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Abstract. Genetic programming, in conjunction with advanced analytical instruments, is a novel tool
for the investigation of complex biological systems at the whole-tissue level. In this study, samples from
tomato fruit grown hydroponically under both high- and low-salt conditions were analysed using

Ž .Fourier-transform infrared spectroscopy FTIR , with the aim of identifying spectral and biochemical
features linked to salinity in the growth environment. FTIR spectra of whole tissue extracts are not
amenable to direct visual analysis, so numerical modelling methods were used to generate models

Ž .capable of classifying the samples based on their spectral characteristics. Genetic programming GP
provided models with a better prediction accuracy to the conventional data modelling methods used,
whilst being much easier to interpret in terms of the variables used. Examination of the GP-derived
models showed that there were a small number of spectral regions that were consistently being used. In
particular, the spectral region containing absorbances potentially due to a cyanidernitrile functional
group was identified as discriminatory. The explanatory power of the GP models enabled a chemical
interpretation of the biochemical differences to be proposed. The combination of FTIR and GP is
therefore a powerful and novel analytical tool that, in this study, improves our understanding of the
biochemistry of salt tolerance in tomato plants.

Ž .Keywords: metabolome, tomato fruit, salinity, Fourier transform infra-red spectroscopy FTIR ,
chemometrics

Introduction

The metabolome is a generic term for the total biochemical composition of a cell
w xor tissue sample at any given time 34 . Recent advances in DNA sequencing have

led to an explosion in the number of known gene sequences, but the majority of
these new genes have never been characterised experimentally, and many have

w xcompletely unknown functions within the cell 6, 10, 21 . By investigating the
changes in the metabolome of biological systems under different conditions, it is
hoped that previously undescribed metabolic processes or pathways may be uncov-
ered, leading to functional assignments for many of the newly-discovered genes

w xwithin the genomic databases 34 . This area of biology, termed functional ge-
w xnomics 7 , will be a major focus of study over the next decade.
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In order to study the metabolome of biological samples, new analytical tech-
niques need to be developed. A typical metabolome study sets out with no
prejudices as to which metabolic changes are most significant for any specific
bioprocess, and must deconvolute these from potentially hundreds of measurands
in a background of thousands of other cellular components. To address this,
analytical instrumentation is being developed which is capable of measuring
biochemical signatures from whole-tissue or whole-organism samples. This typically
results in data sets comprising measurements of many hundreds or thousands of
variables. To complicate this task further, the identities of the particular biochemi-
cals to be monitored are frequently unknown at the outset. We here show that the
power of GP to select variables from high dimensional data and to form inter-
pretable predictive models gives it a unique advantage in the analytical interpreta-
tion of metabolomic data.

w xOver the past two decades, tomato as a crop has increased in popularity 19, 20 .
Consequently, much research has been aimed at improving the economic viability
of tomato production and post-harvest stability. Environmental stress, such as high
salt concentration, is one of the main parameters limiting crop production. The
tomato cultivar Edkawy has reduced salt-sensitivity as it grows in the El-Bosaily
area of North Egypt, where the soils are saline sands. Edkawy has already been
studied in terms of salt tolerance and previous literature provides evidence that

w xthis tomato variety may have salt tolerant attributes 29, 30 . In this study, Edkawy
plants were cultivated using a hydroponic drip irrigation system, allowing precise
control of the nutrient conditions within the root zone, including the salinity level.

Ž .The aim of the study was to identify biochemical constituents biomarkers within
the fruit tissue which are discriminatory for salt-grown tomato plants, and hence to
contribute to the understanding of the fundamental biological mechanisms poten-
tially underlying salt tolerance in tomato plants. This in turn may lead to rational
improvements in tomato fruit production in conditions of high salinity.

