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Abstract

In this paper, learning algorithms for radial basis function (RBF) networks are discussed. Whereas multilayer perceptrons (MLP) are

typically trained with backpropagation algorithms, starting the training procedure with a random initialization of the MLP's parameters, an

RBF network may be trained in many different ways. We categorize these RBF training methods into one-, two-, and three-phase learning

schemes.

Two-phase RBF learning is a very common learning scheme. The two layers of an RBF network are learnt separately; ®rst the RBF layer is

trained, including the adaptation of centers and scaling parameters, and then the weights of the output layer are adapted. RBF centers may be

trained by clustering, vector quantization and classi®cation tree algorithms, and the output layer by supervised learning (through gradient

descent or pseudo inverse solution). Results from numerical experiments of RBF classi®ers trained by two-phase learning are presented in

three completely different pattern recognition applications: (a) the classi®cation of 3D visual objects; (b) the recognition hand-written digits

(2D objects); and (c) the categorization of high-resolution electrocardiograms given as a time series (1D objects) and as a set of features

extracted from these time series. In these applications, it can be observed that the performance of RBF classi®ers trained with two-phase

learning can be improved through a third backpropagation-like training phase of the RBF network, adapting the whole set of parameters

(RBF centers, scaling parameters, and output layer weights) simultaneously. This, we call three-phase learning in RBF networks. A practical

advantage of two- and three-phase learning in RBF networks is the possibility to use unlabeled training data for the ®rst training phase.

Support vector (SV) learning in RBF networks is a different learning approach. SV learning can be considered, in this context of learning,

as a special type of one-phase learning, where only the output layer weights of the RBF network are calculated, and the RBF centers are

restricted to be a subset of the training data.

Numerical experiments with several classi®er schemes including k-nearest-neighbor, learning vector quantization and RBF classi®ers

trained through two-phase, three-phase and support vector learning are given. The performance of the RBF classi®ers trained through SV

learning and three-phase learning are superior to the results of two-phase learning, but SV learning often leads to complex network structures,

since the number of support vectors is not a small fraction of the total number of data points. q 2001 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Radial basis function (RBF) networks were introduced

into the neural network literature by Broomhead and

Lowe (1988). The RBF network model is motivated by

the locally tuned response observed in biologic neurons.

Neurons with a locally tuned response characteristic can

be found in several parts of the nervous system, for example

cells in the auditory system selective to small bands of

frequencies (Ghitza, 1991; Rabiner & Juang, 1993) or

cells in the visual cortex sensitive to bars oriented in a

certain direction or other visual features within a small

region of the visual ®eld (see Poggio & Girosi, 1990b).

These locally tuned neurons show response characteristics

bounded to a small range of the input space.

The theoretical basis of the RBF approach lies in the ®eld

of interpolation of multivariate functions. Here, multivariate

functions f : Rd ! Rm are considered. We assume that m is

equal to 1 without any loss of generality. The goal of inter-

polating a set of tupels �xm
; ym�Mm�1 with xm [ Rd and ym [

R is to ®nd a function F : Rd ! R with F�xm� � ym for all

m � 1, ¼, M, where F is an element of a prede®ned set of
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functions F, typically F is a linear space. In the RBF

approach the interpolating function F is a linear combina-

tion of basis functions:

F�x� �
XM
m�1

wmh�ix 2 xmi�1 p�x� �1�

where i´i denotes the Euclidean norm, w1;¼;wM are real

numbers, h a real valued function, and p a polynomial p [
P d

n (polynomials of degree at most n in d variables). The

degree of the polynomial term has to be ®xed in advance.

The interpolation problem is to determine the real coef®cients

w1;¼;wM and the polynomial term p :� PD
l�1 alpj where p1,

¼, pD is the standard basis of P d
n and a1, ¼, aD are real

coef®cients. The function F has to satisfy the conditions:

F�xm� � ym; m � 1;¼;M �2�
andXM
m�1

wmpj�xm� � 0; j � 1;¼;D: �3�

Suf®cient conditions for the unique solvability of the inerpola-

tion problem were given by several authors (Light, 1992;

Micchelli, 1986; Powell, 1992). The function h is called a

radial basis function if the interpolation problem has a unique

solution for any choice of data points. In some cases, the

polynomial term in formula (1) can be omitted, and then the

interpolation problem is equivalent to the matrix equation

Hw � y �4�
where w � �w1;¼;wM�; y � �y1

;¼; yM�; and H is an M £ M

matrix de®ned by

H � h ixn 2 xmi
ÿ �ÿ �

m;n�1;¼;M : �5�
Provided the inverse of H exists, the solution w of the inter-

polation problem can be explicitly calculated and has the form:

w � H21y: �6�
Examples of radial basis functions h often used in applications

are:

h�r� � e2r2
=2s 2 �7�

h�r� � �r2 1 s 2�1=2 �8�

h�r� � �r2 1 s 2�21=2 �9�
Here, s is a positive real number which we call the scaling

parameter or the width of the radial basis functions. The most

popular and widely used radial basis function is the Gaussian

basis function

h�ix 2 ci� � exp�2ix 2 ci 2
=2s 2� �10�

with peak at center c [ Rd and decreasing as the distance from

the center increases. Throughout this paper we restrict

ourselves to this type of radial basis function.

The solution of the exact interpolating RBF mapping

passes through every data point �xm; ym�: In the presence

of noise, the exact solution of the interpolation problem is

typically a function oscillating between the given data

points. An additional problem with the exact interpolation

procedure is that the number of basis functions is equal to

the number of data points and so calculating the inverse of

the M £ M matrix H becomes intractable in practice.

In applications where one has to deal with many thou-

sands of noisy data points, an approximative solution to the

data is more desirable than an interpolative one. Broomhead

and Lowe (1988) proposed to reduce the number of basis

functions in order to reduce the computational complexity.

This technique produces a solution by approximating

instead of interpolating the data points. Furthermore, in

Broomhead and Lowe (1988) an interpretation of the RBF

method as an arti®cial neural network model is given. It

consists of three neural layers: a layer of input neurons

feeding the feature vectors into the network; a hidden

layer of RBF neurons, calculating the outcome of the

basis functions; and a layer of output neurons, calculating

a linear combination of the basis functions. Under some

additional conditions imposed on the basis function h, the

set of RBF networks with free adjustable prototype vectors

are shown to be universal approximators, so that any contin-

uous function can be approximated with arbitrary precision

(Park & Sandberg, 1993). This implies that RBF networks

with adjustable prototypes can also be used for classi®cation

tasks (Poggio & Girosi, 1990a).

In the classi®cation scenario, the RBF network has to

perform a mapping from a continuous input space Rd into

a ®nite set of classes Y� {1, ¼, L}, where L is the number

of classes. In the training phase, the parameters of the

network are determined from a ®nite training set

S � {�xm
; ym�uxm [ Rd

; ym [ Y ; m � 1;¼;M};

�11�
here each feature vector xm is labeled with its class member-

ship ym: In the recall phase, further unlabeled observations

x [ Rd are presented to the network which estimates their

class memberships y [ Y : In our classi®cation scenario

utilizing RBF networks, the number of output units corre-

sponds to the number of classes, and the classmemberships

y [ Y are encoded through a 1-of-L coding into a binary

vector z [ {0; 1}L through the relation z
m
i � 1 iff ym � i:

To simplify the notation, we do not distinguish between

these two representations of the classmembership. In this

context it should be mentioned that other coding schemes

can be used but are not very common in pattern recognition

applications. Using the 1-of-L encoding scheme an RBF

network with K basis functions is performing a mapping F :

Rd ! RL
;

Fi�x� �
XK
j�1

wjih�ix 2 cji�1 w0i; i � 1;¼; L; �12�

F. Schwenker et al. / Neural Networks 14 (2001) 439±458440



where the w0i denote the biases, which may be absorbed

into the summation by including an extra basis function

h0� 1 whose activation is set equal to 1 on the whole

input space Rd
: Categorization is performed by assigning

the input vector x the class of the output unit with maxi-

mum activation:

class�x� � argmax
i[{1;¼;L}

Fi�x�: �13�

Typically, an RBF as a neural network model differs from

the RBF as an interpolation method in some ways.

