
www.elsevier.com/locate/jss

The Journal of Systems and Software 80 (2007) 51–62
A new imputation method for small software project data sets

Qinbao Song a,*, Martin Shepperd b

a Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
b Brunel University, Uxbridge, UB8 3PH, UK

Received 17 March 2005; received in revised form 30 April 2006; accepted 3 May 2006
Available online 16 June 2006
Abstract

Effort prediction is a very important issue for software project management. Historical project data sets are frequently used to support
such prediction. But missing data are often contained in these data sets and this makes prediction more difficult. One common practice is
to ignore the cases with missing data, but this makes the originally small software project database even smaller and can further decrease
the accuracy of prediction. The alternative is missing data imputation. There are many imputation methods. Software data sets are fre-
quently characterised by their small size but unfortunately sophisticated imputation methods prefer larger data sets. For this reason we
explore using simple methods to impute missing data in small project effort data sets. We propose a class mean imputation (CMI) method
based on the k-NN hot deck imputation method (MINI) to impute both continuous and nominal missing data in small data sets. We use
an incremental approach to increase the variance of population. To evaluate MINI (and k-NN and CMI methods as benchmarks) we use
data sets with 50 cases and 100 cases sampled from a larger industrial data set with 10%, 15%, 20% and 30% missing data percentages
respectively. We also simulate Missing Completely at Random (MCAR) and Missing at Random (MAR) missingness mechanisms. The
results suggest that the MINI method outperforms both CMI and the k-NN methods. We conclude that this new imputation technique
can be used to impute missing values in small data sets.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Software effort prediction; Missing data; Data imputation; Class mean imputation; k-NN imputation
1. Introduction

Given that 75% of software projects reported overruns
(Moløkken and Jørgensen, 2003), there is considerable
demand from industry for accurate software project effort
prediction. Unfortunately, a barrier to accurate effort pre-
diction is incomplete and small (in terms of the number of
cases) software engineering data sets. Therefore, in order to
improve effort prediction, we must first carefully deal with
missing data. Although a wide range of missing data tech-
niques have been proposed, none of them specifically
focuses upon missing values in small data sets with both
nominal and continuous values. For this reason we wish
to develop an imputation method specifically to address
0164-1212/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2006.05.003

* Corresponding author. Tel.: +86 29 82668645; fax: +86 29 82668971.
E-mail addresses: qbsong@mail.xjtu.edu.cn (Q. Song), martin.shep-

perd@brunel.ac.uk (M. Shepperd).
this problem, that is so typical in software engineering data
sets.

There are three types of missing data techniques. Identi-
fying the proper missing data method from these tech-
niques for incomplete small software data sets is the
precondition of tackling missing software engineering data.
Therefore, in this section, we firstly introduce the taxon-
omy of missing data techniques, present a big picture of
missing data techniques to readers; then briefly summarize
the related work in the software engineering field; and
lastly raise the research issue of this paper.

1.1. Missing data techniques taxonomy

The missing data problem has been studied by research-
ers in many fields for more than 30 years. There are three
approaches to this problem. First, there are missing data
ignoring techniques, e.g. (Haitovsky, 1968; Roth, 1994).

mailto:qbsong@mail.xjtu.edu.cn
mailto:martin.shepperd@brunel.ac.uk
mailto:martin.shepperd@brunel.ac.uk

52 Q. Song, M. Shepperd / The Journal of Systems and Software 80 (2007) 51–62
Second, there are missing data toleration techniques
(Aggarwal and Parthasarathy, 2001; Schuurmans and
Greiner, 1997). Third, there are missing data imputation
techniques which are the emphasis of this paper, e.g.
(Friedman, 1998; Little, 1988; Schafer and Olsen, 1998;
Shirani et al., 2000; Troyanskaya et al., 2001).

The missing data ignoring techniques simply delete the
cases that contain missing data. Because of their simplicity,
they are widely used (Roth, 1994) and tend to be the
default for most statistics packages, but this may not lead
to the most efficient utilization of the data and incurs a bias
in the data unless the values are missing completely at
random. Consequently they should be used only in situa-
tions where the amount of missing values is very small.
This approach has two forms:

• Listwise deletion (LD) is also referred to as case deletion,
casewise deletion or complete case analysis. This method
omits the cases containing missing values. It is easy, fast,
does not ‘invent data’, commonly accepted and is the
default of most statistical packages. The drawback is
that its application may lead to a large loss of observa-
tions, which may result in too small data sets if the frac-
tion of missing values is high and particularly if the
original data set is itself small, as is often the situation
for software project estimation (Myrtveit et al., 2001).

• Pairwise deletion (PD) is also referred to as the available
case method. This method considers each feature sepa-
rately. For each feature, all recorded values in each
observation are considered (Strike et al., 2001) and miss-
ing data are ignored. This means that different calcula-
tions will utilise different cases and will have different
sample sizes, an undesirable effect. The advantage is that
the sample size for each individual analysis is generally
higher than with complete case analysis. It is necessary
when the overall sample size is small or the number of
cases with missing data is large.

The missing data toleration techniques use a probabilistic
approach to handle missing data. They do not predicte
missing data but assign a probability to each of the possible
values. Thus they are internal missing data treatment strat-
egies, which perform analysis directly using the data set
with missing values.

Breiman et al. (1984) proposed the CART algorithm
which may be used to address the missing data problem
in the context of a decision tree classifier. If some cases con-
tain missing values, CART uses the best surrogate split to
assign these cases to branches of a spilt on a feature where
these cases’ values were missing. C4.5 (Quinlan, 1993) is an
alternative method to CART. C4.5 uses a probabilistic
approach to handle missing data. Missing values can be
present in any variables except the class variable. This
method calculates the expected information gain by assum-
ing that the missing value is distributed according to the
observed values in the subset of the data at that node of
the tree. From amongst the simpler methods, it seems to
be one of the better techniques to deal with missing values
(Grzymala-Busse and Hu, 2000).

If the objective is not to predict the missing values, miss-
ing data toleration is a nice choice. This is because any pre-
diction of missing values will incur bias thereby making
prediction results doubtful. However, most data analysis
methods only work with a complete data set, so first we
must fill in missing values or delete the cases with missing
values, and then use the resulting data set to perform sub-
sequent analysis. In this case, toleration techniques cannot
be used. Moreover, in cases where the data set contains
large amounts of missing data, or the mechanism causing
to the missing data is non-random, imputation techniques
are likely to perform better than ignoring techniques
(Haitovsky, 1968).