Ž . w xFourier-transform infrared spectroscopy FTIR 15, 17, 18, 33, 36, 42 is a
physico-chemical analytical technique, which uses the vibrational characteristics of
chemical bonds within molecules to obtain a ‘fingerprint’ spectrum with features
defined by the functional chemical groups within the sample. This form of analyti-
cal technique is therefore able to give quantitative information about the total
biochemical composition of a sample. A thin layer of the biological sample to be

Žanalysed is illuminated in the infrared to obtain an interferogram produced by
splitting an infrared beam of light, extending the path length of one half by

.reflecting it off a movable mirror, and recombining the beams optically . Chemical
groups within the sample absorb specific frequencies of light within the interfero-
gram due to exchange of energy with their electronic configurations, the precise
frequencies absorbed being related to the energies specific to the vibrational
modes of each chemical group. The information encoded in the reflectedrab-
sorbed light is then recovered by performing a Fourier-transform on the detected
signal. The FTIR spectrum so obtained over the range and with the resolution used
here comprises 882 variables, each of which indicates the level of absorbance at a
particular frequency of infrared light.
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A readily accessible interpretation of such extremely high-dimensional spectra,
w xalso known as hyperspectral data 1, 16, 42 , is often very difficult to obtain.

Conventional analysis of data of this form falls into two types. The first type,
Ž .unsuper̈ ised learning methods, includes principal components analysis PCA ,

Ž . Ž .discriminant function analysis DFA and hierarchical cluster analysis HCA , and
seeks to form separable clusters in the data by performing mathematical trans-
forms derived from the variables within the dataset without reference to known
classes. The second type, super̈ ised learning methods, includes partial least squares
Ž . w x Ž .PLS 13, 31 , multivariate rule induction MRI , inductive logic programming
Ž . w x Ž . w xILP 8 and artificial neural networks ANNs 5, 35 , and seeks to refine a model
based on the accuracy of its predictions for a set of examples with a known class
structure. Although widely used, none of these methods provide models that are
readily interpretable in a chemical sense.

Ž . w xGenetic programming GP 4, 26 is an evolutionary technique which uses the
concepts of Darwinian selection to generate and optimise a desired computational
function or mathematical expression. GP is a supervised learning method, and
consequently requires a set of training examples to form predictive models that can
then be applied to the classification of a set of previously unseen test samples. We
have previously shown that GP performs at least as well as conventional predictive

w xmodelling methods for analysing hyperspectral data 11, 12, 15, 25, 38, 39, 43 .
Here we report the use of PCA, PLS, ANN and GP analyses of FTIR hyperspec-

tral data from tomato fruit samples grown under saline and non-saline conditions.
We show that GP, unlike the other methods, is able to provide readily inter-
pretable models. The interpretability of these models enables the identification of
potential biological explanations of the mechanisms underlying the classification.

Experimental methods

Plant cultï ation

The plants were grown in a hydroponic open-drip irrigation system, using perlite as
an inert substrate. The use of a hydroponic system is ideal for studies into plant
physiology as it allows complete control over the nutrients applied to the plants.
The system was arranged to facilitate saline and control treatments. The capacity
of this system was 120 plants with 60 replicates per treatment. All plants were

Žirrigated with complete liquid fertiliser and supplementary sodium chloride 4,000
.ppm was applied to the saline treated plants.

Fruit tissue preparation

Ž ŽTwenty fully ripe at stage 10 on the OECD tomato ripening chart OECD Scheme
for the application of international standards for fruit and vegetables,

.www.oecd.orgragrrcodercont-e.htm Edkawy fruits were harvested. Fruit were



JOHNSON ET AL.246

selected for uniformity to maximise homogeneity between samples. Ten fruit were
taken from salt-grown plants and ten from control plants. The seeds and skin were
removed, the outer pericarp was crushed using a press and kept on ice. The extract
was homogenised using a Polytron blender at speed 5 for 1 minute. After ho-
mogenisation, 1 ml aliquots of the sample were placed in Eppendorf tubes, and
snap-frozen in liquid N . These were stored at y708C until needed.2

FTIR spectroscopy

Ten replicate 5 ml samples of each of the 20 fruit tissue samples were applied to
wells drilled on a sandblasted aluminium plate. Samples were arranged to minimise

Ž .the effects of artifactual trends in the data e.g. edge effects . Prior to analysis, the
samples were oven-dried at 50 8C for 30 min. The plate was loaded onto the