1. The number of basis functions is typically much less

than the number of data points, and the basis functions

are located in representative prototypes cj [ Rd which

are not restricted to be data points.

2. Instead of a global scaling parameter s [ R for all

basis functions, each basis function has its own scaling

parameter s j [ R.

3. In some RBF network models the so-called Mahalano-

bis distance is used instead of the Euclidean distance.

In general a Mahalanobis distance between two points

x; y [ Rd is de®ned by a positive de®nite matrix R and

is given through

ix 2 yiR �
����������������������
�x 2 y�T R�x 2 y�

q
�14�

here T denotes the transpose of a matrix. Typically R is

the inverse of the covariance matrix of the input data

points xm , m � 1, ¼, M. The Mahalanobis distance

becomes the Euclidean distance if R is equal to the

identity matrix I.

In this type of RBF network, every basis function has

its own matrix Rj, usually de®ned as the inverse of the

covariance matrix of the data points with respect to the

center cj. Such an architecture contains d parameters for

each center cj plus d(d 1 1)/2 parameters for each matrix

Rj. In some approaches, the matrix Rj is simpli®ed to be a

diagonal matrix for every center.

To simplify the notation, we set hj�x� � h�ix 2 cji
2
Rj
;

j� 1, ¼, K and the RBF network (12) becomes

Fi�x� �
XK
j�0

wjihj�x�; i � 1;¼; L: �15�

With these modi®cations, the process of adjusting the para-

meters is usually treated as a typical neural network training

process. In many applications, the ®rst (RBF) layer and the

second (combination weight) layer are trained separately.

This has led to a bad reputation of RBF networks in some

application areas, which is due to the impression that the

performance of RBF networks after these two training

phases is worse than, for example, that of multilayer percep-

trons (MLP) networks (Michie, Spiegelhalter, & Taylor,

1994). However, a combined training of the whole network

in the style of backpropagation has also been proposed

(Poggio & Girosi, 1990a) which leads to a better perfor-

mance comparable to MLP networks. Here, we advocate a

training procedure in three phases that combines these

approaches.

We distinguish the following three learning or training

schemes, which can be used for RBF networks.

One-phase learning. With this learning procedure, only

the output layer weights w are adjusted through some kind

of supervised optimization, e.g. minimizing the squared

difference between the network's output and the desired

output value. Here, the centers cj are sub-sampled from

the set of input vectors xm (or all data points are used as

centers) and, typically, all scaling parameters are set equal

to a prede®ned real number s .

Support vector learning is a special example of one-phase

learning. Here, only the output layer weights are adjusted,

the location of the kernel centers is restricted to the data

points {xm [ Rd : m � 1;¼;M} and the scaling parameter

is ®xed in advance (see Appendix A).

Two-phase learning. Here, the two layers of the RBF

network are trained separately, ®rst RBF centers cj and the

scaling parameters are determined, and subsequently the

output layer is adjusted (see Section 2).

Three-phase learning. After the initialization of the RBF

networks utilizing two-phase learning, the whole architec-

ture is adjusted through a further optimization procedure

(see Section 3).

The paper is organized in the following way. In Section 2

we introduce the classical two-stage training of the two

layers. Backpropagation learning for RBF networks is

reviewed in Section 3. In Section 4 a brief description of

the different classi®ers used in the evaluation is given and

we demonstrate the superiority of three-stage training in

different application domains: (a) the classi®cation of 3D

visual objects; (b) the recognition of hand-written digits (2D

objects); and (c) the categorization of high-resolution elec-

trocardiograms given as a time series (1D objects) and as a

set of features extracted from these time series. We end with

some conclusions in Section 5. Support vector learning as a

special type of one-phase learning scheme for RBF

networks is reviewed in Appendix A.

2. Two-phase learning for RBF networks

In a multilayer perceptron (MLP) network all parameters

are usually adapted simultaneously by an optimization proce-

dure. This training procedure is supervised, since it mini-

mizes an error function measuring the difference between

the network output and the teacher signal that provides the

correct output. In contrast to training an MLP network, learn-

ing in an RBF network can be done in two stages.

1. Adjusting the parameters of the RBF layer, including the

RBF centers cj [ Rd
; j � 1;¼;K; and the scaling para-

meters given through scalars, vectors, or matrices Rj [

F. Schwenker et al. / Neural Networks 14 (2001) 439±458 441



R;[ Rd
; or Rd2

; respectively. Here, d is the dimension

of the input space.

2. Calculation of the output weights wj [ RL for j �
1;¼;L of the network. L is the number of classes.

To determine the centers for the RBF networks, typically

unsupervised training procedures from clustering are used

(Moody & Darken, 1989), whereas in the original use for

interpolation the centers are simply the data points. If the

RBF network has to perform a classi®cation task, supervised

training procedures to determine the RBF centers are also

applicable, because the target values of the input vectors are

given.

In this section we present three completely different types

of algorithms to initialize the RBF centers: unsupervised

clustering methods (Moody & Darken, 1989), supervised

vector quantization (Schwenker, Kestler, Palm, & HoÈher,

1994), and supervised training of decision trees (Kubat,

1998; Schwenker & Dietrich, 2000). We then describe heur-

istics to calculate the scaling parameters of the basis func-

tions and discuss supervised training methods for the output

layer weights.

2.1. Vector quantization to calculate the RBF centers

Clustering and vector quantization techniques are typi-

cally used when the data points have to be divided into

natural groups and no teacher signal is available. Here, the

aim is to determine a small but representative set of centers

or prototypes from a larger data set in order to minimize

some quantization error. In the classi®cation scenario where

the target classi®cation of each input pattern is known,

supervised vector quantization algorithms, such as Koho-

nen's learning vector quantization (LVQ) algorithm, can

also be used to determine the prototypes. We brie¯y

describe k-means clustering and LVQ learning in the

following.

2.1.1. Unsupervised competitive learning

A competitive neural network consists of a single layer of

K neurons. Their synaptic weights vectors c1;¼; cK [ Rd

divide the input space into K disjoint regions R1;¼;RK ,
Rn

; where each set Rj is de®ned by

Rj � {x [ Rd u ix 2 cji � min
i�1;¼;K

ix 2 cji}: �16�

Such a partition of the input space is called a Voronoi tessel-

lation where each weight vector cj is a representative proto-

type vector for region Rj:

When an input vector x [ Rn is presented to the network,

all units j� 1, ¼, k determine their Euclidean distance to

x : dj � ix 2 cji:
Competition between the units is realized by searching

for the minimum distance djp � minj�1;¼;Kdj: The corre-

sponding unit with index j* is called the winner of the

competition and this winning unit is trained through the

unsupervised competitive learning rule

Dcjp � ht�xm 2 cjp� �17�
where cj* is the closest prototype to the input xm . For

convergence, the learning rate h t has to be a sequence of

positive real numbers such that ht ! 0 as the number of

data points presentations t grows up to 1,
P1

t�1 ht � 1
and

P1
t�1 h

2
t , 1:

One of the most popular methods in the cluster analysis is

the k-means clustering algorithm. The empirical quantiza-

tion error de®ned by

E�c1;¼; cK� �
XK
j�1

X
xm[Cj

ixm 2 cji
2
; �18�

is minimal, if each prototype cj is equal to the corresponding

center of gravity of data points Cj :� Rj > {x1
;¼; xM}:

Starting from a set of initial seed prototypes, these are

adapted through the learning rule

cj � 1

uCju

X
xm[Cj

xm
; �19�

which is called batch mode k-means clustering. The itera-

tion process can be stopped if the sets of data points within

each cluster Cj in two consecutive learning epochs are

equal. Incremental optimization of E can also be realized

utilizing learning rule (17) or

Dcjp � 1

Njp 1 1
�xm 2 cjp � �20�

Njp counts how often unit jp was the winning unit of the

competition. The topic of incremental clustering algorithm

has been discussed by Darken and Moody (1990).