The missing data imputation techniques estimate missing
values for the missing cases and insert estimates obtained
from other reported values to produce an estimated com-
plete case. The common forms are as follows:

• Mean imputation (MI) is also referred to as uncondi-
tional mean imputation. This method imputes each
missing value with the mean of reported values. It is fast,
simple, easily implemented and no observations are
excluded. The disadvantage is that it leads to underesti-
mation of the population variance. It is also a rather
naı̈ve approach.

• Regression imputation (RI) is also referred to as condi-
tional mean imputation. This method replaces each
missing value with a predicted value based on a regres-
sion model. The regression model is built using the com-
plete observations. It tends to perform better than MI,
but still underestimates variance.

• Hot-deck imputation (HDI) methods fill in missing data
by taking values from other observations in the same
data set. The choice of which value to take depends on
the observation containing the missing value. Randomly
choosing observed values from donor cases is the sim-
plest hot-deck method. The similar response pattern
imputation (SRPI) (Joreskog and Sorbom, 1993), which
identifies the most similar case without missing observa-
tions and copies the values of this case to fill in the holes
in the cases with missing data, and the k nearest neigh-
bours (k-NN) imputation (Fix and Hodges, 1952; Cart-
wright et al., 2003; Song et al., 2005; Jönsson and
Wohlin, 2004), which searches for the k most similar
cases to the missing value and replaces the missing value
by the mean or modal value of the corresponding
feature values of the k nearest neighbours all belong to
this class. This approach preserves the sample distribu-
tion by substituting different observed values for each
missing observation, but the data set must be large
enough to find appropriate donor cases.

• Multiple imputation means that the missing data are
imputed m > 1 times, with a different randomly chosen
error term added in each imputation. In this method,
each missing value is replaced by a set of m plausible

Q. Song, M. Shepperd / The Journal of Systems and Software 80 (2007) 51–62 53
values drawn from their predictive distribution. After
performing multiple imputation, there are m complete,
imputed data sets.1 Then each imputed data set can be
analyzed by complete-data methods. After performing
identical analyses, the results are combined and overall
estimates are produced (Schafer and Olsen, 1998). This
method can relieve the distortion of the sample variance,
but it needs to include all features, data must meet nor-
mal distribution assumptions, as well as computing and
storage requirements.

From previous introduction, we see that ignoring tech-
niques make small software engineering data sets even
smaller and further make software effort prediction more
difficult; while toleration techniques cannot provide com-
plete data sets for software effort prediction methods, so
only imputation techniques can be used for the purpose
of completing small and incomplete software data sets.

1.2. Related work

Dealing with missing software project data is a recent
phenomenon, and is entirely focused on the empirical eval-
uation of existing missing data processing techniques
(Strike et al., 2001; Myrtveit et al., 2001; Cartwright
et al., 2003; Song et al., 2005; Jönsson and Wohlin, 2004).

Strike et al. (2001) evaluated three different techniques
for dealing with missing data in the context of software
cost modelling. These techniques include listwise deletion,
mean imputation and eight different types of hot-deck
imputation. Their results indicate that all the missing data
techniques perform well, with small biases and high preci-
sion. However, they recommend the simplest technique,
listwise deletion, as a reasonable choice.

Myrtveit et al. (2001) applied missing data techniques to
a software project data set, and evaluated four missing data
techniques: listwise deletion (LD), mean imputation (MI),
similar response pattern imputation (SRPI) and full infor-
mation maximum likelihood (FIML). They found that pre-
diction models constructed on LD, MI and SRPI data sets
were biased unless the data were missing completely at
random (MCAR), and only FIML was appropriate when
the data set was not MCAR, but in this situation one must
have sufficient data for the technique. Compared to LD,
MI and SRPI seem appropriate when the LD data set is
too small to enable the construction of a meaningful regres-
sion-based prediction model.

Cartwright et al. (2003) used two industrial data sets
containing a number of missing values to assess the poten-
tial value of imputation. The relative performance was
compared of effort prediction models derived by stepwise
regression methods on the raw data and data sets with val-
ues imputed by various techniques. For both data sets they
1 Across these complete data sets, the observed values are the same, but
the missing values are filled in with different imputations that reflect the
uncertainty about the missing data.
found that k-NN and sample mean imputation (SMI) sig-
nificantly improved effort prediction accuracy with the k-
NN method giving the best results.

Song et al. (2005) explored the entry validation issue by
determining what is the safest default assumption about the
missingness mechanism for imputation techniques when
dealing with small software project data sets. They found
that both CMI and k-NN imputation techniques have
practical applications for small software engineering data
sets with missing values.

Jönsson and Wohlin (2004) evaluated the k-NN method
using Likert data in a software engineering context. They
found that it is feasible to use the k-NN method with Likert
data and the ability of the method remains high for large
amount of missing data without affecting the quality of
the imputation.

Although the empirical evaluation of existing general-
purpose missing data processing techniques is important,
missing data imputation must be developed within the con-
text of the specific analysis. Since different analysts are con-
cerned with different contexts, no single imputation
technique can satisfy all interests. On the other hand, the
general-purpose methods are not always the best choice
for the problem of a specific field. Therefore, we place
our work in the context of software project effort predic-
tion with small data sets and propose a new robust method
to impute missing software project data.

Dealing with small size – in terms of the number of cases
– coupled with both nominal and continuous values is usu-
ally an important characteristic of historical software pro-
ject data sets, but the more sophisticated imputation
methods benefit from larger data sets, so we decided to
explore how to use simple methods to impute missing data
for situations of relatively few cases (i.e. 100 or less). Class
mean imputation (CMI) offers clear advantages over mean
imputation but k nearest neighbours (k-NN) imputation
gives better results when the homogeneity of the data set
is high. However, CMI reduces the variance of population,
while k-NN may select a non-relevant object because of its
heavy dependance on the distance between two cases.
Therefore, in order to keep the advantages of both methods
and avoid their individual limitations, we integrate CMI
and k-NN to address the missing data problem in small
data set size environments containing both nominal and
continuous features.

When we use the CMI and k-NN methods, one impor-
tant problem is determining which features to use to com-
pute distance when we search for similar cases: all or just a
subset and in that case which subset? These questions will
also be discussed in this paper. One ubiquitous problem
of most data imputation methods is that usually they
underestimate the variance of feature values. We try to
relieve this problem by using an incremental method to fill
in the missing data.

The remainder of this paper is organized as follows.
Section 2 describes the problem, gives some definitions
and introduces relevant terms. Section 3 presents the

Table 1
A data set and the simulation of three missingness mechanisms

V1 V2

Complete MCAR MAR NI V3

A 85 85 85 ? 30
A 94 ? 94 ? ?
A 111 111 111 111 45
A 130 130 130 130 58
B 80 80 ? ? 60
B 97 97 ? ? 67
B 117 117 ? 117 70
B 125 ? ? 125 80
C 88 ? 88 ? 81
C 91 91 91 ? 84
C 123 123 123 123 94
C 132 ? 132 132 97

54 Q. Song, M. Shepperd / The Journal of Systems and Software 80 (2007) 51–62
proposed missing data imputation algorithms. Section 4
shows the experimental results. Section 5 summarises the
contribution of this paper.