Ž .motorised stage of a reflectance thin-layer chromatography TLC accessory at-
Ž .tached to a Bruker IFS28 FTIR spectrometer Bruker Ltd. equipped with a

Ž .mercury-cadmium-telluride MCT detector cooled using liquid N .2
The diffuse reflectance absorbance FTIR spectra were collected over a

wavenumber range from 4,000 cmy1 to 600 cmy1 under the control of an
IBM-compatible personal computer using OPUS 2.1 software running under the
IBM OSr2 Warp operating system. Spectra were acquired at a rate of 20 sy1 and
at a resolution of approximately 3.85 cmy1. To improve the signal-to-noise ratio,
256 spectra were recorded and averaged for each sample. The complete data set
therefore comprised 200 averaged spectra, each containing 882 input variables.

Computational analysis methods

Principal components analysis

PCA reduces the dimensionality of n-dimensional data enabling clustering within
w xthe data set to be observed 6, 16, 23 . The method extracts a set of uncorrelated

variables as linear combinations of the original variables. The new variables are
called components and are arranged in order of decreasing variance so those with
the highest variance are termed principal components. The principal components
explain a large proportion of the variance within the data set, maximising between
cluster variance and minimising within cluster variance. PCA is an unsupervised
technique requiring no prior knowledge of class structure within the data set. In
this study the entire data set of 200 spectra was used to derive the PCA model.

Partial least squares modelling

Ž . w xPartial least squares PLS modelling 31 is a widely-used supervised learning
technique which reduces the dimensionality of multivariate data by using a priori
knowledge of which spectra were derived from plants grown under saline or control
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conditions to produce mathematical models comprising linear combinations of
w xvariables. This is referred to as discriminant PLS 2 . For this study, we used a PLS

w xmodelling system written in house by Dr. Alun Jones 24 . The initial PLS models
were formed on a training data set of 50 spectra. In this study a total of 30 PLS
models were derived. The generalising ability of these models was then tested using

Ž .a previously unseen validation data set 50 spectra . The model with the best
generalising ability i.e. the smallest error was then selected and tested on a set of
100 spectra also previously unseen.

Artificial neural networks

w xANNs 5, 40 are supervised methods. The standard fully-interconnected feedfor-
ward backpropagation net consists of input and output nodes, which employ a
squashing function to avoid numerical over flows, linked together by a hidden
layer. The models are formed on a training data set, then validated and tested on
previously unseen data sets. In training the neural network the numerical inputs
are transformed into ‘desired’ outputs. The transformation of the inputs depends
on the connection weight and bias of the nodes. The neural network is trained by

w xpresenting the networks with ‘known’ inputs and outputs 14 . The ANN is said to
have generalised when the correct outputs are determined from a previously

Ž .unseen data set the validation set . The model can then be tested on a third data
set. The ANN model was trained on a data set of 100 samples then validated and
tested with two other data sets each containing data from 50 sample spectra. The
ANN was unable to form a satisfactory model from the 50 training spectra used for
the PLS model, so a larger training set of 100 spectra was used. ANN analysis was

Žcarried out using NeuFrame version 3.0.0.0 Neural Computer Sciences, Luworth
.Business Centre, Totton, Southampton, UK .

Genetic programming

The GP implementation used in this study was capable of performing non-linear
multivariate regressions with automatic variable selection. It was written in C, and
was run on IBM-compatible PCs under Windows NT 4.0, and on DEC Alpha-based
PCs under Linux 5.1.

