
The Journal of Systems and Software 81 (2008) 2361–2370
Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/ locate/ jss
Can k-NN imputation improve the performance of C4.5 with small software
project data sets? A comparative evaluation

Qinbao Song a,*, Martin Shepperd b, Xiangru Chen a, Jun Liu c

a Department of Computer Science & Technology, Xi’an Jiaotong University, 28 Xian-Ning West Road, Xi’an, Shaanxi, 710049, China
b School of IS, Computing & Maths, Brunel University, Uxbridge, UB8 3PH, United Kingdom
c Shaanxi Electric Power Training Center for the Staff Members, 21 Dian-Chang East Road, Xi’an, Shaanxi, 710038, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 25 January 2007
Received in revised form 6 May 2008
Accepted 6 May 2008
Available online 17 May 2008

Keywords:
Missing data
Missing data toleration
C4.5
Data imputation
Software project cost prediction
0164-1212/$ - see front matter � 2008 Elsevier Inc. A
doi:10.1016/j.jss.2008.05.008

* Corresponding author.
E-mail addresses: qbsong@mail.xjtu.edu.cn (Q. Son

ac.uk (M. Shepperd).
Missing data is a widespread problem that can affect the ability to use data to construct effective predic-
tion systems. We investigate a common machine learning technique that can tolerate missing values,
namely C4.5, to predict cost using six real world software project databases. We analyze the predictive
performance after using the k-NN missing data imputation technique to see if it is better to tolerate miss-
ing data or to try to impute missing values and then apply the C4.5 algorithm. For the investigation, we
simulated three missingness mechanisms, three missing data patterns, and five missing data percentages.
We found that the k-NN imputation can improve the prediction accuracy of C4.5. At the same time, both
C4.5 and k-NN are little affected by the missingness mechanism, but that the missing data pattern and the
missing data percentage have a strong negative impact upon prediction (or imputation) accuracy partic-
ularly if the missing data percentage exceeds 40%.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Missing data is a widespread problem that can affect the ability
to use data to construct effective prediction systems because few
statistical or machine learning techniques can cope with such sit-
uations. Until recently the usual approach has been to exclude data
that contains one or more missing values. This is often referred to
as missing data ignoring technique, specifically, case or list-wise
deletion. Although it is a simple approach, it suffers from two sub-
stantial problems. First, it leads to the inefficient use of already
scarce data. Second, case deletion can introduce substantial bias
into a data set unless the values are missing completely at random.
Therefore, missing data toleration techniques and missing data
imputation techniques (see Section 2.3 for details) have been pro-
posed as alternative approaches to deal with missing values.

Unfortunately, no one technique is consistently effective. There-
fore, a number of papers on the evaluation of missing data tech-
niques has been published (e.g. Little and Rubin, 1989;
Brockmeier et al., 1998; Feelders, 1999; Grzymala-Busse and Hu,
2000; Strike et al., 2001; Myrtveit et al., 2001; Batista and Monard,
2003; Cartwright et al., 2003). However, these works all focus on
missing data ignoring techniques and missing data imputation
techniques. To our knowledge, the comparison of missing data tol-
ll rights reserved.

g), martin.shepperd@brunel.
eration techniques and missing data imputation techniques re-
mains unexplored. So the objective of this paper is to consider
this problem. As missing data toleration techniques are embedded
in machine learning methods themselves and missing data impu-
tation techniques aim to provide complete data to data analysis
methods; moreover, even a better estimate for each missing value
not necessarily leads to a better overall estimate for the parameters
of interest (Rubin, 1996), so it is reasonable to evaluate missing
data techniques by means of comparing the results of statistical
or machine learning methods with original and treated data (see
for example, Strike et al., 2001; Myrtveit et al., 2001; Batista and
Monard, 2003). Therefore, our study is in the context of software
project development cost prediction with a real world data set.

Software project development cost prediction is concerned with
estimating how much cost will be consumed in order to develop a
software project. It is an important and active research area but
with many challenges remaining, including dealing with missing
data (a common occurrence), small data sets with complex interac-
tions between features (multi-collinearity) and rapid obsolescence
of data due to technology changes. Thus a large number of papers
has been published (Walkerden and Jeffery, 1997) on this topic. We
classify the published methods into three categories: parametric
model based methods, expert judgement methods, and machine
learning methods.

Expert judgement techniques such as Work Breakdown Struc-
ture (Boehm, 1981; Baird, 1989) and pairwise comparison (Miran-
da, 2001; Shepperd and Cartwright, 2001) based on experts’

mailto:qbsong@mail.xjtu.edu.cn
mailto:martin.shepperd@brunel. ac.uk
mailto:martin.shepperd@brunel. ac.uk
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


2362 Q. Song et al. / The Journal of Systems and Software 81 (2008) 2361–2370
knowledge and experience and are useful in the absence of quan-
tified, empirical data. The limitation of these methods is that an
estimate is only as good as the experts’ opinions which there is
usually no way to test. There are also difficulties with transparency
and repeatability.

Parametric models such as SLIM (Putnam, 1982), COCOMO
(Boehm, 1981) and SEER (Jensen, 1983) use pre-specified formulas
to estimate software cost. Unfortunately, they tend only to perform
well in their own environments (Kemerer, 1987; Kitchenham,
1992), and need local data to calibrate the model to new circum-
stances. But even with calibration the accuracy can be quite mixed
and missing values cause considerable difficulties.

Machine learning methods (Srinivasan and Fisher, 1995; Shep-
perd and Schofield, 1997; Finnie and Wittig, 1997) use historical
software project data sets to predict cost, and can be very accurate
given appropriate training data. Unfortunately, most of them can-
not work with missing data. But in practice, historical software
project data sets usually contain missing values (Briand et al.,
1992; Briand, 1993; Gray and MacDonnell, 1997; Angelis et al.,
2001; Jeffery et al., 2001). Missing values pose a challenge to ma-
chine learning methods.

Of these three categories of cost prediction methods, the last
two are impacted by missing values. Thus, dealing with missing
data also is an important issue in software engineering. At the
same time, in the context of software cost prediction, either ignor-
ing techniques (Walston and Felix, 1977; Briand et al., 1999, 2000)
or imputation techniques (Strike et al., 2001; Myrtveit et al., 2001;
Cartwright et al., 2003; Jönsson and Wohlin, 2004; Song et al.,
2005; Song and Shepperd, 2007) have been used to deal with miss-
ing values. However, ignoring techniques make small software
project data sets more smaller, and most imputation techniques
are based on assumptions about missingness mechanisms that
are not testable. By contrast, missing data toleration techniques di-
rectly analyze data sets with missing values, and have no assump-
tions on data distribution and missingness mechanism. On the
other hand, to our knowledge, missing data toleration techniques
are not used in software cost prediction. For this reason we choose
to study missing data toleration techniques in the context of soft-
ware project cost prediction.