2. Problem statement

In this section we first formally define the problem and
then introduce the missing mechanisms and missing
patterns.

2.1. Problem definition

2.1.1. Data set, complete and incomplete data sets

A dataset is a number of observations on n 2 N software
projects, and is denoted as X = {X1,X2, . . . ,Xn} where Xi

(i = 1,2, . . . ,n) is one observation or case. We assume that
the data set X is divided into an observed component Xobs

and a missing component Xmis, thus X = {Xobs,Xmis}. If
the missing component is null, then the data set is com-
plete, otherwise it contains missing values.

Each element or project Xi � X where i = 1,2, . . . ,n is a
case, and if given p as the dimensionality of the feature
space, case Xi can be denoted as (xi1,xi2, . . . ,xip), p > 1.
Given 1 6 i 6 n and 1 6 j 6 p then xij is the value of the
jth feature of the ith case from data set X. Features are a
set of variables used to characterize the corresponding
projects. We denote the jth feature of the data set X as Fj

where j = 1,2, . . . ,p. Within the data set X we assume each
case has a special feature c that acts as a class label,2 so we
have Nc 2 N distinct classes. In addition for each case, Xi

(1 6 i 6 n), we denote the missing feature values as
X mis

i ¼ fxij; ?gf subject to 0 6 f < p ^ 1 6 j 6 p. Thus,
X i ¼ ðX obs

i ;X mis
i Þ, where X obs

i are the observed feature val-
ues. Note that each case may have different missing
features.

2.1.2. Missing data imputation

This involves using some technique to complete the
missing data ‘?’ in X mis

i � X i, produce an estimated com-
plete case X̂ i and an estimated complete data set X̂, so that
the latter can be used for further analysis.

This is best illustrated by an example. Suppose there is a
data set, which can be used to predict software effort, con-
sisting of three variables and 16 cases, see Table 1 for
details. The first two columns of the table show the com-
plete data for variables V1 and V2, and the last column
shows the values for variable V3. As variable V3 contains
a missing value in case 2, we cannot directly use this data
set to predict software effort. First we have to impute this
missing value. Because the similarity between the values
of variables V1 and V2 in case 2 and the corresponding
values in case 1 is very high, the missing data ‘?’ can be
assumed to be 30 as that is the value of variable V3 in case
2 For example we might use application domain or a coarse grained view
of project size as potential class labels.
1. Now we’ve obtained an imputed complete data set, thus
can be used to predict software effort.

2.2. Missingness mechanisms and patterns

Both missingness mechanisms and patterns have great
impact on research results, both are critical issues a
researcher must address before choosing an appropriate
method to deal with missing data.

2.2.1. Missingness mechanisms

Missing values introduce complexities to data analysis,
so it is important to choose an appropriate method. How-
ever, choosing the proper method depends on the assump-
tions one makes about the missingness mechanism. In
general, the missingness mechanism is concerned with
whether the missingness is related to the study variables
or not. This is extremely significant as it determines how
difficult it may be to handle missing values and at the same
time how risky it is to ignore them.

Little and Rubin (2002) divide these mechanisms into
three classes: Missing Completely at Random (MCAR),
Missing at Random (MAR), and Non-ignorable (NI).
Viewing response as a random process (Rubin, 1976), the
missingness mechanisms can be introduced as follows.

Suppose Z is a data matrix that includes observed and
missing data, let Zobs be the set of observed values of Z,
let Zmis be the set of missing values of Z and let R be the
missing data indicator matrix, i be the ith case and j the
jth feature:

Rij ¼
1 if Zij is missing;

0 if Zij is observed:

�

Missing Completely At Random (MCAR) indicates that
the missingness is unrelated to the values of any variables,
whether missing or observed, thus

pðRjZÞ ¼ pðRÞ for all Z:

This can be illustrated by an example. Suppose columns
3–5 of Table 1 show the values of V2 that remain after
imposing three missingness mechanisms. In the third

Q. Song, M. Shepperd / The Journal of Systems and Software 80 (2007) 51–62 55
column, the missing values appeared in the cases whose
values of variable V1 are A, B, and C, which are the all pos-
sible values of variable V1, and the missing values of vari-
able V2 and variable V3 distributed from small to large.
This means the values were missing randomly and have
no any relation with variable V1, variable V2 and itself,
thus it is MCAR.

MCAR is an extreme condition and from an analyst’s
point of view, it is an ideal condition. Generally you can
test whether MCAR conditions can be met by showing
there is no difference between the distribution of the
observed data of the observed cases and missing cases, this
is Little’s (Little, 1988; Little et al., 1995) multivariate test
which is implemented in SYSTAT and the SPSS Missing
Values Analysis module. Unfortunately this is hard when
there are few cases as there can be a problem with Type I
errors.

Non-Ignorable (NI) is at the opposite end of the spec-
trum. It means that the missingness is non-random, it is
related to the missing values, and it is not predictable from
any one variable in the data set. That is

pðRjZÞ 6¼ pðRÞ for all Z; pðRjZÞ depends on Zmis:

NI is the worst case since, as the name implies, the prob-
lem cannot be avoided by a deletion technique nor are
imputation techniques in general effective unless the analyst
has some model of the cause of missingness. For example,
in the fifth column of Table 1, all the values that are smaller
than 100 were missing, the corresponding values of variable
V3 distributed from small to large and the corresponding
values of the V1 can be A, B, and C. This means the values
that were missing only depend on the variable V2 itself,
thus it is NI. This also can be illustrated by another exam-
ple. Suppose software engineers are less likely to report
high defect rates than low rates, perhaps for reasons of pol-
itics. Merely to ignore the incomplete values leads to a
biased sample and an overly optimistic view of defects.
On the other hand imputation techniques do not work well
either since they attempt to exploit known values and (as
we have already observed) this is a biased sample. Unless
one has some understanding of the process and can con-
struct explanatory models there is little that can be done
with NI missingness.

Missing At Random (MAR) lies between these two
extremes. It requires that the cause of the missing data is
unrelated to the missing values, but may be related to the
observed values of other variables, that is

pðRjZÞ ¼ pðRjZobsÞ for all Zmis:

For example, in the fourth column of Table 1, all the
missing values appeared in the cases whose values of vari-
able V1 are B, and the missing values distributed from
small to large. This means the missing values depend only
on the variable V1, and have no relation with itself, thus it
is MAR.