The GP used the arithmetic operator functions add, subtract, multiply, and
protected dï ide and a Boolean ‘if greater than or equal to’ function. The if function
returned a value of 1.0 if the first argument was greater than or equal to the
second argument, 0.0 otherwise. To avoid possible numeric overflows, a protected
dï ide function was used which returned a numerical value of 1015 for divisions
with a denominator F 10y15. Additional protection from floating-point errors was
enforced by clipping the return value of each node into the range "1015.
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ŽTerminals comprised either floating-point constants initialised randomly in the
. Žrange y10.0 to 10.0 or input variables corresponding to one of the 882 ab-

.sorbance measurements which comprised each spectrum .
The GP generated initial individuals with random function trees of depth 2 to 6,

Žand assessed their fitness using a scoring function that compared e the model’si
. Ž .estimate of the output for example i with o the experimentally-observed valuei

Ž .by calculating the root-mean-square error of prediction RMSEP for n training
examples:

n
2o y eŽ .Ý i i

is1)RMSEP s
n

The fittest individuals were those that gave the lowest RMSEPs for the training set
examples.

ŽSince the dataset contains two classes fruit from plants grown under either
.saline or control conditions , class membership was defined in the training exam-

ples by assigning a target output value of 1.0 to members of the saline-grown class,
and 0.0 to members of the control class. A correct classification was assigned when
the output value of the GP-derived rule was within 0.01 of the target output for any
given spectrum.

GP-generated rules, if allowed to evolve unchecked, tend to become longer and
more arithmetically complex as the evolution proceeds, a phenomenon known as

w xbloat 3, 27, 28 . This increase in complexity reduces the ready interpretability of
w xthe expressions generated and is likely to lead to overfitting 37 . To combat this, a

penalty of 0.01 = N, where N represents the number of nodes in the function tree,
was added to the fitness calculation. This ensured that, for a given RMSEP, a
shorter tree would be chosen over a longer one. In addition, a maximum tree depth
of 10, and a maximum node count of 100 was enforced during the evolution.

The size constraints on the GP rules meant that even the longest rules could use
only a small subset of the available input variables comprising the dataset. The GP
was therefore compelled to perform an automatic variable selection, resulting in

Žpredictive models with significantly lower dimensionality i.e. using far fewer
.variables than the dataset as a whole. The automatic variable-selection ability of

the GP approach is one of the main benefits of using this as a predictive modelling
w xmethod 11 . Since the GP-derived models are much more readily interpretable

than say those produced by ANNs, analysis of the selected variables can lead to a
rationalisation of the mechanism underlying the model.

Ž .The GP used five demes sub-populations each of 7,500 individuals. Each run
was allowed to continue for 5,000 generations, but the final model was typically
produced after about 2,200 generations. The GP was also allowed to terminate
when the RMSEP fell below 0.01, which did not occur in practice. Every 10
generations, the best 5% of the individuals in each of four satellite demes replaced
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the worst 5% in a central deme. The best 5% from this deme then replaced the
worst 5% in the satellite demes, resulting in every deme containing the best 5% of
the population as a whole. This divergent evolution and migration strategy has
been shown to be more effective at solving high-dimensional problems than a

w xconventional single-population 41 .
During each generation, 1,500 new individuals were created by single-point

mutation, and 3,000 by single-point crossover. Parental selection was proportional
to fitness, and new individuals were retained in the deme if their fitness was higher
than that of the current-worst individual, maintaining a population size of 7,500. In

Ž .this study 100 spectra 50 from saline-grown and 50 from control fruit samples
were used by the GP as a training set to derive the models, and the remaining 100
spectra were used to test their predictive ability. No information from the test set
was used to guide the evolution of the GP.

Correlation analysis

An analysis was performed to investigate the correlation between the GP-selected
input variables and the known class structure of the data. Product moment

Ž .correlation PMC is a method which uses linear transformations to quantify which
Ž . Ž .variables x are most strongly related to the output data y being modelled.

Ž .The PMC R value ranges from y1 to q1, indicating a perfect negative to a
perfect positive correlation, with a value of 0 indicating that the variable is
uncorrelated with the class structure. R takes the sign of C . For n examples, Rx y
can be calculated as follows:

Cx y
R s

C ? C' x x y y

where

n

C s x ? y y n ? x ? yŽ .Ýx y i iž /
is1

n
22C s x y n ? xŽ .Ýx x iž /

is1

n
22C s y y n ? yŽ .Ýy y iž /

is1

The PMC between each of the 882 input variables in the training set and the
known class structure was calculated to investigate whether the GP was selecting
only well-correlated variables.
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Quantum mechanics and infrared spectral analysis

The semi-empirical quantum mechanics program PM1, part of the HyperChem 5.1
Ž .molecular modelling package HyperCube, Inc. was used to calculate infrared

vibrational spectra and molecular vibrational modes for potential metabolites
identified during the analysis of the data. The infrared spectral analysis package IR

Ž .Mentor Pro 2.0 Bio-Rad Laboratories was used to suggest candidate chemical
groups responsible for the particular spectral features selected as discriminatory by
the GP models.

