peak 415). The full line is for a diseased patient and the dotted line for a healthy control patient. Single ion

monitoring (SIM) for each metabolite was used and employed unique and highly sensitive fragment ions (peak 403, m/z 243; peak 415, m/z 202;

peak 427, m/z 204 – NB these are not the molecular ion which is rarely seen with good response in this type of system). The masses described for

each metabolite are the true molecular weight of the fragment ion monitored.
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since 415 is normally at a noticeably lower concentra-
tion than 427. Apart from the samples where 403>0.03
the concentrations of 403 and 415 are more or less col-
linear, suggesting a possible relationship between them.
The concentration of 410 was also related to that of 415
and was only slightly less discriminatory. However, the
disjoint nature of the metabolite data, requiring at least
two rules to separate the classes, shows (i) that a unitary
hypothesis for pre-eclampsia is inappropriate, consistent
with its recognition (see above) as a multi-system dis-
order, and (ii) that machine learning methods (such as
genetic programming) are much more suitable than is
classical statistics – which tests the goodness of fit to an
existing hypothesis (Breiman, 2001) – for uncovering
such relationships from the data de novo. However, we
provide a univariate statistical analysis of the distribu-
tions of these three metabolites among the patients and
controls in table 2.

Since (see table 1) there are substantial differences in
variables such as BP between disease and controls, one
might reasonably enquire as to whether our markers are
simply reflecting BP. The evidence that these metabolites
are not simply BP markers comes from observing the
variation between BP and the metabolites within a
group, where it is clear that they are not related to each
other. Figure 3 shows the data for metabolite 427.

A number of other features of the data are of interest.
First, there is no obvious difference regarding the three
discriminating metabolites between the two control

populations from Manchester and Dundee, indicating
that specific demographic factors are not responsible for
these peaks. Secondly, further evidence that the loss of
415 is potentially involved in the development of disease
comes from the fact (not shown) that all patients with
deliveries at early gestational ages (26–28 weeks), and
with higher levels of urinary protein, both indicators of
disease severity, had the lowest levels of 415. None of
these metabolites was significantly different in patients
receiving antihypertensive therapy (and correspondingly
none of them represented the metabolic products of
antihypertensive drugs).

4. Discussion and conclusions

Many diseases have an uncertain aetiology, and novel
strategies are required to make progress in discovering
how they develop. As in functional genomics, where
thousands of genes of unknown function were uncov-
ered following the systematic genome sequencing pro-
grammes, it is now common to use data-driven
expression profiling strategies in which a more specific
hypothesis is the result, not the starting point, of the
cycle of investigation that links hypotheses with data
(Kell and Oliver, 2004).

Pre-eclampsia is such a disease, in which while there
are indications that circulating factors (or maybe the
lack of them) are of potential aetiological and/or

Figure 2. Discrimination of pre-eclamptic from normal plasma using just three metabolites (labelled 403, 415 and 427). Pre-eclamptic samples

are encoded as red spheres, while plasma from the two control populations from Manchester (blue) and Dundee (yellow) are encoded as cubes.

Another variable (metabolite peak 158) that tends to be larger in the pre-eclamptic plasma is encoded via the size of the symbols.
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diagnostic importance, we have no knowledge of what
these might be. Thus according to one model
(Pijnenborg et al., 1991; Hayman et al., 1999), contin-
uing poor perfusion of the placenta is proposed to result
in the secretion of one or more factors into the maternal
circulation. These factors are thought to cause ‘‘activa-
tion’’ of the vascular endothelium and the clinical syn-
drome of pre-eclampsia results from widespread changes
in endothelial cell function in both large and small
vessels (Rodgers et al., 1988; Roberts et al., 1989; Kenny
et al., 2002).

By using GC-tof-MS we were able to separate and
detect several hundred metabolites from both control
and diseased plasma samples, and the application of
genetic programming to these data indicated that the
pre-eclamptic plasma could be discriminated from the
matched controls on the basis of just three metabolite
peaks (two of which tended to be lower and one tended
to be higher in the samples from women with pre-
eclampsia, and to a certain extent this correlated with
the severity of the disease). In this context it is worth
commenting that the GP type of approach is to be

Table 2

Median and interquartile ranges (IQR) (n=87) for the levels of three metabolites that are discriminatory between pre-eclampsia and controls

Metabolite peak Pre-eclamptic plasma Normal plasma p-Value

Median IQR Median IQR

403 0.00113 0.000535–0.00199 0.00953 0.00625–0.0128 N.S.

415 0 0–0 0.00690 0.00463–0.00989 <0.001

427 0.00122 0–0.00623 0 0–0 <0.001

Note: The differences for metabolites 415 and 427 were highly significant (using a Mann-Whitney U test). That for 403 was not, although by

inspection and from rule 2 it clearly discriminated a subset of the samples.

Figure 3. Lack of relationship between diastolic blood pressure and biomarker metabolite 427 in the plasma of pre-eclamptic women. In this plot

the systolic blood pressure, which is fairly well correlated with the diastolic, is encoded in the size of the symbols.
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preferred over other machine learning methods such as
neural networks and support vector machines, as it
allows one to understand the problem in terms of small
subsets of input variables that it combines into rules.

In the present case, it has not yet proved possible to
identify these molecules chemically, and it is clear that
the next stage of a subsequent investigation is to do so.
While these substances that we have identified might
simply be biomarkers, it is at least possible that they are
among the circulating factors that are implicated in
disease aetiology. We note that the fact that 415 is
lowered (effectively absent) in the disease means that
attempts to purify it from pre-eclamptic plasma are
likely to prove unrewarding. It could be viewed as a
possible protective factor against the development of
pre-eclampsia.

In the present case, only 10 each of the disease and
control samples were taken at a gestational age of under
30 weeks, and a clear task for the future is to establish
the extent to which these diagnostic rules apply earlier in
pregnancy and thus are of greater prognostic value.

In conclusion, however, this is the first study that has
identified a small subset of small-MW metabolites that
effectively detects pre-eclampsia in human plasma; the
potential of such metabolomic strategies in medicine is
clearly considerable.
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