Most missing data methods assume MAR. Whether the
MAR condition holds can be examined by a simple t-test of
mean differences between the groups with complete data
and that with missing data (Kim and Curry, 1977; Tabach-
nick and Fidell, 2001). MAR is less restrictive than MCAR
because MCAR is a special case of MAR. MAR and
MCAR are both said to be ignorable missing data mecha-
nisms, which is coined in (Rubin, 1976) and is fully
explained in the context of multiple imputation in (Rubin,
1987).

In practice it is usually difficult to meet the MCAR
assumption. MAR is an assumption that is more often,
but not always, tenable.

2.2.2. Missingness patterns

The missing data indictor matrix R reveals the missing
data pattern. By rearranging the cases and the variables
of a data set, we can get the missing data patterns. Gener-
ally, there are two types of missing data patterns, they are
the univariate pattern and multivariate pattern.

In the univariate missingness pattern, only one variable
contains missing values. While in the multivariate missing-

ness pattern, more than one variable contains missing data.
We can refine this pattern into two types: monotone pattern
and arbitrary pattern. In monotone pattern, variables can be
arranged so that for a set of variables x1,x2, . . . ,xn, if xi is
missing, then so are xi+1, . . . ,xn. In arbitrary pattern, miss-
ing data can occur anywhere and no special structure
appears regardless of how the variables are arranged.

The SPSS Missing Values Analysis module has the func-
tion of assessing missing data patterns. The type of missing
data pattern may affect the selection of missing data meth-
ods, because some missing data methods are sensitive to
the missing data patterns. Therefore, we will discuss this
issue when introducing a specific missing data imputation
method if applicable.

We can conclude that the missingness mechanism con-
cerns the distribution of R given Z. Since the missingness
pattern concerns which values are missing, it solely con-
cerns the distribution of R. Some imputation methods
cannot be used for some missing patterns or some missing
mechanism. Thus, before imputing, we must know the
missingness mechanism and pattern of the given data set,
and choose a suitable imputation method that can work
well under the missingness mechanism and pattern.

3. Proposed imputation approach

In this section, we provide one information theoretic key
features selection method, introduce the distance measures
used by the proposed imputation algorithms and describe
our new imputation algorithm.

3.1. Key features selection

The purpose of imputing missing data in the empirical
software engineering domain is to obtain a complete data
set and use this complete data set to make a software pro-
ject effort prediction or other predictions. Therefore,

56 Q. Song, M. Shepperd / The Journal of Systems and Software 80 (2007) 51–62
although all features are necessary for characterising a set
of software projects, not all of them are necessary for pre-
dicting one specific feature since not all features will be
required by that prediction model. On the other hand, dif-
ferent prediction tasks may need different feature subsets.
When performing a specific prediction task, we must first
decide which feature subset is useful for the prediction task,
and then impute the missing data only for that feature sub-
set. Otherwise, if we use all of the features for the predic-
tion task and impute all of the missing values, it is not
only redundant, but also useless work that reduces the pre-
diction accuracy to a certain extent. So we argue that not
every missing value but merely those contained in key fea-
tures need to be imputed.

Feature subset selection (Kohavi and John, 1997; Jain
and Zongker, 1997), which we refer to as key feature selec-
tion, is the process of identifying and removing as much
irrelevant and redundant information as possible. It is a
problem which occurs in many contexts (Han et al., 1996;
Provost and Kolluri, 1999). It is also an important problem
in software project effort prediction. Kirsopp et al. (2002)
explored this problem. They and others think it is a combi-
natorial problem and therefore NP-hard. In this paper, we
will discuss this problem from the aspect of informatics. As
stated previously, in the field of software project effort pre-
diction, we argue that not all the missing data, but only the
key features, need to be imputed. First, we should know
what are the key features and how to identify them from
a given data set for a specific prediction task.

The feature subsets that play important roles in specific
prediction purpose are key features. We use an informa-
tion-theoretic (Quinlan, 1993) approach to select them.
The features with higher information gain are chosen as
the key features.

Suppose si (i = 1,2, . . . ,Nc) is the number of cases of X

in class Ci (i = 1,2, . . . ,Nc). The expected information
needed to classify the given data set X is given by

Iðs1; s1; . . . ; sNcÞ ¼ �
XNc

i¼1

si

n
log2

si

n
: ð1Þ

Note that a log function to the base 2 is used since the
information is encoded in bits.

Let Feature F have v distinct values, {a1,a2, . . . ,av}.
Feature F can be used to partition X into v subsets,
{X1,X2, . . . ,Xv}, where Xj (j = 1,2, . . . ,v) contains those
cases in X that have value aj (j = 1,2, . . . ,v) of F. If Xj

contains sij cases of class Ci, the information needed to clas-
sify cases in all subsets Xj by Feature F, also referred to as
Entropy, is given by

EðF Þ ¼
Xv

j¼1

s1j þ s2j þ � � � þ sNcj

n
Iðs1j; s2j; . . . ; sNcjÞ: ð2Þ

Note that for a given subset Xj,

Iðs1j; s2j; . . . ; sNcjÞ ¼ �
XN c

i¼1

sij

sj
log2

sij

sj
: ð3Þ
The information gain of feature F is

GainðF Þ ¼ Iðs1; s2; . . . ; sNcÞ � EðF Þ: ð4Þ
We compute the information gain of each feature accord-
ing to Eqs. (1)–(4). The feature with the highest informa-
tion gain is chosen as one key feature for the given data
set. By repeating the procedure for all subsets, we can
obtain all the key features. The algorithm of learning key
features from the training data set is as follows:

Algorithm: KeyFeaturesExtraction

Input: feature-list, cases

Output: KeyFeatures

(1.1) if cases are all of the same class then return
KeyFeatures;

(1.2) if feature-list is empty then return KeyFeatures;
(1.3) for each feature Fi among feature-list do
(1.4) Compute information gain (Fi) according to

formula (4);
(1.5) end for;
(1.6) Search for feature F with maximum information

gain;
(1.7) Let feature-list - = F;
(1.8) Let KeyFeatures [= F;
(1.9) for each known value ai of feature F do

(1.10) Let Xi be the set of cases from cases for which
F = ai;

(1.11) if Xi is not empty then call

KeyFeaturesExtraction (feature-list, Xi);
(1.12) end for;
3.2. Proposed imputation algorithm

The MI method is fast, simple to implement, no obser-
vations are excluded and it is widely be used. For both
MCAR and MAR missingness mechanisms, bias caused
by using this method tends to be almost zero (Strike
et al., 2001). Therefore, we base our proposed imputation
algorithm on the naı̈ve mean imputation method.