The well known missing data toleration techniques include
CART (Breiman et al., 1984), CN2 (Clark and Niblett, 1989), Ltree
(Gama and Brazdil, 1999), and C4.5 (Quinlan, 1993). Among these
methods, CART has been used in software cost modeling (Briand
and Wust, 2001; Pickard et al., 2001; Briand et al., 1999) but not
to deal with missing data. However, both single imputation and
multiple imputation (Rubin, 1977, 1978) tend to outperform CART
(Feelders, 1999). Ltree is an oblique decision tree which follows the
same strategy for handling missing values as C4.5. C4.5 is one of
the best methods on treating missing values among nine ap-
proaches (Grzymala-Busse and Hu, 2000) including CN2 which fills
in the missing values with the most common value, the capacity of
tackling both continuous and categorical values further makes it
fitting software project data sets that always contain both types
of data, and it has been used to identify software modules with
high cost (Selby and Porter, 1988; Tian et al., 1992) with complete
data.

All the above motivates us to consider the use of C4.5 to predict
project cost in the face of missing values. Specifically, we explore
two possibilities. One, we can use the technique directly or two,
we can use a separate imputation technique prior to applying
C4.5 upon the artificially completed data set. In other words, can
an imputation technique improve the performance of the missing
data toleration method C4.5 when using it as a predictor?

The remainder of the paper is organized as follows. In the next
section we present the basic concepts of missing data techniques.
This is followed by a description of the research method we used.
The results follow with concluding discussion and suggestions for
further work.

2. Concepts of missing data techniques

Missing values introduce complexities to data analysis. The
assumptions one makes about the missingness mechanism and
the missing data pattern of missing values can affect missing data
dealing with methods.

2.1. Missingness mechanisms

Missingness mechanisms are assumptions about the nature and
types of missing data. Little and Rubin (2002) defined three types
of missing data mechanisms: missing completely at random
(MCAR), missing at random (MAR), and non-ignorable (NI).

In general, a missingness mechanism concerns whether the
missingness is related to the study variables or not. This is extre-
mely significant as it determines how difficult it may be to handle
missing values and at the same time how risky it is to ignore them.

Missingness mechanisms can be described as follows (Rubin,
1976). Suppose Z is a data matrix that includes observed and
missing data, let Zobs be the set of observed values of Z, Zmis be
the set of missing values of Z, R be the missing data indicator ma-
trix, i be the ith case and j the jth feature. Then

Ri;j ¼
1 if Zi;j is missing;
0 if Zi;j is observed:

�

Missing completely at random (MCAR) indicates that the missingness
is unrelated to the values of any variables, whether missing or ob-
served. So

pðRjZÞ ¼ pðRÞ for all Z:

MCAR is an extreme condition and from an analysts point of
view, ideal. Generally you can test whether MCAR condition can
be met by showing there is no difference between the distribution
of the observed cases and the missing cases, this is Little’s (1988),
Little et al.’s (1995) multivariate test which is implemented in SY-
STAT and the SPSS missing values analysis module. Unfortunately,
this is hard when there are few cases as there can be a problem
with Type I errors.

Non-ignorable (NI) is at the opposite end of the spectrum. It
means that the missingness is non-random, it is related to the
missing values, and it is not predictable from any one variable in
the data set. That is

pðRjZÞ–pðRÞ for all Z;pðRjZÞ depends on Zmis:

NI is the worst case since, as the name implies, the problem can-
not be avoided by a deletion technique nor by imputation tech-
niques in general effective unless the analyst has some model of
the cause of missingness. This is best illustrated by an example.
Suppose software engineers are less likely to report high defect
rates than low rates, perhaps for reasons of politics. Merely to
ignore the incomplete values leads to a biased sample and an over
optimistic view of defects. On the other hand, imputation tech-
niques do not work well either since they attempt to exploit
known values and as we have already observed this is a biased
sample. Unless one has some understanding of the process and
can construct explanatory models, there is little that can effectively
be done with the NI missingness mechanism.

Missing at random (MAR) lies between these two extremes. It re-
quires that the cause of the missing data is unrelated to the missing
values, but may be related to the observed values of other vari-
ables. That is

pðRjZÞ ¼ pðRjZobsÞ for all Zmis:



Q. Song et al. / The Journal of Systems and Software 81 (2008) 2361–2370 2363
Using the same example as for NI, this would occur if smaller
projects were less likely to report defect rates than larger projects.
Most missing data methods assume MAR. Whether the MAR condi-
tion holds can be examined by a simple t-test of mean differences
between the group with complete data and that with missing data
(Kim and Curry, 1977; Tabachnick and Fidell, 2001). MAR is less
restrictive than MCAR because MCAR is a special case of MAR.
MAR and MCAR are both said to be ignorable missing data mecha-
nisms (Rubin, 1976) and is fully explained in the context of multi-
ple imputation in Rubin (1987).

In practice it is usually difficult to meet the MCAR assumption.
MAR is an assumption that is more often, but not always tenable.

2.2. Missing data patterns

The missing data indictor matrix R reveals the missing data
pattern. Generally, there are two types of missing data patterns,
they are the univariate pattern and the multivariate pattern.

In the univariate pattern, only one variable contains missing val-
ues. Table 1 is an example. In Table 1, only variable x3 contains
three missing values.

In the multivariate pattern, more than one variable contain miss-
ing data. We can refine this pattern into two types: the monotone
pattern and the arbitrary pattern.

In the monotone pattern, variables can be arranged so that for a
set of variables x1, x2, . . ., xn, if xi is missing, then so are xiþ1, . . ., xn.
Table 2 is an example.

In the arbitrary pattern, missing data can occur anywhere and no
special structure appears regardless how you arrange variables.
Table 3 is an example.

The types of missing data patterns may affect the selection of
missing data methods, because some missing data methods are
Table 1
The univariate missing pattern

x1 x2 x3 x4 x5 x6

C1 * * * * * *

C2 * * * * * *

C3 * * ? * * *

C4 * * ? * * *

C5 * * ? * * *

C6 * * * * * *

Table 2
The monotone missing pattern

x1 x2 x3 x4 x5 x6

C1 * * * * * *

C2 * * * * * ?
C3 * * * * ? ?
C4 * * * ? ? ?
C5 * * ? ? ? ?
C6 * ? ? ? ? ?

Table 3
The arbitrary missing pattern

x1 x2 x3 x4 x5 x6

C1 * * ? * * *

C2 * * * * * ?
C3 * * * * * ?
C4 ? ? * * * *

C5 * * * * * *

C6 ? * * * * *
sensitive to missing data patterns. For this reason we will examine
different patterns in our experimental analysis.

2.3. Missing data techniques

The missing data problem has been studied by researchers in
many fields for more than 30 years. There are three approaches
to this problem: missing data ignoring techniques, missing data
toleration techniques, and missing data imputation techniques.

Missing data ignoring techniques simply delete the cases that
contain missing data. Because of their simplicity, they are widely
used and tend to be the default for most statistics packages, but
this may not lead to the most efficient utilization of the data and
incurs a bias in the data unless the values are missing completely
at random. Consequently they should be used only in situations
where the level of missing values is very low.