Results and discussion

The hyperspectral data were analysed using four different chemometric techniques
Ž .Figure 1 . Figure 1A shows a two-dimensional PCA plot using principal compo-
nents 1 and 2 since these account for the greatest proportion of the variance within
the data set, 85.75% and 12.3% respectively. PCA was unable to separate the
control and the saline treated fruit samples into 2 distinct clusters although a slight

Ž .trend can be observed in the plot. The PLS model Figure 1B , using 11 PLS
Ž .factors these resulted in the best generalising ability correctly classified 88% of

the samples comprising the validation and test data sets. A correct prediction for
the discriminant PLS was taken to be - 0.5 for control sample and G 0.5 for
saline-treated samples. The second supervised technique to be applied was ANNs
Ž .Figure 1C . The whole data set was divided into 3 sub-sets, training, validation and
test. The optimum model was derived after 10,500 epochs resulting in prediction
accuracy of 100% for the training set and 84% for the validation and test sets. A
correct prediction of class was determined using the same criteria as with PLS. The
GP derived expressions were capable of correctly classifying the examples in both
the training and test data sets with an average accuracy of 88.9%. Figure 1D shows

Ž .the results obtained by the best GP model rule 28 with a predictive accuracy of
95% for the test set data. Due to the use of the if function which enforces a strict
separation it is difficult to determine the degree of misclassification for the
incorrectly classified samples.

PLS, ANN and GP derived models all classified the control and saline-treated
tomato samples with similar prediction accuracy. However, the models derived by
PLS and ANN, in common with the other widely used statistical modelling
methods, are not readily interpretable, whereas GP produces mathematical rules
that enable the easy identification of wavenumbers selected to perform the
classification.

The GP was run 30 times. The wavenumbers used by each of the GP rules and
their prediction accuracies are shown in Table 1. The wavenumbers indicated in
bold fall within the critical region from 2270-1960 wavenumbers identified in

Ž .Figure 2. At least one wavenumber typically 3-4 wavenumbers from this critical
region is used in every rule highlighting its importance. These 30 independent GP
rules used a total of 112 out of the 882 input variables. The entire data set
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Figure 1. The prediction outputs from the four chemometric modelling methods are shown. Principal
Ž .component analysis PCA , presented in plot A, is the only unsupervised method used and was unable

Ž .to separate the control and saline-treated samples satisfactorily. Partial least squares PLS regression,
Ž . Ž .artificial neural network ANN and genetic programming GP predictions are shown in plots B to D

respectively. With the exception of PCA, which used all 200 samples to form its model, the data was
split into training and testrvalidation sets. The results shown are for the 100 testrvalidation samples. It
is apparent that the GP’s use of the discontinuous if function dramatically improves the class
separation.
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Ž .Figure 1. Continued .

contained wavenumbers with PMC values ranging from 0.000332 to 0.4401. The
GP-selected waveumbers had PMC values ranging from 0.000642 to 0.4296, indicat-
ing that the GP selected wavenumbers with both high and low correlations with the

Žknown class structure. The wavenumber used most frequently found in five
.models had a PMC value of 0.2876, so is reasonably well-correlated with the class

structure. Although the most-correlated wavenumber in the data set was not used,
the GP selected an adjacent wavenumber on two occasions. As has been observed
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Table 1. The wavenumbers used by the rules derived from 30 GP runs are presented.
All the rules use at least one wavenumber which falls in the critical region identified in Figure 2,
ranging from 2270 to 1960 wavenumbers, these are indicated in bold. The prediction accuracies are
shown for the test set data indicating that irrespective of rule length classification is greater
then 83%.