When we use this method, however, all the missing data
are imputed at the centre of the distribution so the variance
for the feature that contains missing data will be underes-
timated. The reason is that it uses the mean of the observa-
tions to impute all the missing vales. In order to overcome
this problem, we classify the data set according to the
specific prediction task and use the features mean of the
corresponding class instead of the features mean of all
cases and then use an incremental method to enhance it.
Unfortunately, the variance still needs to be improved,
nonetheless, we believe MI offers a useful benchmark for
comparison purposes.

k-NN is a commonly used imputation technique (Fix
and Hodges, 1952; Cartwright et al., 2003; Song et al.,
2005; Jönsson and Wohlin, 2004), where k is the number
of cases sought. k-NN works by finding the k most similar
complete cases to the target case to be imputed where sim-

Q. Song, M. Shepperd / The Journal of Systems and Software 80 (2007) 51–62 57
ilarity is measured by a given distance function. The known
values of the most similar cases are then used to derive a
value for the missing data. Because of the high variance
and low bias when k is small, a number of studies have
reported good results using k-NN. But k-NN will give mis-
leading results when the heterogeneity of the data set is
high since it heavily depends on the distances between cases
to select the donors so it may identify the donors from
incorrect classes.

Based on the above analysis, we integrate the k-NN
method with the MI method, using the latter to provide a
correct searching range for the former, and the former to
improve the total variance and reduce the bias posed by
the latter. We refer to the proposed algorithm as Mean
Imputation based k Nearest neighbours hot-deck Imputa-
tion (MINI).

3.2.1. Distance measures

Distance is an important measure when we classify cases
and look for donors for missing values. When we calculate
the distance between any two cases or one case and one
class, both nominal and continuous values are used
because in practice both types of feature are to be found
in real world data sets. In this subsection, first we describe
the distance measures between nominal values and contin-
uous values respectively, and then we merge them together
to obtain a generalized distance measure between two cases
or one case and one class.

Definition 1. (Distance between continuous values). Sup-
pose jth feature Fj (j = 1,2, . . . ,p) of data set X is a
continuous feature, let Dðxij; xi0jÞ be the distance between
values xij and xi0j (1 6 i, i 0 6 n) of feature Fj, we define it as

D xij; xi0j

� �
¼ 1

maxfxrjjr ¼ 1; 2; . . . ; ng jxij � xi0jj: ð5Þ

Thus, all the distances between two continuous values
are mapped into interval [0, 1], this cancels the impact of
different scales.

Definition 2. (Mean of continuous values of a given

class). Suppose the jth feature Fj (j = 1,2, . . . ,p) of data
set X is a continuous feature, let Mc

j be the mean of the
jth feature of class Cc (c = 1,2, . . . ,Nc), we define it as

Mc
j ¼

1

kCck
Xn

r¼1

xc
r;j; ð6Þ

where kCck is the number of cases in class Cc; c 2
{1,2, . . . ,Nc}; xc

r;j indicates that the feature value xr,j

belongs to class Cc.

Nominal features frequently appear in historical soft-
ware project data sets along with continuous features.
Usually, each case is partly continuous values and partly
nominal values. When we search for similar cases or
construct distance functions, we must tackle nominal val-
ues together with continuous values.
Definition 3. (Distance between nominal values). Suppose
jth feature Fj (j = 1,2, . . . ,p) of data set X is a nominal
feature. Let dðxij; xi0jÞ be the distance between values xij and
xi0j ð1 6 i; i0 6 nÞ of feature Fj, it is defined as

dðxij; xi0jÞ ¼
1 if xij 6¼ xi0j;

0 if xij � xi0j:

�
ð7Þ

Definition 4. (Mode of nominal values). Given v the known
feature value, the mode Mc

j of the jth nominal feature Fj

(j = 1,2, . . . ,p) of class Cc (c = 1,2, . . . ,Nc) is defined as

Mc
j ¼ max

16i6n
P xc

ij

� �n o
; ð8Þ

where

P xc
ij

� �
¼

xc
ij xc

ij

��� �
� v

��� ���
Nc

ði ¼ 1; 2; . . . ; nÞ:

Definition 5. (Generalized distance between two cases). For
any two cases Xi, Xj � X (ij = 1,2, . . . ,n ^ i 5 j), we define
the generalized distance between them as

DðX i;X jÞ ¼
Xp

k¼1

jxi;k � xj;kj; ð9Þ

where

jxi;k � xj;kj ¼
Dðxi;k;xj;kÞ if kth feature is continuous value

dðxi;k;xj;kÞ if kth feature is nominal value:

�

Definition 6. (Generalized distance between one case and one

class). Suppose the jth feature of data set X contains
missing data, cases Xi, Xj � X (ij = 1,2, . . . ,nji 5 j), let
D(i,c) be the distance between case Xi with missing data
and class Cc (c = 1,2, . . . ,Nc), we define it as

Dði; cÞ ¼ 1

NoCc

X
j2NoCc

DðX i;X jÞ; ð10Þ

where, c 2 {1, 2, . . . ,Nc}; Xj is a case that belongs to class
Cc; NoCc is the set of case numbers of class Cc.
3.2.2. Algorithm

The MINI algorithm is a three-step procedure: key fea-
tures selection, key data classification, and missing values
filling in. The key features selection step learns key features
fk from the training data set, see Section 3.1 for details. The
key data classification step extracts the key data set X̂

according to key features fk from real data set X and uses
an existing method to classify the data set X̂ according to
the particular prediction task. The missing values filling
in step searches for the most similar cases and assigns the
mean or mode of the feature values to the missing data.
This step computes the distances between the first case con-
taining missing data and each class, searches for the mini-
mum distance among these distances and obtains the
corresponding class. Then it uses the k-NN method to look

58 Q. Song, M. Shepperd / The Journal of Systems and Software 80 (2007) 51–62
for donor cases for each missing data vaue in the range of
the given class, and fills in the first missing value with the
feature mean or mode of donor cases. After that, the miss-
ing value is written back and the algorithm moves on to
impute the second missing value using the same method
as the first one, and so on.