Prototypes c1, ¼, cK trained through bate mode k-means,

incremental k-means, or the general unsupervised competi-

tive learning rule can serve as initial locations of centers of

the basis functions in RBF networks.

2.1.2. LVQ learning

It is assumed that a classi®cation or pattern recognition

task has to be performed by the RBF network. A training set

of feature vectors xm is given each labeled with a target

classi®cation ym . In this case, supervised learning may be

used to determine the set of prototype vectors c1, ¼, cK.

The LVQ learning algorithm has been suggested by

Kohonen (1990) for vector quantization and classi®cation

tasks. From the basic LVQ1 version, LVQ2, LVQ3 and

OLVQ1 training procedures have been derived. OLVQ1

denotes the optimized LVQ algorithm. Presenting a vector

xm [ Rd together with its classmembership the winning

prototype j* is adapted according to the LVQ1-learning

rule:

Dcjp � ht�xm 2 cjp� y
m
jp 2

1

2
z
m
jp

� �
: �21�

Here, zm is the binary output of the network and ym is a

F. Schwenker et al. / Neural Networks 14 (2001) 439±458442



binary target vector coding the classmembership for feature

input vector xm . In both vectors zm and ym , exactly one

component is equal to 1, all others are 0. The difference

s
m
jp � 2�ymjp 2 z

m
jp =2� is equal to 1 if the classi®cation of the

input vector is correct and 21 if it is a false classi®cation by

the class label of the nearest prototype. In the LVQ1, LVQ2

and LVQ3 algorithms, h t is a positive decreasing learning

rate. For the OLVQ1 algorithm, the learning rate depends on

the actual classi®cation by the winning prototype, and is not

decreasing in general. It is de®ned by

ht � ht

1 1 s
m
jpht

: �22�

For a detailed treatment on LVQ learning algorithms see

Kohonen (1995). After LVQ training, the prototypes c1,

¼, cK can be used as the initial RBF centers (Schwenker

et al., 1994).

2.2. Decision trees to calculate the RBF centers

Decision trees (or classi®cation trees) divide the feature

space Rd into pairwise disjoint regions Rj. The binary deci-

sion tree is the most popular type. Here, each node has either

two or zero children. Each node in a decision tree represents

a certain region R of Rd . If the node is a terminal node,

called a leaf, all data points within this region R are classi-

®ed to a certain class. If a node has two children then the two

regions represented by the children nodes, denoted by Rleft

and Rright form a partition of R, i.e. Rleft < Rright�R and

Rleft > Rright� 0¤ . Typical decision tree algorithms calculate

a partition with hyperrectangles parallel to the axes of the

feature space, see Fig. 1.

Kubat (1998) presents a method to transform such a set of

disjoint hyperrectangular regions Rj , Rd
; represented by

the leaves of the decision tree, into a set of centers cj [ Rd

and scaling parameters in order to initialize a Gaussian basis

function network. Many software packages are available to

calculate this type of binary decision tree. In the numerical

experiments given in this paper, Quinlan's C4.5 software

was used (Quinlan, 1992).

In Fig. 1, a decision tree and the set of regions, de®ned

through the tree's leaves are shown. Each terminal node of

the decision tree determines a rectangular region in the

feature space Rd, here d� 2. In the binary classi®cation

tree, each node is determined by a feature dimension

i [ {1, ¼, d} and a boundary bi [ R: For each of the

features, the minimum and maximum are additional bound-

ary values, see Fig. 1. Typically, the data points of a single

class are located in different parts of the input space, and

thus a class is represented by more than one leaf of the

decision tree. For instance, class 1 is represented by two

leaves in Fig. 1. Each region R, represented by a leaf, is

completely de®ned by a path through the tree starting at the

root and terminating in a leaf.

For each region Rj, represented by a leaf of the decision

tree, with

Rj � �a1j; b1j� £ ¼ £ �adj; bdj� �23�
an RBF center cj � �c1j;¼; cdj� is determined through

cij � �aij 1 bij�=2; i � 1;¼; d: �24�

2.3. Calculating the kernel widths

The setting of the kernel widths is a critical issue in the

transition to the RBF network (Bishop, 1995). When the

kernel width s [ R is too large, the estimated probability

density is over-smoothed and the nature of the underlying

true density may be lost. Conversely, when s is too small

there may be an over-adaptation to the particular data set. In

addition, very small or large s tend to cause numerical

problems with gradient descent methods as their gradients

vanish.

In general the Gaussian basis functions h1, ¼, hK have the

form

hj�x� � exp�2�x 2 cj�T Rj�x 2 cj�� �25�
where each Rj, j� 1, ¼, K, is a positive de®nite d £ d

matrix. Girosi, Jones, & Poggio (1995) called this type of

basis function a hyper basis function. The contour of a basis

F. Schwenker et al. / Neural Networks 14 (2001) 439±458 443

Fig. 1. A binary decision tree of depth 4 with two features, denoted by x and y, is given (left panel). The data stem from ®ve different classes (denoted by 1, 2, 3,

4, 5) of a two dimensional feature space. Each node is labeled with the selected feature and a boundary value. The corresponding partition into hyperrectangles

parallel to the axes of the feature space is shown (right ®gure), here boundary values and class labels are given. The minima and maxima of each feature within

the training set are additional boundary values. Thus, all regions are bounded.



function, more formally the set Ha
j � {x [ Rd uhj�x� � a};

a . 0; is a hyperellipsoid in Rd, see Fig. 2. Depending on

the structure of the matrices Rj, four types of hyperellipsoids

appear.

1. Rj � 1=2s 2Id with s 2 . 0: In this case all basis func-

tions hj have a radial symmetric contour all with constant

width, and the Mahalanobis distances reduces to the

Euclidean distance multiplied by a ®xed constant scaling

parameter. This is the original setting of RBF in the

context of interpolation and support vector machines.

2. Rj � 1=2s 2
j Id with s 2

j . 0: Here the basis functions are

radially symmetric, but are scaled with different widths.

3. Rj are diagonal matrices, but the elements of the diagonal

are not constant. Here, the contour of a basis function hj is

not radially symmetricÐin other words the axes of the

hyperellipsoids are parallel to the axes of the feature

space, but of different length, see Fig. 2.

In this case Rj is completely de®ned by a d-dimensional

vector sj [ Rd:

Rj � Id
1

2s 2
1j

;¼;
1

2s 2
dj

 !
� diag

1

2s 2
1j

;¼;
1

2s 2
dj

 !
: �26�

4. Rj is positive de®nite, but not a diagonal matrix. This

implies that shape and orientation of the axes of the

hyperellipsoids are arbitrary in the feature space.