Rule Wavenumbers used Test set % correct

1 2245, 2172, 2037, 2029 86
2 2824, 2257, 2122, 2087, 1963, 1678 90
3 2068, 1967, 841, 806 89
4 3653, 2233, 2164, 1967 90
5 2249, 2149, 2122, 2017, 1022, 999 90
6 2245, 2179, 2152, 2010, 1227 93
7 3734, 2257, 2145, 2087, 2041 91
8 2241, 2152, 1975 89
9 2245, 2164, 2098, 2060 91

10 3695, 3217, 3055, 2754, 2446, 2411, 2338, 2071, 94
1782, 849, 633

11 3113, 2249, 2214, 2152, 2098, 2021, 1199 92
12 3935, 3487, 2986, 2704, 2118, 2002, 1936, 1813, 1339, 87

1265, 1180, 1007, 829
13 2245, 2172, 2106, 1963 90
14 2936, 2774, 2245, 2187, 2083, 2029 83
15 3668, 3236, 2685, 2230, 2129, 1173, 876, 640 89
16 2750, 2249, 2125, 1501 90
17 2287, 2264, 2152, 2114, 2098, 2010 92
18 2257, 2168, 2114, 2029 92
19 2218, 2187, 2098, 1967 92
20 2268, 2226, 2172, 2114, 2025 91
21 2272, 2087, 2029, 2025, 1304 91
22 2299, 2083, 2048, 1890 93
23 2291, 2160, 2137, 2133, 1863 91
24 2233, 2141, 2110, 2025, 1836, 1659, 1512 88
25 2257, 2149, 2006 91
26 2241, 2133, 2118, 2021 93
27 2230, 2179, 2118, 2025 92
28 3678, 3499, 3476, 2480, 2268, 2133, 2110, 2017, 95

1558, 883
29 2916, 2708, 2095, 2002, 1987 88
30 2264, 2145, 2118, 2025 92

before, the GP uses the low-correlated wavenumbers as internal constants in the
w xdata set, enabling it to perform normalisation and baseline shift correction 11 .

The GP-derived models typically used 5 variables, with the smallest rule using 4
and the largest using 13. No single variable could be used to classify the spectra
with an accuracy approaching the 90% value of the GP-derived rules. Despite the
reasonably high PMC values for most of the variables within the data set PLS was

Žunable to separate the two classes completely based on the spectral data Figure
.1B . This indicates that the data set does not contain enough information to allow



JOHNSON ET AL.254

Figure 2. The wavenumbers selected by the 30 GP rules are shown in reference to a spectrum averaged
from the whole data set. The vertical lines represent the number of GP-derived rules that use particular
wavenumbers to form a predictive model. The region from 2270 to 1960 wavenumbers is clearly
important for producing good predictive models.

a very high degree of separation of the two classes to be made without using
non-linear combinations of variables. The if operator was used in every GP rule, a
clearly essential function for a classification problem which is not readily available
to standard feed-forward, back-propagation neural networks or the conventional
statistical modelling methods.

The GP models were all different. The prediction accuracy for classification of
the test data set of 100 spectra ranged from 83% to 95% correct. Runs 9, 13, 18
and 27 produced remarkably similar models, with the same logical structure and
using very similar wavenumbers. The predictive accuracy is shown for the test set:

Ž .Run 9: 91% correct .

IF A y A G A y A THEN Saline ELSE ControlŽ . Ž . [ ] [ ]2164 2245 2060 2098

Ž .Run 13: 90% correct .

IF A y A G A y A THEN Saline ELSE ControlŽ . Ž . [ ] [ ]2171 2245 1963 2106

Ž .Run 18: 92% correct .

IF A y A G A y A THEN Saline ELSE ControlŽ . Ž . [ ] [ ]2168 2257 2029 2114

Ž .Run 27: 92% correct .