Suppose that the jth feature value xij of case Xi is miss-
ing, let fk be the key features and Fj be the jth feature. The
imputation algorithm is as follows:

Algorithm: MINI

Input: Key data set X̂ with class label set Ck

(k = 1,2, . . . ,Nc), key features fk.
Output: The estimated value of missing data xij

(3.1) Search data set X̂ for missing values index set
Sm ¼ fðijÞgNm ,

where i and j are respectively the case number
and feature number of missing data xij, and Nm

is the number of missing values;

(3.2) for each (ij) 2 Sm do
(3.3) for each class c 2 Ck do
(3.4) Use formula (10) to compute the distance

D(i,c) between case Xi and class c according
to the key features fk;

(3.5) end for
(3.6) dði; cÞ ¼ min16c6NcfDði; cÞg;
(3.7) Search for donor set DoN in class c using k-NN

method;
(3.8) if Fj is a continuous feature then
(3.9) Use formula (6) to compute the mean Mc

j of
the jth feature of donor set DoN;

(3.10) else if Fj is a nominal feature then
(3.11) Use formula (8) to compute the mode Mc

j of
the jth feature of donor set DoN;

(3.12) end if
(3.13) x̂ij ¼ Mc

j ;
(3.14) X m ¼ [x̂ij;
(3.15) end for
(3.16) return Xm;
3 In the experiment, for the proposed method MINI and k-NN method,
we used the two nearest cases (k = 2) since Kadoda et al. (2001) suggested
this to perform consistently better than higher values of k for this
particular problem domain.
4. Experiments and results

4.1. Data source

The data set used in this study is the International Soft-
ware Benchmarking Standards Group (ISBSG) database,
Release 7. The ISBSG database contains 1238 projects
from insurance, government, banking, business services,
manufacturing, communications, and utilities organisa-
tions of 20 different countries. The ISBSG data set has a
large proportion of missing data, exceeding 40% for some
features.

In order to simulate various missing patterns and com-
pare the accuracy of different imputation methods, we first
cleaned the ISBSG database as follows. If a feature con-
tained missing values and was not a key feature for predict-
ing software project effort, it was deleted, otherwise, the
corresponding case was deleted. Thus we obtained a new
data set that comprised 363 complete cases, named
ISBSG363.

In order to validate that the proposed method can be
used to impute missing data in small data sets, we ran-
domly extracted 100 and 50 cases from data set ISBSG363,
and named them ISBSG100 and ISBSG50 respectively.
The ISBSG database has 55 features, some of which have
no relation with software effort prediction, so we used the
key features selection method to identify eight features
and obtain the final data sets. The general information of
these two data sets is shown in Table 2.

We used these two data sets for the experiments.

4.2. Simulation approach and evaluative measures

The basic idea of our simulation approach is the follow-
ing. For data sets ISBSG100 and ISBSG50, by deleting the
known values from each of them according to selected miss-
ingness mechanisms, we created five data sets containing
missing values for each given missing pattern and missing
data percentage. We simulated five missingness mecha-
nisms, four missing patterns and five missing data percent-
ages, so we generated 160 data sets for each of the two basic
data sets, so a total of 320 data sets was obtained. Then
three different methods, CMI, k-NN3 and MINI, were
applied and their performance compared to the true values.

When generating incomplete data sets, we considered
the following three aspects:

• Missingness mechanisms

MCAR: The implementation of the MCAR mechanism
is to induce missing values for the desired feature or fea-
tures completely at random.MAR: The implementation
of the MAR mechanism is based on the size of the pro-
ject. The bigger the project is, the greater is the probabil-
ity of missing data. First we order the cases according to
project size, then divide the data set into four parts with
different percentages of missing data. The missing data
percentage is in proportion to the mean of project size
of each part. That is, for ith part, the missing data
percentage is MiP4

i¼1
Mi

� p%� n, where Mi is the mean

of project size of the ith part, p% is the total missing data
percentage, and n is the number of data items.

• Missingness patterns

Four missing data patterns were simulated: univariate
missing data in both nominal feature and continuous
feature, bivariate missing data in both nominal features
and continuous features.

Table 2
Descriptive statistics for data sets ISBSG100 and ISBSG50

Feature Type Description

Development type Nominal Enhancement, new development or re-development
Development platform Nominal MainFrame, MidRange or PC
Programming language Nominal ACCESS, Ada, C, . . . ,other
Organisation type Nominal Aerospace, automotive, banking, . . . ,other
Application type Nominal Administrative support system, . . . ,other
Project elapsed time Continuous For ISBSG100: min = 1, mean = 10.46, median = 7, max = 84

For ISBSG50: min = 1, mean = 10.998, median = 8, max = 45
Function points Continuous For ISBSG100: min = 11.0, mean = 498.15, median = 278.5, max = 5684

For ISBSG50: min = 52.0, mean = 549.7, median = 318.5, max = 3460
Summary work effort Continuous For ISBSG100: min = 30.0, mean = 4448.63, median = 2044, max = 28,855

For ISBSG50: min = 30.0, mean = 6389.4, median = 2570, max = 32,760

Table 3
The accuracy of the three methods with different missing data percentages

Feature type Missing data
percentage (%)

Imputation method

CMI MINI k-NN

Nominal 10 40.5 28.1 32.3
15 44.7 32.9 36.7
20 47.6 35.4 40.3
30 50.0 38.0 43.3

Continuous 10 66.1 58.2 74.0
15 68.6 62.0 76.8
20 70.9 65.6 78.6
30 72.6 67.3 82.4

Table 4
The accuracy of the three methods with different data set sizes

Feature type Data set size Imputation method

CMI MINI k-NN

Nominal 50 48.1 34.5 39.7
100 43.3 32.7 36.6

Continuous 50 69.9 64.1 80.9
100 69.2 62.4 75.0

Q. Song, M. Shepperd / The Journal of Systems and Software 80 (2007) 51–62 59
• Missing data percentages

For each missing data pattern of each missing data
mechanism, four different percentages of missing values
(10%, 15%, 20%, and 30%), were simulated.

When evaluating the different methods, for continuous
values, we used Mean Magnitude of Relative Error
(MMRE) (Conte et al., 1986) as the accuracy measure of
different imputation methods. MMRE is a widely used
indicator of prediction accuracy in the software engineer-
ing domain and is defined as

MMRE ¼ 100

n

Xi¼n

i¼1

jxi � x̂ij
xi

; ð11Þ

where n is the number of predictions x̂ of x.
For nominal values, we used the following formula to

compute the imputation error, �:

� ¼ 1� N cor

Nmis

	

� 100; ð12Þ

where Ncor is the number of missing values correctly im-
puted, Nmis is the total number of missing values.

4.3. Experimental results

In this subsection, we present the experimental results
(in terms of MMRE or �, the variance of MMRE or �, p

values, and the rate c of growth of MMRE or �.) for the
data sets ISBSG100 and ISBSG50 with different missing
patterns under MCAR and MAR missingness mechanisms
for three different imputation methods: MINI, k-NN and
CMI. For each missing data percentage of each missing
pattern, we let the average MMRE (for the continuous val-
ues) or the average � (for the nominal values) of the corre-
sponding five data sets be the final result.