We investigated different schemes for the initial setting of

the real-valued and vector-valued kernel widths in transition

to the RBF network. In all cases, a parameter a . 0 has to

be set heuristically.

1. All s j are set to the same value s , which is proportional

to the average of the p minimal distances between all

pairs of prototypes. First, all distances dlk � icl 2 cki
with l� 1, ¼, K and k� l 1 1, ¼, K are calculated

and then renumbered through an index mapping �l; k� !
�l 2 1�K 1 �k 2 1�: Thus, there is a permutation t such

that the distances are arranged as an increasing sequence

with dt�1� # dt�2� # ¼ # dt�K�K21�=2� and s j� s is set to:

sj � s � a
1

p

Xp

i�1

dt�i�: �27�

2. The kernel width s j is set to the mean of the distance to

the p nearest prototypes of cj. All distances dlj � icl 2 cji
with l� 1, ¼, K and l ± j are calculated and re-

numbered through a mapping �l; j� ! l for l , j and

�l; j� ! l 2 1 for l . j, then there is a permutation t
such that dt�1� # dt�2� # ¼ # dt�K21� and s j is set to:

sj � a
1

p

Xp

i�1

dt�i� �28�

3. The distance to the nearest prototype with a different

class label is used for the initialization of s j:

s j � amin{ici 2 cji : class�ci� ± class�cj�; i � 1;¼;K}

�29�

4. The kernel width s j is set to the mean of distances

between the data points of the corresponding cluster Cj:

sj � a
1

uCju

X
xm[Cj

ixm 2 cji �30�

In the situation of vector-valued kernel parameters, the

widths s j [ Rd may be initially set to the variance of

each input feature based on all data points in the correspond-

ing cluster Cj:

s 2
ij � a

1

uCju

X
xm[Cj

�xm
i 2 cij�2 �31�

In the case of RBF network initialization using decision

trees, the kernel parameters can be de®ned through the

sizes of the regions Rj. In this case, the kernel widths are

given by a diagonal matrix Rj, which is determined through

a vector s j [ Rd
: The size of the hyperrectangle Rj de®nes

the shape of a hyperellipsoid:

sj � a

2
��b1j 2 a1j�;¼; �bdj 2 adj��: �32�

These widths are determined in such a way that all RBFs

have the same value at the border of their corresponding

region (see Fig. 2). Kubat (1998) proposed a slightly differ-

ent method, where the RBF centers cj are placed in the

middle of the region Rj, except that the region touches the

border of an input feature i. In this case, the center cj is

placed at this border and the scaling parameter s ij is multi-

plied by a factor of two.

In general, the location and the shape of the kernels repre-

sented by the centers cj and the scaling matrices Rj can be

calculated using a re-estimation technique known as the

expectation-maximization (EM) algorithm (Ripley, 1996).
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Fig. 2. The regions in the feature space de®ned through the leaves of the

decision tree. Centers of the RBFs are located in the middle of each hyper-

rectangle. The contour of the radial basis functions hj(x) are hyperellipsoids.



2.4. Training the output weights of the RBF network

Provided that the centers cj and the scaling parameters,

given by the matrices Rj, of the basis functions have been

determined, the weights of the output layer can be calcu-

lated (Bishop, 1995; Hertz, Krogh, & Palmer 1991). We

assume K basis functions in the hidden layer of the RBF

network. Let �xm
; ym�; m � 1, ¼, M be the set of training

examples with feature vector xm [ Rd and target ym [ Rm
;

Hmj � hj�xm� the outcome of the j-th basis function with the

m -th feature vector xm as input, and Ymj the j-th component

of the m -th target vector ym . Given these two matrices H �
�Hmj� and Y � �Ymj�; the matrix of the output layer weights

W is the result of a minimization of the error function:

E�W� � iHW 2 Yi2
: �33�

The solution is given explicitly in the form W�H1Y
where H1 denotes the pseudo inverse matrix of H which

can be de®ned as

H1 � lim
a!0 1

�HT H 1 aId�21HT
: �34�

Provided that the inverse matrix of �HT H� is de®ned, the

pseudo inverse matrix becomes simply H1 � �HT H�21HT .

The solution W is unique and can also be found by gradient

descent optimization of the error function de®ned in (33).

This leads to the delta learning rule for the output weights

Dwjp � h
XM
m�1

hj�xm��ymp 2 Fp�xm��; �35�

or its incremental version

Dwjp � hthj�xm��ymp 2 Fp�xm��: �36�

After this ®nal step of calculating the output layer weights,

all parameters of the RBF network have been determined.

3. Backpropagation and three-phase learning in RBF
networks

As described in Section 2 learning in an RBF network can

simply be done in two separate learning phases: calculating

the RBF layer and then the output layer. This is a very fast

training procedure but often leads to RBF classi®ers with

bad classi®cation performance (Michie et al., 1994). We

propose a third training phase of RBF networks in the

style of backpropagation learning in MLPs, performing an

adaptation of all types of parameters simultaneously. We

give a brief summary of the use of error-back-propagation

in the context of radial basis function network training (for a

more detailed treatment see Bishop, 1995; Hertz et al.,

1991; Wasserman, 1993).

If we de®ne as the error function of the network a differ-

entiable function like the sum-of-squares error E,

E � 1

2

XM
m�1

XL
p�1

�ymp 2 Fm
p �2; �37�

with Fm
p and ymp as the actual and target output values,

respectively, and consider a network with differentiable

activation functions then a necessary condition for a mini-

mal error is that its derivatives with respect to the para-

meters center location cj, kernel width Rj, and output

weights wj vanish. In the following, we consider the case

that Rj is a diagonal matrix de®ned by a vector sj [ Rd
:

An iterative procedure for ®nding a solution to this

problem is gradient descent. Here, the full parameter set

U � �cj;s j;wj� is moved by a small distance h in the direc-

tion in which E decreases most rapidly, i.e. in the direction

of the negative gradient 27E:

U �t11� � U�t� 2 h7E�U �t��: �38�

For the RBF network (15) for the Gaussian basis function,

we obtain the following expression rules for the adaptation

rules or the network parameters:

Dwjk � h
XM
m�1

hj�xm��ymk 2 F
m
k �; �39�

Dcij � h
XM
m�1

hj�xm� x
m
i 2 cij

s 2
ij

XL
p�1

wjp�ymp 2 Fm
p �; �40�

Dsij � h
XM
m�1

hj�xm� �x
m
i 2 cij�2
s 3

ij

XL
p�1

wjp�ymp 2 Fm
p �: �41�

Choosing the right learning rate or stepsize h is sometimes a

critical issue in neural network training. If its value is too

low, convergence to a minimum is slow. Conversely, if it is

chosen too high, successive steps in parameter space over-

shoot the minimum of the error surface. This problem can be

avoided by a proper stepwise tuning. A procedure for

obtaining such a stepsize was proposed by Armijo (1966).

In the following very brief description of the method we

draw heavily from the papers of Armijo (1966) and Magou-

las, Vrahatis, and Androulakis (1997), for details see the

respective articles. Under mild conditions on the error func-

tion E, which are satis®ed in our setting the following theo-

rem holds:

Theorem (Armijo, 1966). If h 0 is an arbitrarily assigned

positive number, hm � h0=2
m21

; m [ N; then the sequence

of weight vectors �U�t��1t�0 de®ned by

U�t11� � U�t� 2 hmt
7E�U �t��; t � 0; 1; 2;¼ �42�
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where mt is the smallest positive integer for which

E�U�t� 2 hmt
7E�U �t���2 E�U�t�� # 2

1

2
hmt

i7E�U �t��i2
;

�43�
converges to U* which minimizes error function E (locally)

starting from the initial vector U(0).