Missing data toleration techniques are the internal missing data
treatment strategies, which perform analysis directly using the
data sets with missing values. If the objective is not to predict
the missing values, missing data toleration is a better choice. This
is because any predication of missing values will incur bias thereby
making prediction results doubtful.

Missing data imputation techniques refer to any strategy for fill-
ing in missing values of a data set so that standard methods can
then be applied to analyze the completed data set. These tech-
niques not only retain data in incomplete cases, but also impute
values of correlated variables (Little and Rubin, 1989).

Missing data imputation techniques can be classified into the
ignorable missing data imputation methods, which consist of
the single imputation methods and the multiple imputation
methods (Rubin, 1977, 1978), and the non-ignorable missing data
imputation methods which consist of the likelihood based meth-
ods (Little, 1995) and the non-likelihood based methods (Robins,
1997). A single imputation method fills in one value for each
missing value, it is more common currently than multiple impu-
tation which replaces each missing value with several plausible
values and better reflects sampling variability about the actual
values. However, multiple imputation generates more than one
data set, so how to integrate the multiple values induced still
needs to be addressed.

The k-NN (k-nearest neighbors) imputation is a hot-deck single
imputation method, it fills in missing data by taking values from
other observations in the same data set. This method searches
the k-nearest neighbors of the case with missing value(s) and re-
places the missing value(s) by the mean or mode value of the cor-
responding feature values of the k-nearest neighbors. The
advantages of the k-NN imputation are:

1. It does not require to create a predictive model for each feature
with missing data.

2. It can treat both continuous and categorical values.
3. It can easily deal with cases with multiple missing values.
4. It takes into account the correlation structure of the data.

Most notably, k-NN has no explicit missingness mechanism
assumption, this makes it practically useful. Therefore, we used
the k-NN method to impute the simulated missing values in the
data sets.
3. Feature subset selection

All features are necessary for characterizing a set of software
projects, but not all of them are necessary for predicting software
cost. Therefore, before predicting software cost, we must first
decide which feature subset is useful for the prediction task.



2364 Q. Song et al. / The Journal of Systems and Software 81 (2008) 2361–2370
Therefore, in this subsection, we introduce the feature subset
selection method used by the research.

Feature subset selection (Cheung and Eisenstein, 1978; Khotan-
zad and Kashyap, 1987; Siedelecki and Skalansky, 1988; Jain and
Zongker, 1997) (FSS) is the process of identifying and removing
as much irrelevant and redundant information as possible.

The existing FSSs fall into three categories: the wrapper, filter
and embedded methods. A wrapper method uses a predetermined
selection algorithm to search for feature subsets, and employs a
induction algorithm to evaluate them iteratively and make the fi-
nal decision. The same induction algorithm will be used to induce
the final target concept. This type of method can obtain high induc-
tion accuracy but inherits the limitations of the induction algo-
rithm and is highly expensive in terms of the computational cost.
A filter method filters the irrelevant features before applying an
induction algorithm, it is much faster than wrappers and hence
can be applied to large data sets with many features. But there is
a danger that features selected by this method cannot allow an
induction algorithm to reach its maximum accuracy.

By contrast, an embedded method does the feature selection in-
side the induction algorithm itself. C4.5 is an example. At the same
time, sometimes C4.5 is also used as a filter method. Cardie (1993)
used a decision tree to select feature subset for a nearest neighbor
algorithm for a natural language processing task, the features that
did not appear in the resulting tree were removed. The results
show clearly that the quality of the subset generated by a decision
tree helped the nearest neighbor algorithm to reduce its prediction
error. Kubat et al. (1993) used C4.5 filtering features for use with a
naı̈ve Bayesian classifier and obtained a similar result. But Kibler
and Aha (1987) reported more mixed results on two medical clas-
sification tasks.

John et al. (1994) advocated the wrapper model as a means of
identifying useful feature subsets and used C4.5 as the induction
engine. They tested both forward stepwise selection and backward
stepwise elimination on several data sets. Their results show the
improvement of prediction accuracy of C4.5 is not significant,
which seems to be in line with Holte’s (1993) claims. But Kohavi
and John (1997) found it is hard to use C4.5 to obtain the optimal
feature subset and that forward selection search can improve the
accuracy of C4.5. John (1997) showed that a single irrelevant fea-
ture to the credit-approval or diabetes data sets reduced the pre-
diction accuracy of C4.5 by 5%.

To summarize, the results of using C4.5 either as a feature sub-
set selection method or as an induction engine with other feature
subset selection method can be mixed. However, Yu and Liu’s fast
correlation-based filter (FCBF) (Yu and Liu, 2003) method can im-
prove the accuracy of C4.5 (Yu and Liu, 2003). So we decided using
FCBF to select the feature subset for software cost prediction via
C4.5.

Unfortunately, although FCBF works well with discrete and
nominal features, it cannot tackle continuous features. So before
applying FCBF, we first used the Chi2 discretization algorithm
(Tay and Shen, 2002) converting continuous values into discrete
values.
4. Predicting cost using C4.5 with incomplete data

C4.5 is an enhancement of the ID3 algorithm (Quinlan, 1986)
that accounts for missing values, continuous feature values,
pruning of decision trees, rule derivation, and so on. It builds
decision trees top-down and prunes them. A tree is constructed
by finding the highest information gain feature test to conduct at
the root node of the tree. After the test is chosen, the cases are
split according to the test, and the subproblems are solved
recursively.
Suppose there are nc classes in a given data set X, and
si ði ¼ 1;2; . . . ;ncÞ is the number of cases of in class
Ci ði ¼ 1;2; . . . ;ncÞ. The expected information needed to classify X

is defined as

Iðs1; s1; . . . ; sncÞ ¼ �
Xnc

i¼1

si

n
log2

si

n
; ð1Þ

where n is the total number of cases in data set X. Note that a log
function to the base 2 is used since the information is encoded in
bits.

Let a feature f of X has v distinct values, fa1; a2; . . . ; avg. Feature f
can be used to partition X into v subsets, fX1;X2; . . . ;Xvg, where
Xj ðj ¼ 1;2; . . . ; vÞ contains those cases in X that have value
aj ðj ¼ 1;2; . . . ; vÞ of f. Suppose si;j is the number of cases of class
Ci in a subset Xj, the expected information needed to classify cases
into subsets by feature f, also referred to as Entropy, is defined as

Eðf Þ ¼
Xv

j¼1

s1;j þ s2;j þ � � � þ snc ;j

n
Iðs1;j; s2;j; . . . ; snc ;jÞ; ð2Þ

Where, for a given subset Xj,

Iðs1;j; s2;j; . . . ; snc ;jÞ ¼ �
Xnc

i¼1

si;j

sj
log2

si;j

sj
: ð3Þ

The information Gain of feature f is:

Gainðf Þ ¼ Iðs1; s2; . . . ; snc Þ � Eðf Þ: ð4Þ

One limitation of Gain is that it tends to favor features with a
large number of values that split the data into many small subsets.
To compensate for this, Quinlan suggested using Gain Ratio instead
of Gain. Gain Ratio is defined as

Gain Ratioðf Þ ¼ Gainðf Þ
SplitInfoðf Þ ; ð5Þ

where SplitInfoðf Þ is the information due to the split of X on the ba-
sis of the values of f, it indicates the outcome of the test rather than
the class to which the case belongs. Thus

SplitInfoðf Þ ¼ IðjX1j; jX2j; . . . ; jXvjÞ: ð6Þ

Sometimes the split is non-trivial and the split information
SplitInfoðf Þ will be small and this ratio will be unstable. To avoid
this, the Gain Ratio criterion selects a test to maximize the ratio
above, subject to constraint that the information gain must be
greater than the average gain over all tests examined.