From Table 3 we observe a trend for all three tech-
niques to deteriorate in performance as the proportion of
missing values increases. This occurs for both nominal
and continuous features. We also see that MINI con-
sistently has lower error rates than either of the other
techniques.
From Table 4 we also observe that the larger data set
leads to better imputation but that the effect is not very
large. This occurs for both nominal and continuous fea-
tures. Again we see that MINI consistently has lower error
rates than either of the other techniques for both of the
data sets.

Table 5 shows the impact of imputation when one or
two features are missing. Two missing features reduce per-
formance. This occurs for both nominal and continuous
features, however, the effect is far more pronounced for
nominal than continuous features. Again we see that MINI
consistently has lower error rates than either of the other
techniques.

In Table 6 we consider the impact of different missing-
ness mechanisms. Unsurprisingly, MCAR is easier to deal
with, however the differences are not very pronounced
which is an encouraging result from a practical point of
view.

Table 5
The accuracy of the three methods with different number of features with
missing data

Feature type No. of features
with missing data

Imputation method

CMI MINI k-NN

Nominal 1 39.4 29.4 33.1
2 52.0 37.9 43.2

Continuous 1 67.6 61.3 76.6
2 71.5 65.2 79.3

Table 6
The accuracy of the three methods with different missingness mechanisms

Feature type Missingness
mechanism

Imputation method

CMI MINI k-NN

Nominal MAR 47.8 36.2 39.1
MCAR 43.9 31.1 37.2

Continuous MAR 70.3 62.7 79.5
MCAR 68.8 61.6 76.7

Table 8
Wilcoxon test of imputation accuracy differences between MINI and k-
NN and CMI under MAR and MCAR

Missingness mechanism Method pair p of MMRE p of �

MAR MINI vs. CMI <0.0001 <0.0001
MINI vs. k-NN <0.0001 <0.0001

MCAR MINI vs. CMI <0.0001 <0.0001
MINI vs. k-NN <0.0001 <0.0001

Table 9
Wilcoxon test of imputation accuracy differences between MINI and k-
NN and CMI with ISBSG100 and ISBSG50

Data set size Method pair p of MMRE p of �

50 MINI vs. CMI <0.0001 <0.0001
MINI vs. k-NN <0.0001 <0.0001

100 MINI vs. CMI <0.0001 <0.0001
MINI vs. k-NN <0.0001 <0.0001

Table 10
Wilcoxon test of imputation accuracy differences between MINI and k-
NN and CMI

60 Q. Song, M. Shepperd / The Journal of Systems and Software 80 (2007) 51–62
The overall comparison of the performance of the three
imputation methods is given by Table 7. From the above
results we can observe that:

1. The MINI method exhibits a lower error rate than either
the CMI or k-NN method.

2. The MINI’s variance of accuracy lies between CMI and
k-NN. Here a lower value implies the method is more
reliable.

3. The CMI method is most suited for imputing missing
data in continuous features, k-NN to nominal features
and MINI to both conditions.

Both the missingness mechanism and missing data per-
centage are important factors affecting the performance
of imputation methods. For the purpose of more formally
determining the significance of the results, we used a Wilco-
xon test to compare sample medians of the accuracy values
given missingness mechanism and data set size respectively.
We have five alternate hypotheses:

• MINI imputation is more accurate than CMI/k-NN
when the missingness mechanism is MAR;
Table 7
The accuracy of the three methods

Feature type Imputation
method

Accuracy Accuracy variance

Mean Median

Nominal CMI 45.7 62.1 58.0
MINI 33.6 62.3 56.3
k-NN 38.1 96.4 76.6

Continuous CMI 69.6 95.0 67.5
MINI 63.3 104.5 82.7
k-NN 77.9 162.3 154.3
• MINI imputation is more accurate than CMI/k-NN
when the missingness mechanism is MCAR;

• MINI imputation is more accurate than CMI/k-NN
when the data set size is 50;

• MINI imputation is more accurate than CMI/k-NN
when the data set size is 100;

• MINI imputation is more accurate than CMI/k-NN.

Tables 8–10 are the results of Wilcoxon tests. The null
hypotheses are that there is no difference with (a = 0.05).
From the tables we can see that all five alternate hypothe-
ses are accepted. This suggests that MINI outperforms
both CMI method and k-NN method.

Lastly we consider the problem of reduced feature vari-
ance. An unfortunate side effect of many imputation tech-
niques is to reduce the variance of features that contain
imputed values. This is particularly acute for very simple
methods such as mean imputation since all replaced values
will be the sample mean leading to a potentially substantial
reduction in variance. Table 11 indicates that MINI fares
the best of the three methods with only 5% reduction com-
Method pair p of MMRE p of �

MINI vs. CMI <0.0001 <0.0001
MINI vs. k-NN <0.0001 <0.0001

Table 11
The average impact of imputation upon feature variance

Method Variance Percentage change

CMI 341.72 �14.35
k-NN 363.28 �8.95
MINI 377.71 �5.33
Original variance 398.99 0

Q. Song, M. Shepperd / The Journal of Systems and Software 80 (2007) 51–62 61
pared with 14% for the class mean imputation (which of
course is closely related to mean imputation).

Consequently, these results suggest that, overall, the
MINI method may be more suitable for imputing missing
data in small data sets than the k-NN or CMI methods.

5. Conclusions

We have presented a new, class mean imputation based,
k-NN hot deck imputation method called MINI, for the
imputation of missing values for small software project
data sets. We compared MINI with two other widely used
imputation methods, CMI and k-NN using small real
world software project data sets of 50 and 100 cases respec-
tively. In the experiments we set four different missing pat-
terns: missing data in one continuous feature, missing data
in two continuous features, missing data in one nominal
feature, and missing data in two nominal features. We also
examined four different levels of missing data (10%, 15%,
20% and 30%), using both MCAR and MAR missingness
mechanisms. Then we compared the proposed MINI
method with CMI and k-NN for a total of 320 data sets.

Our results show that the MINI method is superior to
either the CMI or the k-NN method, in terms of imputa-
tion error and also in terms of the least impact upon
feature variance. The results of the Wilcoxon test confirm
the conclusion, and suggest that the proposed approach
might be considered by data analysts when imputing miss-
ing data values in small software project data sets. Clearly,
there is the question as to what extent these results might
generalise? We have focused upon a specific domain, i.e.
software engineering project data sets. These tend to con-
tain few cases with many features that exhibit complex
interactions. We conducted our experiments using data
drawn from a real world data set collected by the ISBSG.
Nevertheless, it would be useful for other research groups
using different data sets to endeavour to replicate our
findings.