Using Armijo's theorem Magoulas et al. (1997) proposed

a backpropagation algorithm with variable stepsize, see

(Algorithm 1).

4. Applications

In the following sections we will compare different meth-

ods of initialization and optimization on three different data

sets. Support vector (SV) learning results for RBF networks

are also given.

Classi®ers. For numerical evaluation the following clas-

si®cation schemes were applied.

1NN: Feature vectors are classi®ed through the 1-near-

est-neighbor (1NN) rule. Here, the 1NN rule is applied

to the whole training set.

LVQ: The 1-nearest-neighbor classi®er is trained

through Kohonen's supervised OLVQ1 followed by

LVQ3 training (each for 50 training epochs). The

1NN rule is applied to the found prototypes (see

Section 2.1).

D-Tree: The decision tree is generated by Quinlan's

C4.5 algorithm on the training data set (see Section

2.2).

2-Phase-RBF (data points): A set of data points is

randomly selected from the training data set. These

data points serve as RBF centers. A single scaling

parameter per basis function is determined as the

mean of the three closest prototypes, see Section 2.3.

The weights of the output layer are calculated through

the pseudo inverse solution as described in Section 2.4.

2-Phase-RBF (k-means): A set of data points is

randomly selected from the training data set. These

data points are the seeds of an incremental k-means

clustering procedure and these k-means centers are

used as centers in the RBF network. For each basis

function, a single scaling parameter is set to the

mean of the three closest prototypes, and the output

layer matrix is calculated through the pseudo inverse

matrix solution.

2-Phase-RBF (LVQ): A set of data points is randomly

selected from the training set. These data points are the

seeds for the OLVQ1 training algorithm (50 training

epochs), followed by LVQ3 training with again 50

epochs. These prototypes then are used as the centers

in the RBF network. A single scaling parameter per

basis function is set to the mean of the three closest

prototypes and the output layer is calculated through

the pseudo inverse matrix.

2-Phase-RBF (D-Tree): The decision tree is trained

through Quinlan's C4.5 algorithm. From the resulting

decision tree, the RBF centers and the scaling para-

meters are determined through the transformation

described in Section 2.3. Finally, the weights of the

output layer are determined through the pseudo inverse

matrix.

3-Phase-RBF (data points): The 2-Phase-RBF (data
points) network is trained through a third error-back-

propagation training procedure with 100 training

epochs (see Section 3).

3-Phase-RBF (k-means): The 2-Phase-RBF (k-
means) network is trained through a third error-back-

propagation training procedure with 100 training

epochs.

3-Phase-RBF (LVQ): The 2-Phase-RBF (LVQ)
network is trained through a third error-backpropaga-

tion training procedure with 100 training epochs.

3-Phase-RBF (D-Tree): The 2-Phase-RBF (D-Tree)
network is trained through a third error-backpropaga-

tion training procedure with 100 training epochs.

SV-RBF: The RBF network with Gaussian kernel

function is trained by support vector learning (see

Appendix A). For the optimization the NAG library

is used. In multi-class applications (number of classes

L . 2) an RBF network has been trained through SV

learning for each class. In the classi®cation phase, the

estimate for an unseen exemplar is found through

maximum detection among the L classi®ers. This is

called the one-against-rest strategy (Schwenker,

2000).

Evaluation procedure. The classi®cation performance is

given in terms of k-fold cross-validation results. A k-fold

cross-validation means partitioning the whole data set into

k disjoint subsets and carrying out k training and test runs

always using k 2 1 subsets as the training set and testing

on the remaining one. The results are those on the test sets.
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Algorithm 1

Backpropagation with variable stepsize

Require: Emin;hmin; tmax

t � 0, h � 1/2

while E�U�t�� . Emin&t # tmax do

if t . 0 then

h � iU�t� 2 U�t21�i=2i7E�U �t��2 7E�U �t21��i
end if

while h , hmin do

h � 2h
end while

while E�U�t� 2 h7E�U �t��� . 2
1

2
hi7E�U �t��i2

do

h � h=2
end while

U�t11� � U�t� 2 h7E�U �t��
t � t 1 1

end while



Each of these k-fold cross-validation simulations was

performed several times, ®ve times for the 3D object

recognition, and ten times in the ECG categorization appli-

cation. For the evaluation of the hand-written digits, the

evaluation was performed on a separate test set. Between

subsequent cross-validation runs, the order of the data

points was randomly permuted.

4.1. Application to hand-written digits

The classi®cation of machine-printed or hand-written

characters is one of the classical applications in the ®eld

of pattern recognition and machine learning. In optical char-

acter recognition (OCR) the problem is to classify charac-

ters into a set of classes (letters, digits, special characters

(e.g. mathematical characters), characters from different

fonts, characters in different sizes, etc.). After some prepro-

cessing and segmentation, the characters are sampled with a

few hundred pixels and then categorized into a class of the

prede®ned set of character categories. In this paper we

consider the problem of hand-written digit recognition,

which appears as an important subproblem in the area of

automatic reading of postal addresses.

4.1.1. Data

The data set used for the evaluation of the performance of

the RBF classi®ers consist of 20,000 hand-written digits

(2000 samples of each class). The digits, normalized in

height and width, are represented through a 16 £ 16 matrix

G, where the entries Gij [ {0, ¼, 255} are values taken

from an 8-bit gray scale, see Fig. 3. Previously, this data

set has been used for the evaluation of machine learning

techniques in the STATLOG project. Details concerning

this data set and the STATLOG project can be found in

the ®nal report of STATLOG (Michie et al., 1994).

4.1.2. Results

The whole data set has been divided into a set of 10,000

training samples and a set of 10,000 test samples (1000

examples of each class in both data sets). The training set

was used to design the classi®ers, and the test set was used

for performance evaluation. Three different classi®ers per

architecture were trained, and the classi®cation error was

measured on the test set. For this data set, we present results

for all classi®er architectures described above. Furthermore,

results for multilayer perceptrons MLP, and results

achieved with the ®rst 40 principal components of this

data set for the quadratic polynomial classi®er Poly40, for

the RBF network with SV learning SV-RBF40, and for RBF

network trained by three-phase RBF learning and LVQ

prototype initialization 3-Phase-RBF40 (LVQ) are given,

see Table 1.

For the LVQ classi®er, 200 prototypes (20 per class) are

used. The RBF networks initialized through randomly

selected data points, through centers calculated utilizing k-

means clustering or learning vector quantization also

consisted of RBF centers. The MLP networks consisted of

a single hidden layer with 200 sigmoidal units. The decision

tree classi®er was trained by Quinlan's C4.5 algorithm. It

has been trained with the default parameter settings leading

to an RBF network with 505 centers.

Further results for this data set of hand-written digits can

also be found in the ®nal STATLOG report. The error rates

for the 1NN, LVQ, and MLP classi®ers are similar in both

studies. The error rate for the RBF classi®er in Michie et al.

(1994) is close to our results achieved by 2-Phase RBF
classi®ers with an initialization of the RBF centers utilizing

F. Schwenker et al. / Neural Networks 14 (2001) 439±458 447

Fig. 3. A subset of 60 hand-written digits with six exemplars of each class sampled from the training data set.



k-means, LVQ, and D-Tree. Indeed, the RBF classi®ers

considered in Michie et al. (1994) were trained in two sepa-

rate stages. First, the RBF centers were calculated through

k-means clustering and the pseudo inverse matrix solution

was used to determine the output weight matrix. The perfor-

mance of the RBF classi®ers can signi®cantly be improved

by an additional third optimization procedure in order to

®ne-tune all network parameters simultaneously. All 3-
Phase-RBF classi®ers perform better as the corresponding

2-Phase-RBF classi®ers. The 3-Phase-RBF classi®ers

perform as well as other regression based methods such as

MLPs or polynomials. This is not surprising, as RBFs,

MLPs and polynomials are approximation schemes dense

in the space of continuous functions.