C4.5 deals with missing data with no assumption about the
missing data mechanism. It uses a probabilistic approach to handle
missing values, this approach consists of the following two steps.

The first step is the penalizing of Gain Ratios. Suppose in class Ci

of subset Xj, sm
i;j is the number of the cases whose feature f contains

missing values. Let d ¼
Pnc

i¼1

Pv
j¼1

si;j�sm
i;j

si;j
, the Gain is redefined as

Gainmðf Þ ¼ d� ðIðs1; s2; . . . ; snc Þ � Eðf ÞÞ: ð7Þ

Suppose a subset of Xj is Xm
j which consists of cases whose val-

ues of f were missing, SplitInfo is redefined as

SplitInfomðf Þ ¼ IðjX1 �Xm
1 j; jX2 �Xm

2 j; . . . ; jXv �Xm
v jÞ

þ IðjXm
1 j; jXm

2 j; . . . ; jXm
v jÞ: ð8Þ

Therefore,

Gain Ratiomðf Þ ¼
Gainmðf Þ

SplitInfomðf Þ
: ð9Þ

The second step is the fractioning of cases. This step assigns a
probability to each of the possible values fa1; a2; . . . ; avg of f. These
probabilities can be estimated based on the observed frequencies
of the various values for feature f among the cases at a given node.



Q. Song et al. / The Journal of Systems and Software 81 (2008) 2361–2370 2365
For example, suppose f ¼ fa; bg is a two-value feature, if a node
contains seven known cases with f ¼ a and 3 with f ¼ b, then the
probability that f ð?Þ ¼ a1 is 0.7, and the probability that f ð?Þ ¼ b is
0.3. A fractional 0.7 of ‘?’ is now distributed down the branch for
f ¼ a and a fractional 0.3 of ‘?’ down the other tree branch. These
fractional cases are used for the purpose of computing information
gain and can be further subdivided at subsequent branches of the
tree if a second missing feature value must be tested. This same frac-
tioning of cases can also be applied to classify new cases whose fea-
ture values were missing. In this case, the classification of the new
cases is simply the most probable classification, computed by sum-
ming the weights of the case fragments classified in different ways
at the leaf nodes of the tree.

Once the decision tree is obtained from the incomplete data, it
is ready for us to predict software cost with it. However, when
using the decision tree to predict software cost, we can not only as-
sign a specific value for each missing data item, but also can desig-
nate a series of possible values and the corresponding probabilities
for a categorical feature and an interval for a continuous feature. It
seems to be one of the best amongst simple methods to treat miss-
ing values (Grzymala-Busse and Hu, 2000).

5. Experiments and results

5.1. Experimental method

5.1.1. General method
The objective of this study is to investigate the predictive per-

formance of C4.5, which is a common machine learning technique
that can tolerate missing values, after using the k-NN missing data
imputation technique to see if it is better to tolerate missing data
or to try to impute missing values and then apply the C4.5 algo-
rithm in the context of software cost prediction.

For this purpose, first we preprocessed the six real world data
sets (see Section 5.2 for details) and obtained the corresponding
six complete data sets. Then, for each of the six complete data sets,
the TwoStep clustering method (Austin and Belbin, 1982) with a
log-likelihood distance measure was used to classify effort into
clusters, and Yu and Liu’s feature subset selection method FCBF
(Yu and Liu, 2003) was used to choose key features for the software
development effort prediction purpose, we obtained the six re-
duced data sets. After that, for each of the six reduced data sets,
we systematically extracted 5 pairs of the training and test data
sets (see Section 5.1.2 for details) and obtained a total of 30-pair
training-test data sets. By simulating various missing data situa-
tions (see Section 5.1.3 for details ) from the missingness mecha-
nism, the missing data pattern, and the missing data percentage
for the 30-pair training-test data sets, we obtained thousands of
the incomplete training and test data sets. At the same time, by
imputing these incomplete data sets with the k-NN method2 we
obtained the same amount of the imputed complete training and
test data sets as the corresponding incomplete training and test data
sets. Finally we ran C4.5 with three types of data sets: the complete,
imputed complete, and incomplete data sets and obtained the corre-
sponding prediction accuracies and summarized the results. Fig. 1
contains the details of the general research method.

5.1.2. Validation approach
Cross-validation is a method for estimating generalization error

based on ‘‘resampling” (Shao and Tu, 1995). We used the 5-fold
cross-validation strategy as the validation approach. In 5-fold
1 f ð?Þ means a missing value of feature f among cases at a given node.
2 In the experiment, for the k-NN method, we used the two nearest cases (k = 2)

since Kadoda et al. (2001) suggested this to perform consistently better than higher
values of k for this particular problem domain.
cross-validation, the data set D is randomly split into 5 mutually
exclusive subsets D1,D2, . . ., D5 of equal size, and [5

i¼1Di ¼ D. The
inducer is trained and tested five times. Each time
t 2 f1;2; . . . ;5g, it is trained on D�Dt

3 which is referred to as a
training set and tested on Dt which is referred to as a test set.

As filling in missing data is not the final objective which is using
imputed complete data to do other things, for example, predicting
software effort. Moreover, it has been proven that even a better
estimate for each missing value not necessary leads to a better
overall estimate for the parameters of interest (Selby and Porter,
1988). So using the results of a machine learning method to eval-
uate the missing data techniques is more practically useful and
at least Tabachnick and Fidell (2001), Pickard et al. (2001) and Ba-
tista and Monard (2003) have used this method. Here, we used the
prediction accuracy as a measure to evaluate the k-NN based
imputation method and the C4.5 classifier with the complete,
incomplete, and imputed complete data sets. The accuracy mea-
sure is defined as follows:

Accuracy ¼ nc

n
� 100%;

where nc is the number of cases whose class labels being correctly
predicted and n is the total number of cases in a test set.

5.1.3. Missing data simulation approach
For the purpose of completely assessing the impacts of the

missingness mechanism, the missing data pattern, and the missing
data percentage on the performance of the missing data toleration
technique of C4.5 and the k-NN missing data imputation technique
in the context of software cost prediction, the simulation approach
which was used for simulating various missing data situations was
used.

When inducing missing values from both the complete training
and test data sets, the missingness mechanism, the missing data
pattern, the missing data percentage, and the number of features
with missing data are the four parameters considered.

All the three missingness mechanisms MCAR, MAR, and NI were
simulated.