Acknowledgements

The authors would like to thank the International Soft-
ware Benchmarking Standards Group (ISBSG) for provid-
ing the data set for this analysis. The authors also would
like to thank the anonymous reviews and the editor for
their insightful and helpful comments. This work was
partly supported by the UK, Engineering and Physical Sci-
ences Research Council under grant GR/S55347.

References

Aggarwal, C.C., Parthasarathy, S., 2001. Mining massively incomplete
data sets by conceptual reconstruction. In: Proceedings of the Seventh
ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 227–232, San Francisco, California, USA.

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1984. Classifica-
tion and Regression Trees. Wadsworth International Group, Belmont,
CA, 1984.
Cartwright, M., Shepperd, M., Song, Q., 2003. Dealing with Missing
Software Project Data, Proc. 9th IEEE International Software Metrics
Symposium. IEEE Computer Society, Sydney, Australia.

Conte, S., Dunsmore, H., Shen, V.Y., 1986. Software Engineering Metrics
and Models. Benjamin Cummings, Menlo Park, CA.

Fix, E., Hodges, J.L., 1952. Discriminatory analysis: nonparametric
discrimination: small sample performance. Technical Report Project
21-49-004, Report Number 11, USAF School of Aviation Medicine,
Randolf Field, Texas.

Friedman, N., 1998. The Bayesian structural EM algorithm. In: Proceed-
ings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence. Morgan Kaufmann Publishers, San Francisco, CA, pp.
129–138.

Grzymala-Busse, J.W., Hu, M., 2000. A comparison of several approaches
to missing attribute values in data mining. In: RSCTC’2000, pp. 340–
347.

Haitovsky, Y., 1968. Missing data in regression analysis. Journal of the
Royal Statistical Society B30, 67–81.

Han, J., Chen, M., Yu, P., 1996. Data mining: an overview from database
perspective. IEEE Transactions on Knowledge and Data Engineering
8 (6), 833–866.

Jain, A.K., Zongker, D., 1997. Feature selection: evaluation, application
and small sample performance. IEEE Transactions on Pattern
Analysis and Machine Intelligence 19 (2), 153–158.

Jönsson, P., Wohlin, C., 2004. An evaluation of k-nearest neighbour
imputation using likert data. In: Proceedings of the 10th IEEE
International Software Metrics Symposium. IEEE Computer Society,
Los Alamitos, California, USA, pp. 108–118.

Joreskog, K.G., Sorbom, D., 1993. LISREL 8 User’s Reference Guide.
Scientific Software Int’l Inc., Chicago.

Kadoda, G., Cartwright, M., Shepperd, M.J., 2001. Issues on the effective
use of CBR technology for software project prediction. In: 4th Intl.
Conf. on Case Based Reasoning, Vancouver, 2001.

Kim, J.-O., Curry, J., 1977. The treatment of missing data in multi-
variate analysis. Sociological Methods and Research 6 (2), 215–
240.

Kirsopp, C., Shepperd, M.J., Hart, J., 2002. Search Heuristics, Cased-
Based Reasoning and Software Project Effort Prediction, GECCO
2002: Genetic and Evolutionary Computation Conf., New York,
AAAI.

Kohavi, R., John, G., 1997. Wrappers for feature subset selection.
Artificial Intelligence 97 (1–2), 273–324.

Little, R.J.A., 1988. A test of missing completely at random for
multivariate data with missing values. Journal of the American
Statistical Association 83 (404), 1198–1202.

Little, R.J.A., Rubin, D.B., 2002. Statistical Analysis with Missing Data,
Second ed. John Wiley & Sons, New York.

Little, R.C., Roderick, J.A., Schenker, N., 1995. Missing data. In:
Arminger, G., Clogg, C., Sobel, M. (Eds.), Handbook of Statistical
Modeling for the Social and Behavioral Sciences. Plenum, New York,
pp. 39–75.

Moløkken, K., Jørgensen, M., 2003. A review of surveys on software effort
estimation. In: 2nd International Symposium on Empirical Software
Engineering. IEEE Computer Society, Rome, pp. 223–230.

Myrtveit, I., Stensrud, E., Olsson, U.H., 2001. Analyzing data sets with
missing data: an empirical evaluation of imputation methods and
likelihood-based methods. IEEE Transactions on Software Engineer-
ing 27 (11), 999–1013.

Provost, F., Kolluri, V., 1999. A survey of methods for scaling-up
inductive algorithms. Data Mining and Knowledge Discovery 2, 131–
169.

Quinlan, J.R., 1993. C4.5 Programs for Machine Learning, CA, Morgan
Kaufmann.

Roth, P., 1994. Missing data: a conceptual review for applied psychol-
ogists. Personnel Psychology 47, 537–560.

Rubin, D.B., 1976. Inference and missing data. Biometrika 63, 581–
592.

Rubin, D.B., 1987. Multiple Imputation. John Wiley & Sons, New York.

62 Q. Song, M. Shepperd / The Journal of Systems and Software 80 (2007) 51–62
Schafer, J.L., Olsen, M.K., 1998. Multiple imputation for multivariate
missing-data problems: a data analyst’s perspective. Multivariate
Behavioral Research 35, 545–571.

Schuurmans, D., Greiner, R., 1997. Learning to Classify Incomplete
Examples. In: Computational Learning Theory and Natural Learning
Systems, Making Learning Systems Practical, vol. IV. MIT Press, pp.
87–105 (chapter 6).

Shirani, S., Kossentini, F., Ward, R., 2000. Reconstruction of baseline
JPEG Coded Images in error prone environments. IEEE Transactions
on Image Processing 9 (7), 1292–1298.
Song, Q., Shepperd, M., Cartwright, M., 2005. A short note on safest
default missingness mechanism assumptions. Empirical Software
Engineering: An International Journal 10 (2), 235–243.

Strike, K., El Emam, K., Madhavji, N., 2001. Software cost estimation
with incomplete data. IEEE Transactions on Software Engineering 27
(10), 890–908.

Tabachnick, B.G., Fidell, L.S., 2001. Using Multivariate Statistics, fourth
ed. Allyn & Bacon, Needham Heights, MA.

Troyanskaya, O., Cantor, M., Sherlock, G., et al., 2001. Missing value
estimation methods for DNA microarrays. Bioinformatics 17, 520–525.

	A new imputation method for small software project data sets
	Introduction
	Missing data techniques taxonomy
	Related work

	Problem statement
	Problem definition
	Data set, complete and incomplete data sets
	Missing data imputation

	Missingness mechanisms and patterns
	Missingness mechanisms
	Missingness patterns

	Proposed imputation approach
	Key features selection
	Proposed imputation algorithm
	Distance measures
	Algorithm

	Experiments and results
	Data source
	Simulation approach and evaluative measures
	Experimental results

	Conclusions
	Acknowledgements
	References