The 1NN and LVQ classi®ers perform surprisingly well,

particularly in comparison with RBF classi®ers trained only

in two phases. The SV-RBF and SV-RBF40 classi®ers

perform very well in our numerical experiments. We

found no signi®cant difference between the classi®ers on

the 256-dimensional data set and the data set reduced to

the 40 principal components.

The error rates for SV-RBF, SV-RBF40, Poly40 and

for RBF classi®ers trained through three-phase learning

with LVQ prototype initialization 3-Phase-RBF and 3-
Phase-RBF40 are very good. Although the perfor-

mances of the SV-RBF and 3-Phase-RBF classi®ers

are similar, the architectures are completely different.

The complete SV-RBF classi®er architecture consists

of 10 classi®ers, where approximately 4200 support

vectors are selected from the training data set. In

contrast, the 3-Phase-RBF classi®ers with a single

hidden layer contain only 200 representative prototypes

distributed over the whole input space.

An interesting property of RBF networks is that the

centers in an RBF network are typical feature vectors and

can be considered as representative patterns of the data set,

which may be displayed and analyzed in the same way as

the data.

In Figs. 4 and 5, a set of 60 RBF centers is displayed in the

same style as the data points shown in Fig. 3. Here, for each

digit a subset of six data points was selected at random from

the training set. Each of these 10 subsets serves as seed for

the cluster centers of an incremental k-means clustering
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Fig. 4. The 60 cluster centers of the hand-written digits after running the incremental k-means clustering algorithm for each of the 10 digits separately. For each

of the 10 digits, k� 6 cluster centers are used in this clustering process. The cluster centers are initialized through data points that are randomly selected from

the training data set.

Table 1

Results for the hand-written digits on the test set of 10,000 examples

(disjoint from the training set of 10,000 examples. Results are given as

the median of three training and test runs

Classi®er Accuracy (%)

1NN 97.68

LVQ 96.99

D-Tree 91.12

2-Phase-RBF (data points) 95.24

2-Phase-RBF (k-means) 96.94

2-Phase-RBF (LVQ) 95.86

2-Phase-RBF (D-Tree) 92.72

3-Phase-RBF (data points) 97.23

3-Phase-RBF (k-means) 98.06

3-Phase-RBF (LVQ) 98.49

3-Phase-RBF (D-Tree) 94.38

SV-RBF 98.76

MLP 97.59

Poly40 98.64

3-Phase-RBF40 (LVQ) 98.45

SV-RBF40 98.56



procedure. After clustering the data of each digit, the union

of all 60 cluster centers is used as RBF centers, the scaling

parameters are calculated and the output layer weights are

adapted in a second training phase as described in Section 2.

These RBF centers are shown in Fig. 4.

The whole set of parameters in RBF network is then

trained simultaneously by backpropagation for 100 training

epochs, see Section 3. During this third training phase, the

RBF centers slightly changed their initial locations. These

®ne-tuned RBF centers are depicted in Fig. 5. Pairs of corre-

sponding RBF centers of Figs. 4 and 5 are very similar. The

distance between these pairs of centers before and after the

third learning phase was only iDcji < 460 in the mean,

which is signi®cantly smaller than the distances of centers

representing the same class (before the third learning phase:

1116 (mean), and after the third learning phase 1153

(mean)) and, in particular, smaller than the distances of

centers representing two different classes (before the third

learning phase: 1550 (mean), and after the third learning

phase: 1695 (mean)). But, calculating the distance matrices

of these two sets of centers in order to analyze the distance

relations between the RBF centers in more detail, it can be

observed that the RBF centers were adapted during this third

backpropagation learning phase.

The distance matrices of the centers are visualized as

matrices of gray values. In Fig. 6 the distance matrices of

the RBF centers before (left panel) and after the third learn-

ing phase (right panel) are shown. In the left distance

matrix, many entries with small distances between proto-

types of different classes can be observed, particularly

between the digits 2, 3, 8 and 9, see Fig. 6. These smaller

distances between prototypes of different classes typically

lead to misclassi®cations of data points between these

classes, therefore such a set of classes is called a confusion
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Fig. 6. Distance matrices (Euclidean distance) of 60 RBF centers before (left) and after (right) the third learning phase in an RBF network. The centers cj are

sorted by the classmemberships in such a way that the centers c1, ¼, c6 are representing the digit 0, centers c7, ¼, c12 are representing the digit 1, etc. Distances

d�ci; cj� between the centers are encoded through gray valuesÐthe smaller the distance d�ci; cj� the darker is the corresponding entry in the gray value matrix.

In the left distance matrix, many small distances from centers of different classes can be observed, in particular the distances between centers of the digits {2, 3,

8, 9} are very small. These small distances outside diagonal blocks often lead to misclassi®cations. These cannot be found in the distance matrix after three-

phase learning (right ®gure).

Fig. 5. The 60 RBF centers of the hand-written digits after the third backpropagation learning phase of the RBF network. Cluster centers shown in Fig. 4 are

used as the initial location of the RBF centers.



class. After the third learning phase of this RBF network,

the centers are adjusted in such a way that these smaller

distances between prototypes of different classes disappear,

see Fig. 6 (right panel). This effect, dealing with the distance

relations of RBF centers, cannot easily be detected on the

basis of the gray value images (Figs. 4 and 5).

4.2. Application to 3D visual object recognition

The recognition of 3D objects from 2D camera images is

one of the most important goals in computer vision. There is

a large number of contributions to this ®eld of research from

various disciplines, e.g. arti®cial intelligence and autono-

mous mobile robots (Brooks, 1983; Lowe, 1987), arti®cial

neural networks (Little, Poggio, & Gamble, 1988; Poggio &

Edelman, 1990; Schiele & Crowley, 1996), computer vision

and pattern recognition (Basri, 1996; Edelman & Duvde-

vani-Bar, 1997; Marr, 1982; Marr & Nishihara, 1978;

Ullmann, 1996), psychophysics and brain theory (BuÈlthoff,

Edelman, & Tarr, 1995; Edelman & BuÈlthoff, 1992;

Logothetis & Scheinberg, 1996). Due to the increasing

performance of current computer systems and the increasing

development of computer vision and pattern recognition

techniques, several 3D object recognition systems have

been developed (Lades, VorbruÈggen, Buhmann, Lange,

v.d. Malsburg, WuÈrtz et al., 1993; Mel, 1997; Murase &

Nayar, 1995; Papageorgiou & Poggio, 2000; Zhu & Yuille,

1996). The recognition of a 3D object consisted of the

following three subtasks (details on this application may

be found in Schwenker & Kestler, 2000).

1. Localization of objects in the camera image. In this

processing step the entire camera image is segmented

into regions, see Fig. 7. Each region should contain

exactly one single 3D object. Only these marked regions,

which we call the regions of interest (ROI), are used for

the further image processing steps. A color-based

approach for the ROI-detection is used.

2. Extraction of characteristic features. From each ROI

within the camera image, a set of features is computed.

For this, the ROIs are divided into n £ n subimages and

for each subimage an orientation histogram with eight

orientation bins is calculated from the gray valued

image. The orientation histograms of all subimages are

concatenated into the characterizing feature vector, see

Fig. 8, here n is set equal to 3. These feature vectors are

used for classi®er construction in the training phase, and

are applied to the trained classi®er during the recognition

phase.