1. The implementation of the MCAR mechanism is to induce miss-
ing values for the desired feature or features completely at
random.

2. The implementation of the MAR mechanism is based on the size
of the project. The bigger the project, the greater the probability
of missing data. Specifically, first we order the cases according
to project size. Then we divide the data set into 4 subsets with
different percentages of missing data. The missing data percent-
age is proportion to the mean of project size of each subset. That
is, for the ith subset, the missing data percentage is

MiP4

j¼1
Mj

� p%� n, where Mi is the mean of project size of the

ith subset, p% is the given missing data percentage which is
the amount of missing data we want to missing in a given data
set under the given missingness mechanism and the given
missing data pattern, and n is the number of data items.

3. The implementation of the NI mechanism is very similar to
MAR. The only difference is the missing values were induced
on the given particular features in question and only depend
on the particular features themselves. Both the greater and
smaller values (or the values with the greater and smaller fre-
quency) have a higher likelihood of missingness.

Three missingness patterns were simulated, they are the 1-N
pattern – one nominal feature with missing values, the 1-C pattern
3 The notation D�Dt means set D minus set Dt .



Fig. 1. The research method.

2366 Q. Song et al. / The Journal of Systems and Software 81 (2008) 2361–2370
– one continuous feature with missing values, and the Arbitrary
pattern – arbitrary features with missing values. For each of the
three missing data patterns, the missing values were induced
based on the given missingness mechanisms and the given missing
data percentages. Moreover, for each of the three missingness pat-
terns, missing values were induced for every feature. However, for
the 1-N pattern and the 1-C pattern, every time only one feature
contained missing values (but each feature has the chance to con-
tain missing values) while all features contained missing values for
the Arbitrary pattern.

Five missing data percentages, 10%, 20%, 30%, 40%, and 50%
were simulated, although the data sets with more than 40% miss-
ing data percentage are not useful for detailed analysis (Strike et
al., 2001).

5.2. Data sources

In this section we provide some background on the six data sets
used in our study. These are chosen to represent varying sizes of
data set that are commonly encountered in the project prediction
domain. We selected two small sized, two medium sized and
two large sized software project data sets for the analysis. These
are chosen to represent a diverse range of software developers
and a mixture of continuous, discrete and categorical features as
well. The chosen enables us to generalize conclusions to other
cases in the software project prediction domain.

5.2.1. Finnsh data set
Finnish is a large data set collected by the benchmarking orga-

nization STTF Ltd. This data is collected over a number of years
from more than 30 different companies and more than 600 pro-
jects from insurance, banking, manufacturing, communications, re-
tail and government sectors. The features are a mixture of
continuous, discrete and categorical. However, there are a number
of missing data values and also some features that would not be
known at prediction time and so are not included in our analysis.
Removing features with missing values or after-the-event data,
leaves a subset of 42 features that are actually used in the study.
The data set also exhibits significant multi-collinearity, in other
words there are strong relationships between features as well as
with effort.

5.2.2. ISBSG data set
ISBSG is an international organization, based on the national

software metrics associations from several countries. ISBSG be-
lieves that they are representative of better software projects
worldwide. Presently ISBSG Data Repository contains data on
approximately 1238 projects with 55 features from insurance, gov-
ernment, banking, business services, manufacturing, communica-
tions, and utilities organizations of 20 countries. The projects
cover a wide range of applications, development techniques and
tools, implementation languages, and platforms. The features are
a mixture of continuous, discrete and categorical as well.

5.2.3. Desharnais data set
Desharnais is a medium sized data set collected by a Canadia

software house from projects distributed amongst 11 different
organizations. This data set is publicly available, it contains 81
cases of which 77 are complete and combines both continuous
and categorical features (8 continuous or discrete and 1 categori-
cal). This data set exhibits properties that are representative of
other data sets of software projects with respect to (non-)linearity
and heteroscedasticity.

5.2.4. COCOMO81 data set
COCOMO81 is the data set that was used by Boehm (1984) to

build the COCOMO model and also was used by Briand et al.
(1992), Srinivasan and Fisher (1995) and Samson et al. (1997) to
compare different effort prediction methods. It contains 63 pro-
jects and 40 features (23 continuous and 17 categorical).

5.2.5. BT data set
BT is a small data set derived from one division of a large tele-

communication company. This is representative of many organiza-



Fig. 3. Accuracy of C4.5 with the incomplete and imputed complete data sets under
the three missingness mechanisms.

Q. Song et al. / The Journal of Systems and Software 81 (2008) 2361–2370 2367
tions that embark upon an internal data collection program to sup-
port their effort prediction activities. The data is relatively homo-
geneous, comprises 17 projects and 11 features (10 continuous
and 1 categorical).

5.2.6. Albrecht data set
The Albrecht data set actually is the IBM DP Services data but

was first used by Albrecht and Gaffney (1983) and was also used
by Shepperd and Schofield (1997) to validate software size and ef-
fort estimation methods. The data comprises 23 projects and 8 fea-
tures (7 continuous and 1 categorical ).

5.3. Results

In this subsection, we present the experimental results for the
six complete data sets and both the corresponding incomplete
and imputed complete data sets with different missing data per-
centages and different missing patterns under all the three miss-
ingness mechanisms MCAR, MAR and NI for the C4.5 method. For
each missing data percentage of each missing pattern under a spe-
cific missingness mechanism, we used the mean accuracy of five
data replications. Then we summarized the results from the four
aspects of the data set type, the missingness mechanism, the miss-
ing data pattern, and the missing data percentage (see Figs. 2–5 for
details.)

Fig. 2 contains the accuracy of C4.5 with the six complete data
sets and the corresponding incomplete and imputed complete data
sets. From it we observe that, for each of the six data sets and its
variations, the accuracy of C4.5 with the imputed complete data
set is between with the complete data set and the incomplete data
set; averagely, the accuracy has been improved by 6 percent. This
means the k-NN imputation improves the performance of C4.5’s
missing data toleration technique, further improves the prediction
accuracy of C4.5.

Fig. 3 contains the accuracy of C4.5 with the incomplete and im-
puted complete data sets under all the three missingness mecha-
nisms MCAR, MAR, and NI. From it we observe that: (1) the
accuracy of C4.5 with the incomplete data sets decreases as the
missingness mechanism changes from MCAR through MAR to NI.
This means that the missingness mechanism negatively affects
the performance of C4.5’s missing data toleration technique and
further the accuracy of C4.5, and the NI missingness mechanism
has a little stronger negative impact on prediction (or imputation)
accuracy than the other two missingness mechanisms. (2) The
accuracy of C4.5 with the imputed complete data sets also de-
Fig. 2. Accuracy of C4.5 with the incomplete, imputed complete, and complete data
sets.