IF A y A G A y A THEN Saline ELSE ControlŽ . Ž . [ ] [ ]2179 2230 2025 2118
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In the above rules, A represents the measured absorbance at wavenumber n.n
These rules may be indicative of the nature of the globally-optimal rule derivable
from this data set. The best performing rule, with a 95% predictive accuracy for the
test set data, used a similar logical construct and selected similar variables.
However it included an additional term associated with a spectral feature at 2480
wavenumbers which enabled a better class prediction for some of the saline-grown
samples which were incorrectly classified by the simpler rules:

Ž .Run 28: 95% correct

A3476
IF = IF A G AŽ .2480 883ž /A3499

G A y A A q AŽ . Ž .2268 2133 1558 3638

qA y A THEN Saline ELSE Control[ ] [ ]2017 2110

ŽAn analysis of which input variables in terms of absorbances at particular
.wavenumbers were selected showed that there were a few regions of the spectra

Ž .that were consistently being used to form the different models Figure 2 . In
particular, the spectral region covering 2270 to 1960 cmy1 was used by most of the
rules, and all of the best-performing models were based on a few small but distinct
features within this critical region. The absolute differences between saline and

Ž .non-saline grown samples in this region are very small ca. 0.005 absorbance units ,
and so would not have been selected in a direct visual analysis such as by using a
difference spectrum.

Quantum mechanical calculations and spectral libraries showed that the only
biochemically-reasonable functional groups that absorb strongly in this critical part

Ž .of the IR spectrum are acetylenes R y C ' C y R9 and cyanides or nitriles
Ž .R y C ' N , with the absorption due to a periodic stretching motion of the
triple-bond. Acetylenes have a second characteristic vibration at approximately
3300 wavenumbers, a region unused by any of the GP-derived rules. If an acetylene
group were responsible for the characteristic spectral features, it would be ex-
pected that the GP models would also use this region. Therefore, the most likely
candidate chemical moiety being identified by the predictive models as characteris-
tic for tomatoes grown under saline conditions is a cyanide or nitrile group.

Nitrile and cyanide groups occur in many compounds found in plants. Cyanide
Ž .groups often result from the detoxification of hydrogen cyanide HCN which is

toxic to biological systems if allowed to accumulate. HCN is a by-product of
ethylene production, the biosynthesis of which is known to increase in plants in

w xresponse to stress and during the ripening of climacteric fruit 22 , such as tomato.
It has previously been reported that tomato plants grown under saline conditions

w xshow enhanced ethylene production 32 , with a consequent increase in hydrogen
cyanide production. The hydrogen cyanide is detoxified ¨ia a series of chemical
reactions, increasing the concentration of cyanide-containing compounds within
the salt-stressed tomato fruit. It can be hypothesised that the GP selected variables
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correspond to small spectral differences due to a change in the concentration of
cyanide-containing compounds. Although no definite conclusions can yet be drawn

Ž .as to the specific chemical identity of these compound s the GP has enabled the
identification of potential biomarkers for saline treated fruit. This work highlights
the use of GP as an exploratory tool able to identify critical regions within
hyperspectral data, unlike the other numerical methods. Using the GP models in
conjunction with knowledge of the biological system, a preliminary identification of
important biochemical differences between the samples can be made, providing
direction for future biological investigations.

Conclusions

This study has shown that GP, in combination with FTIR, is a powerful new tool
for the analysis of whole-tissue biological samples at the metabolome level. The
combined technique is sensitive enough to detect changes in the levels of a single
metabolite against the background of the entire cellular components, and can
provide chemical information which can lead to the identification of the biochemi-
cals which may be involved in metabolic processes under investigation.

The main benefit of the GP approach is that, unlike more conventional numeri-
cal analyses, it provides readily interpretable models which enable mechanistic
explanations of the underlying biological systems. Additionally, GPs are able to
analyse effectively extremely high-dimensional data that are generally not amenable
to simpler analytical algorithms. The GP method therefore has the promise of
becoming an extremely sensitive and discriminatory analytical tool that may be of
crucial importance in the emerging field of functional genomics, and so help to
advance the understanding of metabolic processes as yet unexplored.
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