3. Classi®cation of the extracted feature vectors. The

extracted feature vectors together with the target classi-

®cation are used in a supervised learning phase to build

the neural network classi®er. After network training

novel feature vectors are presented to the classi®er

which outputs the estimated class labels.

4.2.1. Data

Camera images were recorded for six different 3D objects

(orange juice bottle, small cylinder, large cylinder, cube,

ball and bucket) with an initial resolution of 768 £ 576

pixels. To these objects, nine different classes were assigned

(bottle lying/upright), cylinders lying/upright). The test

scenes were acquired under mixed natural and arti®cial

lighting, see Fig. 9. Regions of interest were calculated
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Fig. 7. Examples of class bucket of the data set (left) and the calculated region of interest (right).

Fig. 8. Elements of the feature extraction method. From the gray valued image (left) gradient image (center; absolute value of the gradient) is calculated.

Orientation histograms (right) of non-overlapping subimages constitute the feature vector.



from 1800 images using color blob detection. These regions

were checked and labeled by hand, 1786 images remained

for classi®er evaluation. Regions of interest are detected

using three color ranges, one for red (bucket, cylinder,

ball), blue (cylinder) and yellow (cylinder, bucket, orange

juice). The image in Fig. 7 gives an example of the auto-

matically extracted region of interest. Features were calcu-

lated from concatenated 5 £ 5 histograms with 3 £ 3 Sobel

operator, see Fig. 8. This data set of 1786 feature vectors of

R200 serves as the evaluation data set.

4.2.2. Results

In this application for the LVQ classi®ers and the RBF

networks initialized through randomly selected data points,

through prototypes calculated by clustering or vector quan-

tization, 90 centers (10 per class) have been used in the

numerical experiments. The decision tree classi®ers have

been trained by Quinlan's C4.5 algorithm. The decision

trees had approximately 60 leaves in the mean, so the result-

ing RBF networks have approximately 60 centers, see

Table 2.

As in the application to hand-written digits, the 1NN and

particularly the LVQ classi®ers perform very well. The

error rate of the LVQ classi®er was lower than all 2-
Phase-RBF classi®ers, surprisingly also better than the

RBF network initialized with the LVQ prototypes and addi-

tional output layer training. As already observed in the OCR

application, the performance of the 2-Phase-RBF classi®ers

can signi®cantly be improved by an additional third back-

propagation-like optimization procedure. All 3-Phase-RBF
classi®ers perform better as the corresponding 2-Phase-
RBF classi®ers. The decision tree architectures D-Tree,

2-Phase-RBF (D-Tree), and 3-Phase-RBF (D-Tree)
show very poor classi®cation results. This is due to the

fact that the classifying regions given through the tree's

leaves are determined through a few features, in the experi-

ments approximately only eight features in the mean. In this

application, the best classi®cation results were achieved

with the SV-RBF classi®er and the 3-Phase-RBF (LVQ)
trained through three-phase learning with LVQ prototype

initialization.

In Fig. 10, the distance matrices of 9 £ 6� 54 RBF

centers before (left panel) and after (right panel) the

third learning phase of the RBF network are shown. The

RBF centers were calculated as for the application to

hand-written digits, see Section 4.1. In both distance

matrices a large confusion class can be observed, contain-

ing the classes 2±6 and 8. The centers of class 7 are

separated from the centers of the other classes. After the

third learning phase of the RBF network, these distances

between centers of different classes become a little larger.
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Fig. 9. Examples of the real world data set (class 0/1, orange juice bottle upright/lying; class 2/3, large cylinder upright/lying; class 4/5, small cylinder upright/

lying; class 6, cube; class 7, ball; class 8, bucket).

Table 2

Classi®cation results of the camera images. The mean of ®ve 5-fold cross-

validation runs and the standard deviation is given

Classi®er Accuracy (%)

1NN 90.51 ^ 0.17

LVQ 92.70 ^ 0.71

D-Tree 78.13 ^ 1.21

2-Phase-RBF (data points) 87.72 ^ 0.65

2-Phase-RBF (k-means) 88.16 ^ 0.30

2-Phase-RBF (LVQ) 92.10 ^ 0.40

2-Phase-RBF (D-Tree) 77.13 ^ 1.18

3-Phase-RBF (data points) 89.96 ^ 0.36

3-Phase-RBF (k-means) 92.94 ^ 0.47

3-Phase-RBF (LVQ) 93.92 ^ 0.19

3-Phase-RBF (D-Tree) 77.60 ^ 1.17

SV-RBF 93.81 ^ 0.18



This can be observed in Fig. 10 (right panel) where the

number of small distances outside the diagonal blocks is

reduced.

4.3. Application to high-resolution ECGs

In this section, RBF networks are applied to the classi®-

cation of high-resolution electrocardiograms (ECG). The

different training schemes for RBF classi®ers have been

tested on data extracted from the recordings of 95 subjects

separated into two groups. Two completely different types

of feature extraction have been usedÐthe ventricular late

potential analysis and the beat-to-beat ECGs. Thus, we

present results for two different sets of feature vectors (see

Kestler & Schwenker, 2000, for further details).

4.3.1. Background

The incidence of sudden cardiac death (SCD) in the area

of the Federal Republic of Germany is about 100,000 to

120,000 cases per year. Studies showed that the basis for a

fast heartbeat which evolved into a heart attack is a localized

damaged heart muscle with abnormal electrical conduction

characteristics. These conduction defects, resulting in an

abnormal contraction of the heart muscle may be monitored

by voltage differences of electrodes ®xed to the chest. High-

resolution electrocardiography is used for the detection of

fractionated micropotentials, which serve as a non-invasive

marker for an arrhythmogenic substrate and for an increased

risk for malignant ventricular tachyarrhythmias.

4.3.2. Ventricular late potential analysis.

Ventricular late potential (VLP) analysis is herein the

generally accepted non-invasive method to identify patients

with an increased risk for reentrant ventricular tachycardias

and for risk strati®cation after myocardial infarction (HoÈher

& Hombach, 1991). Signal-averaged high-resolution ECGs

are recorded from three orthogonal bipolar leads (X, Y, Z).

These are ®ltered and a vector magnitude V is calculated,

see Fig. 11.

From this vector magnitude signal V three features are

extracted:

² QRSD (QRS duration):

QRSD :� QRSoffset 2 QRSonset

² RMS (Time A:� QRSoffset 2 40 ms):

RMS :�
������������������������������

1

QRSoffset 2 A

XQRSoffset

i�A

V2
i

vuut
² LAS (Duration of the low amplitude signal below 40 mV):

LAS :� QRSoffset 2 argmax{iuVi $ 40 mV}

The three features are used as inputs to the classi®ers, which

are trained to predict the group status. In standard late

potential analysis, a subject is termed VLP positive if two

of the following three criteria are met: QRSD . 115 ms,

RMS , 20 mV, LAS . 38 ms, (Breithardt, Cain, El-Sherif,

Flowers, Hombach, Janse et al., 1991; HoÈher & Hombach,

1991).

4.3.3. Beat-to-beat ECG recordings

High-resolution beat-to-beat ECGs of 30 min duration

were recorded during sinus rhythm from bipolar orthogo-

nal X, Y, Z leads using the same equipment as with the

signal-averaged recordings. Sampling rate was reduced to

1000 Hz. QRS triggering, reviewing of the ECG, and

arrhythmia detection were done on a high-resolution

ECG analysis platform developed by our group (Ritscher,

Ernst, Kammrath, Hombach, & HoÈher, 1997). The three

leads were summed into a signal V� X 1 Y 1 Z. From

each recording, 250 consecutive sinus beats preceded by
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Fig. 10. The distance matrices of 9 £ 6� 54 RBF centers before (left panel) and after (right panel) the third learning phase in an RBF network are given.