Fig. 4. Accuracy of C4.5 with the incomplete and imputed complete data sets under
the three missing data patterns.
creases as the missingness mechanism changes from MCAR
through MAR to NI. This means that the missingness mechanism
negatively affects the imputation accuracy of k-NN, and the NI
missingness mechanism has a little stronger negative impact than
the other two missingness mechanisms. (3) For each pair of the
incomplete and imputed complete data sets under each missing-
ness mechanism, the accuracy of C4.5 with the imputed complete
data set is higher than that of with the incomplete data set. This



Fig. 5. Accuracy of C4.5 with the incomplete and imputed complete data sets under
the five missing data percentages.

Table 4
Mann–Whitney test of the prediction accuracy differences between the imputed
complete data sets and the incomplete data sets regardless of whatever the
missingness mechanism, the missing data pattern, and the missing data percentage
are

Data set p-Value

Finnsh 0.0042
ISBSG 0.0025
Desharnais 0.0157
COCOMO81 0.0003
BT 0.0235

2368 Q. Song et al. / The Journal of Systems and Software 81 (2008) 2361–2370
means that for all the three missingness mechanisms, the k-NN
imputation improves the performance of C4.5’s missing data toler-
ation technique, further improves the prediction accuracy of C4.5.

Fig. 4 contains the accuracy of C4.5 with the incomplete and im-
puted complete data sets under all the three missing data patterns
1-N, 1-C and Arbitrary. From it we observe that: (1) the accuracy of
C4.5 with the incomplete data sets decreases strongly as the miss-
ing data pattern changes from 1-N through 1-C to Arbitrary. This
means the missing data pattern negatively affects the performance
of C4.5’s missing data toleration technique and further the accu-
racy of C4.5; and the impacts of these three patterns are quite dif-
ferent, the Arbitrary missing data pattern has a stronger negative
impact on prediction (or imputation) accuracy than the other
two missing data patterns. (2) The accuracy of C4.5 with the im-
puted complete data sets also decreases strongly as the missing
data pattern changes from 1-N through 1-C to Arbitrary. This
means the missing data pattern negatively affects the imputation
accuracy of k-NN; and the impacts of these three patterns are quite
different, the Arbitrary missing data pattern has a stronger nega-
tive impact on prediction accuracy than the other two missing data
patterns. (3) For each pair of the incomplete and imputed complete
data sets under each missingness pattern, the accuracy of C4.5 with
the imputed complete data sets is higher than that of with the
incomplete data sets. This means that for all the three missingness
patterns, the k-NN imputation improves the performance of C4.5’s
missing data toleration technique, further improves prediction
accuracy of C4.5, although the improvement for the 1-C and Arbi-
trary patterns are greater than for the 1-N pattern.

Fig. 5 contains the accuracy of C4.5 with the incomplete and im-
puted complete data sets under all the five missing data percent-
ages 10%, 20%, 30%, 40%, and 50%. From it we observe that: (1)
the accuracy of C4.5 with the incomplete data sets decreases as
the missing data percentage increases. This means the missing data
percentage negatively affects the performance of C4.5’s missing
data toleration technique and further the accuracy of C4.5; the big-
ger the missing data percentage, the less the prediction (or impu-
tation) accuracy. More importantly, if the missing data percentage
exceeds 40%, the accuracy will decrease greatly. (2) The accuracy of
C4.5 with the imputed complete data sets also decreases as the
missing data percentage increases. This means the missing data
percentage negatively affects the imputation accuracy of k-NN;
the bigger the missing data percentage, the less the imputation
accuracy. More importantly, if the missing data percentage exceeds
40%, the imputation accuracy will decrease greatly. (3) For each
pair of the incomplete and imputed complete data sets under each
missing data percentage, the accuracy of C4.5 with the imputed
complete data sets is higher than that of with the incomplete data
sets. This means that for all the five missing data patterns, the k-
NN imputation can always the performance of C4.5’s missing data
toleration technique and further the prediction accuracy of C4.5,
but the improvement decreases as the missing data percentage
increases.

For the purpose of more formally determining whether the
accuracy improvements of the imputation are statistical significant
compared with the missing data toleration technique of C4.5., we
used a Mann–Whitney test, which is a non-parametric test that
does not assume a Gaussian distribution, to compare the sample
medians of the accuracies between the incomplete data sets and
the imputed complete data sets. For all the tests, the null hypoth-
eses are that there is no difference with (a ¼ 0:05).

In the Mann–Whitney test, for each of the six data sets, we sup-
pose that the accuracy of C4.5 with the imputed complete data sets
is greater than with the incomplete data sets regardless of what-
ever the missingness mechanism, the missing data pattern, and
the missing data percentage are. Table 4 contains the correspond-
ing test results. From it we observe that all the alternate hypothe-
ses are accepted. This reveals that the improvements of imputation
on prediction accuracy are statistical significant.

To summarize, from the results we observe that the k-NN impu-
tation method can improve the performance of C4.5’s missing data
toleration technique and further the prediction accuracy of C4.5,
regardless of whatever the missingness mechanism, the missing
data pattern, and the missing data percentage are. More impor-
tantly, the improvements are statistical significant. At the same
time, the missingness mechanism, the missing data pattern, and
the missing data percentage negatively affect the prediction accu-
racy of C4.5 and imputation accuracy of k-NN; within each of these
factors, the individual impact varies. On the other hand, for both
C4.5 and k-NN, there was a big accuracy drop if the missing data
percentage exceeds 40%.

6. Conclusions

In this study we have compared the impacts of the missing data
toleration technique of C4.5 with the k-NN missing data imputa-
tion method on the prediction accuracy of C4.5 in the context of
software cost prediction. This is further to help determine whether
the k-NN imputation method can improve the performance of C4.5
when predicting with incomplete data.



Q. Song et al. / The Journal of Systems and Software 81 (2008) 2361–2370 2369
First we induced the incomplete data sets from the six complete
data sets for each combination of the missing data percentage, the
missing data pattern and the missingness mechanism, and ob-
tained thousands of incomplete training and test data sets. For
the purpose of comparing the missing data toleration technique
of C.45 with the k-NN imputation technique, we used the latter
imputing these incomplete data sets and obtained the correspond-
ing imputed complete training and test data sets. After that we as-
sessed C4.5 with the incomplete data sets and the imputed
completed data sets. We found that: (1) the k-NN imputation can
improve the prediction accuracy of C4.5 and the improvements
are statistical significant; (2) both C4.5 and k-NN can be affected
by the missingness mechanism, the missing data pattern and the
missing data percentage.

Acknowledgments

This work was supported by the National Natural Science Foun-
dation of China under Grants 60673124 and 90718024, the Hi-Tech
Research & Development Program of China under Grant
2006AA01Z183, and the Program for New Century Excellent Tal-
ents in University under Grant NCET-07-0674. The authors would
like to thank the anonymous reviewers for their helpful comments.

References

Albrecht, A., Gaffney, J., 1983. Software function, source lines of code, and
development effort prediction. IEEE Transactions on Software Engineering 9
(6), 639–648.

Angelis, L., Stamelos, I., Morisio, M., 2001. Building a software cost estimation model
based on categorical data. In: Proceedings of the Seventh International Software
Metrics Symposium (METRICS 2001), pp. 4–15.

Austin, M., Belbin, L., 1982. A new approach to the species classification problem in
floristic analysis. Australian Journal of Ecology 7, 75–89.

Baird, B., 1989. Managerial Decisions Under Uncertainty. John Wiley & Sons.
Batista, G.A., Monard, M.C., 2003. An analysis of four missing data treatment

methods for learning. Applied Artificial Intelligence 17 (5–6), 519–533.
Boehm, B., 1981. Software Engineering Economics. Prentice-Hall, Englewood Cliffs,

NJ.
Boehm, B.W., 1984. Software engineering economics. IEEE Transactions on Software

Engineering 10 (1), 4–21.
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1984. Classification and

Regression Trees. Wadsworth International Group, Belmont, CA.
Briand, L., 1993. Quantitative empirical modeling for managing software

development: constraints, needs and solutions. In: Rombach, H.D., Basili, V.,
Selby, R. (Eds.), Experimental Software Engineering Issues: Critical Assessment
and Future Directions. Springer-Verlag.

Briand, L.C., Wust, J., 2001. Modeling development cost in object-oriented systems
using design properties. IEEE Transactions on Software Engineering 27 (11),
963–986.

Briand, L.C., Basili, V., Thomas, W., 1992. A pattern recognition approach for
software engineering data analysis. IEEE Transactions on Software Engineering
18 (11), 931–942.

Briand, L.C., El Emam, K., Surmann, D. Wieczorek, I., Maxwell, K.D., 1999. An
assessment and comparison of common software cost estimation modeling
techniques. In: Proceedings of the 21st International Conference on Software
Engineering, pp. 313–323.

Briand, L., El Emam, K., Wieczorek, I., 1999. Explaining the cost of european space
and military projects. In: Proceedings of the International Conference on
Software Engineering, pp. 303–312.

Briand, L., Langley, T., Wieczorek, I., 2000. A replicated assessment and comparison
of common software cost modeling techniques. In: Proceedings of the 22nd
International Conference on Software Engineering, pp. 377–386.

Brockmeier, L.L., Kromrey, J.D., Hines, C.V., 1998. Systematically missing data and
multiple regression analysis: an empirical comparison of deletion and
imputation techniques. Multiple Linear Regression Viewpoints 25, 20–39.

Cardie, C., 1993. Using decision trees to improve case-based learning. In:
Proceedings of the Tenth International Conference on Machine Learning,
Amherst, MA, pp. 25–32.

Cartwright, M., Shepperd, M., Song, Q., 2003. Dealing with missing software project
data. In: Proceedings of the Ninth IEEE International Software Metrics
Symposium. IEEE Computer Society, Sydney, Australia.

Cheung, R., Eisenstein, B., 1978. Feature selection via dynamic programming for
text-independent speaker identification. IEEE Transactions on Acoustics, Speech
and Signal Processing ASSP-26 (5), 397–403.

Clark, P., Niblett, T., 1989. The CN2 induction algorithm. Machine Learning 3 (4),
261–283.
Feelders, A.J., 1999. Handling missing data in trees: surrogate splits or statistical
imputation? In: Proceedings of the Third European conference on principles and
practice of knowledge discovery in data bases (PKDD99). Springer, pp. 329–334.

Finnie, G., Wittig, G., 1997. A comparison of software effort estimation techniques:
using function points with neural networks, case-based reasoning and
regression models. Journal of Systems and Software 39, 281–289.

Gama, J., Brazdil, P., 1999. Linear tree. Intelligent Data Analysis 3 (1), 1–29.
Gray, A., MacDonnell, D., 1997. A comparison of techniques for developing

predictive models of software metrics. Information and Software Technology
39, 425–437.

Grzymala-Busse, J.W., Hu, M., 2000. A comparison of several approaches to missing
attribute values in data mining. In: Proceedings of the Second International
Conference on Rough Sets and Current Trends in Computing RSCTC’2000,
October 16–19, 2000, Banff, Canada, pp. 340–347.

Holte, R.C., 1993. Very simple classification rules perform well on most commonly
used datasets. Machine Learning 11 (1), 63–90.

Jain, A., Zongker, D., 1997. Feature selection: evaluation, application and small
sample performance. IEEE Transactions on Pattern Analysis and Machine
Intelligence 19 (2), 153–158.

Jeffery, R., Ruhe, M., Wieczorek, I., 2001. Using public domain metrics to estimate
software development effort. Proceedings of the Seventh International Software
Metrics Symposium (METRICS 2001), 16–27.

Jensen, R., 1983. An improved macrolevel software development resource
estimation model. In: Proceedings of the Fifth ISPA Conference, pp. 88–92.

John, H.G., 1997. Enhancements to the Data Mining Process. PhD Thesis, Computer
Science Department, School of Engineering, Stanford University, March 1997.

John, G., Kohavi, R., Pfleger, K., 1994. Irrelevant features and the subset selection
problem. In: Cohen, W.W., Hirsh, H. (Eds.), Proceedings of the 11th International
Conference on Machine Learning, San Fransisco, CA, pp. 121–129.

Jönsson, P., Wohlin, C., 2004. An Evaluation of k-Nearest Neighbour Imputation
Using Likert Data. In: Proc. 10th IEEE International Software Metrics
Symposium. IEEE Computer Society, Los Alamitos, California, USA, pp. 108–118.

Kadoda, G., Cartwright, M., Shepperd, M.J., 2001. Issues on the effective use of CBR
technology for software project prediction. In: Proceedings of the Fourth
International Conference on Case Based Reasoning, Vancouver.

Kemerer, C.F., 1987. An empirical validation of software cost estimation models.
Communications of the ACM 30, 416–429.

Khotanzad, A., Kashyap, R., 1987. Feature selection for texture recognition based on
image synthesis. IEEE Transactions on Systems, Man, and Cybernetics 17, 1087–
1095.

Kibler, D., Aha, D.W., 1987. Learning representative exemplars of concepts: An
initial case study. In: Proceedings of the Fourth International Workshop on
Machine Learning. Morgan Kaufmann, Irvine, CA, pp. 24–30.

Kim, J.-O., Curry, J., 1977. The treatment of missing data in multivariate analysis.
Sociological Methods and Research 6 (2), 215–240.

Kitchenham, B.A., 1992. Empirical studies of assumptions that underlie software
cost estimation models. Information and Software Technology 34, 211–218.

Kohavi, R., John, G., 1997. Wrappers for feature subset selection. Artificial
Intelligence Journal, 273–324.

Kubat, M., Flotzinger, D., Pfurtscheller, G., 1993. Discovering patterns in EEG-
signals: comparative study of a few methods. In: Proceedings of the European
Conference on Machine Learning ECML’93, Vienna, 3–7 April, pp. 366–371.

Little, R.J.A., 1988. A test of missing completely at random for multivariate data with
missing values. Journal of The American Statistical Association 83 (404), 1198–
1202.

Little, R.J.A., 1995. Modeling the drop-out mechanism in repeated-measures studies.
Journal of the American Statistical Association 90, 1112–1121.

Little, R.J.A., Rubin, D.B., 1989. Analysis of social science data with missing values.
Sociological Methods and Research 18, 292–326.

Little, R.J.A., Rubin, D.B., 2002. Statistical Analysis with Missing Data. John Wiley &
Sons, New York.

Little, R.C., Roderick, J.A., Schenker, N., 1995. Missing data. In: Arminger, G., Clogg,
C., Sobel, M. (Eds.), Handbook of Statistical Modeling for the Social and
Behavioral Sciences. Plenum, New York, pp. 39–75.

Miranda, E., 2001. Improving subjective estimates using paired comparisons. IEEE
Software 18 (1), 87–91.

Myrtveit, I., Stensrud, E., Olsson, U.H., 2001. Analyzing data sets with missing data:
an empirical evaluation of imputation methods and likelihood-based methods.
IEEE Transactions on Software Engineering 27 (11), 999–1013.

Pickard, L., Kitchenham, B., Linkman, S.J., 2001. Using simulated data sets to
compare data analysis techniques used for software cost modeling. IEE
Proceedings of the International Conference on Software 148 (6), 165–174.

Putnam, L.H., 1982. The real economics of software development. In: Goldberg, R.,
Lorin, H. (Eds.), The Economics of Information Processing. Wiley, New York.

Quinlan, J.R., 1986. Induction of decision trees. Machine Learning 1, 81–106.
Quinlan, J.R., 1993. C4.5 Programs for Machine Learning, Morgan Kaufmann, CA.
Robins, J.M., 1997. Non-response models for the analysis of non-monotone non-

ignorable missing data. Statistics in Medicine 16, 21–38.
Rubin, D.B., 1976. Inference and missing data. Biometrika 63, 581–592.
Rubin, D.B., 1977. The design of a general and flexible system for handling

nonresponse in sample surveys. Report prepared for the U.S. Social Security
Administration.

Rubin, D.B., 1978. Multiple imputations in sample surveys – a phenomenological
Bayesian approach to nonresponse. Proceedings of the Survey Research
Methods Section of the American Statistical Association, 20–34.



2370 Q. Song et al. / The Journal of Systems and Software 81 (2008) 2361–2370
Rubin, D.B., 1987. Multiple Imputation for Nonresponses in Surveys. John Wiley &
Sons, New York.

Rubin, D.B., 1996. Multiple imputation after 18+ years (with discussion). Journal of
the American Statistical Association 91, 473–489.

Samson, B., Ellison, D., Dugard, P., 1997. Software coast estimation using an Albus
Perceptron (CMAC). Information and Software Technology 39 (1/2).

Selby, R.W., Porter, A.A., 1988. Learning from examples: generation and evaluation
of decision trees for software resource analysis. IEEE Transactions on Software
Engineering 14 (12), 1743–1757.

Shao, J., Tu, D., 1995. The Jackknife and Bootstrap. Springer-Verlag, New York.
Shepperd, M., Cartwright, M., 2001. Predicting with sparse data. IEEE Transactions

on Software Engineering 27 (11), 987–998.
Shepperd, M., Schofield, C., 1997. Estimating software project effort using analogies.

IEEE Transactions on Software Engineering 23 (12), 736–743.
Siedelecki, W., Skalansky, J., 1988. On automatic feature selection. International

Journal of Pattern Recognition and Artificial Intelligence 2 (2), 197–220.
Song, Q., Shepperd, M., 2007. A new method for imputing small software project

data sets. Journal of Systems and Software 80 (1), 51–62.
Song, Q., Shepperd, M., Cartwright, M., 2005. A short note on safest default

missingness mechanism assumptions. Empirical Software Engineering: An
International Journal 10 (2), 235–243.

Srinivasan, K., Fisher, D., 1995. Machine learning approaches to estimating software
development effort. IEEE Transactions on Software Engineering 21 (2), 126–137.

Strike, K., El Emam, K., Madhavji, N., 2001. Software cost estimation with
incomplete data. IEEE Transactions on Software Engineering 27 (10), 890–908.

Tabachnick, B.G., Fidell, L.S., 2001. Using Multivariate Statistics, 4th ed. Allyn &
Bacon, Needham Heights, MA.

Tay, F., Shen, L., 2002. A modified chi-squared algorithm for discretization. IEEE
Transactions on Knowledge and Data Engineering 14 (3), 666–670.

Tian, J., Porter, A., Zelkowitz, M. V., 1992. An improved classification tree analysis of
high cost modules based upon an axiomatic definition of complexity. In:
Proceedings of the Third International Symposium on Software Reliability
Engineering, pp. 164–172.
Walkerden, F., Jeffery, R., 1997. Software cost estimation: a review of models,
process, and practice. Advances in Computers 44, 59–125.

Walston, C., Felix, C., 1977. A method of programming measurement and
estimation. IBM Systems Journal 1, 54–73.

Yu, L., Liu, H., 2003. Feature selection for high-dimensional data: a fast correlation-
based filter solution. In: Proceedings of the Twentieth International Conference
on Machine Leaning (ICML-03), Washington, DC, August 21–24, pp. 856–863.

Qinbao Song received a PhD in computer science from the Xi’an Jiaotong Univer-
sity, Xi’an, China in 2001. He is a professor of software technology in the depart-
ment of computer science and technology at Xi’an Jiaotong University, Xi’an, China.
He has published more than 70 referred papers in the area of data mining, machine
learning, and software engineering. He is a Board Member of the Open Software
Engineering Journal. His research interests include intelligent computing, machine
learning for software engineering, and trustworthy software.

Martin Shepperd received a PhD in computer science from the Open University in
1991 for his work in measurement theory and its application to software engi-
neering. He is professor of software technology at Brunel University, London, UK
and director of the Brunel Software Engineering Research Centre (B-SERC). He has
published more than 90 refereed papers and three books in the area of empirical
software engineering, machine learning and statistics. He is editor-in-chief of the
journal Information & Software Technology and was Associate Editor of IEEE
Transactions on Software Engineering. He has also previously worked for a number
of years as a software developer for a major bank.

Xiangru Chen received a BSc in computer science from the Xi’an University of
Technology, Xi’an, China in 2006. He is a research student of computer science at
Xi’an Jiaotong University, Xi’an, China.

Jun Liu received a MSc in computer science from the Xi’an Jiaotong University,
Xi’an, China in 2008. She is a senior lecturer of computer science at Shaanxi Electric
Power Training Center for the Staff Members, Xi’an, China.


	Can k-NN imputation improve the performance of C4.5 with small software project data sets? A comparative evaluation
	Introduction
	Concepts of missing data techniques
	Missingness mechanisms
	Missing data patterns
	Missing data techniques

	Feature subset selection
	Predicting cost using C4.5 with incomplete data
	Experiments and results
	Experimental method
	General method
	Validation approach
	Missing data simulation approach

	Data sources
	Finnsh data set
	ISBSG data set
	Desharnais data set
	COCOMO81 data set
	BT data set
	Albrecht data set

	Results

	Conclusions
	Acknowledgments
	References