Centers cj are sorted by the classmemberships in such a way that the centers c1, ¼, c6 are representing class 0, centers c7, ¼, c12 representing class 1, etc. The

distances d�ci; cj� are encoded through gray values. In the distance matrix calculated before the third learning phase has been started (left), many small

distances for centers of different classes can be observed.



another sinus beat were selected for subsequent beat-to-

beat variability analysis.

In a ®rst step, the signals were aligned by maximizing the

cross-correlation function (van Bemmel & Musen, 1997)

between the ®rst and all following beats. Prior to the quan-

ti®cation of signal variability, the beats were pre-processed

to suppress the main ECG waveform, bringing the beat-to-

beat micro-variations into clearer focus. To achieve this, the

individual signal was subtracted from its cubic spline

smoothed version (spline ®ltering, spline interpolation

through every seventh sample using the not-a-knot end

condition) (de Boor, 1978; Kestler, HoÈher, Palm, Kochs,

& Hombach, 1996). This method resembles a waveform

adaptive, high-pass ®ltering without inducing phase-shift

related artifacts. Next, for each individual beat the ampli-

tude of the difference signal was normalized to zero mean

and a standard deviation of 1 mV. Beat-to-beat variation of

each point was measured as the standard deviation of the

amplitude of corresponding points across all 250 beats. For

the QRS we used a constant analysis window of 141 ms

which covered all QRS complexes of this series (Kestler,

WoÈhrle, & HoÈher, 2000). This 141 dimensional variability

vector is used as input for the classi®ers.

4.3.4. Patients

High-resolution beat-to-beat recordings were obtained

from 95 subjects separated into two groups. Group A

consisted of 51 healthy volunteers without any medication.

In order to qualify as healthy, several risk factors and

illnesses had to be excluded. Group B consisted of 44

patients. Inclusion criteria were an inducible clinical ventri-

cular tachycardia (.30 s) at electrophysiologic study, with

a history of myocardial infarction and coronary artery

disease in angiogram, see Kestler et al. (2000).

4.3.5. Results

For the LVQ classi®ers, 12 prototypes (six per class) are

used. The RBF networks initialized through randomly

selected data points, or through prototypes calculated by

clustering or vector quantization methods also consisted of

12 RBF centers. The decision tree classi®ers trained by

Quinlan's C4.5 algorithm lead to RBF networks with

approximately two RBF centers (in the mean) for the

three input features and to approximately eight RBF centers

(in the mean) for the 141 dimensional times series.

Several topics were touched on in this investigation: the

role of non-invasive risk assessment in cardiology; new

signal processing techniques utilizing not only the three

standard VLP parameters, but also, processing sequences

of beats; and the application of RBF networks in this assess-

ment.

By using the more elaborate categorization methods of

RBF networks compared to VLP assessment on the three

dimensional signal-averaged data, an increase in accuracy

of about 10% could be gained (VLP results: Acc� 72.6%,

Sensi� 63.6%, Speci� 80.4%) for all classi®ers (Table 3).

Accuracy, sensitivity, and speci®city are used for the clas-

si®er evaluation (Fig. 12). For this data set the classi®cation

rate of the LVQ and all RBF classi®ers are more or less the

same. In comparison with the other applications, the deci-

sion tree architectures D-Tree, 2-Phase-RBF (D-Tree), and

3-Phase-RBF (D-Tree) show good classi®cation results.

Unfortunately, the sensitivity of all methods on the 3D

data is still too low to qualify as a single screening test.

In the case of the 141 dimensional beat-to-beat variability

F. Schwenker et al. / Neural Networks 14 (2001) 439±458 453

Fig. 11. Signal-averaged ECG: example of the vector magnitude signal V of a patient with late potentials.



data, there is also a substantial increase (7±15%) in classi®ca-

tion accuracy (see Table 4) compared with categorization via a

single cut-off value on the sum of the variability features (10-

fold cross-validation) (mean ^ stdev): Acc� 68.9 ^ 5%,

Sensi� 66.1 ^ 8.7%, Speci� 71.4 ^ 16.8%) (Kestler et al.,

2000).

For the beat-to-beat data set, the 1NN and the LVQ clas-

si®ers perform very well. As for the OCR and the object

recognition application, the performance of the LVQ clas-

si®ers was better than all 2-Phase-RBF classi®ers; further-

more, the performance of the 2-Phase-RBF classi®ers can

be signi®cantly improved by an additional third learning

phase. All 3-Phase-RBF classi®ers perform better as the

corresponding 2-Phase-RBF classi®ers. In this application

the best classi®cation results were achieved with the SV-
RBF classi®er and the 3-Phase-RBF trained through three-

phase learning with LVQ or k-means center initialization.

In Figs. 13 and 14 the distance matrices are shown for the

3-dimensional signal-averaged data and 141 dimensional

beat-to-beat variability data. For both data sets, 2 £ 6� 12

RBF centers were used. The distance matrices of the RBF

centers were calculated as described in Section 4.1 and are

shown before (left panels) and after the third learning phase

(right panels) of the RBF network. For the 3-dimensional

signal-averaged data, only a small difference between the

two distance matrices can be observed. But, for the 141

dimensional beat-to-beat variability data the third backpro-

pagation learning phase leads to a signi®cant reduction of

the small distances between RBF centers of different

classes.

5. Conclusion

In this paper, algorithms for the training of RBF networks

have been presented and applied to build RBF classi®ers for

three completely different real world applications in pattern

recognition: (a) the classi®cation of visual objects (3D

objects); (b) the recognition of hand-written digits (2D

objects); and (c) the classi®cation of high-resolution elec-

trocardiograms (1D objects).

We have discussed three different types of RBF learning

schemes: two-phase, three-phase, and support vector learning.

For two- and three-phase learning, three different algorithms

for the initialization of the ®rst layer of an RBF network have

been presented: k-means clustering, learning vector quantiza-

tion, and classi®cation trees. This ®rst step of RBF learning is

closely related to density estimation, in particular when unsu-

pervised clustering methods are used. In learning phases two

and three, an error criterion measuring the difference between

the network's output and the target output is minimized. In the

context of learning in RBF networks, we considered support

vector learning as a special type of one-phase learning scheme.

Using only the ®rst two phases is very common, see the

studies on machine learning algorithms (Michie et al., 1994;

Lim, Loh, & Shih, 2000). This has led to the prejudice that

MLPs often outperform RBF networks. Our experience in

the use of RBF networks for these pattern recognition tasks

shows that in most cases the performance of the RBF

network can be improved by applying the gradient descent

after an initial application of the ®rst two learning phases.

Therefore, the most economical approach simply uses the
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Fig. 12. Confusion matrix of a two class pattern recognition problem. The

classi®cation results for the ECG applications are typically given in terms

of the following measures of performance, accuracy (acc), sensitivity

(sensi), speci®city (speci), positive predictive value (PPV), and the negative

predictive value (NPV). These are de®ned through: acc � a 1 d

a 1 b 1 c 1 d
,

sensi � a

a 1 c
, speci � d

b 1 d
, PPV � a

a 1 b
; and NPV � d

c 1 d
: We use the accuracy,

sensitivity, and speci®city for the classi®er evaluation.

Table 3

Classi®cation results for the VLP input features (three features). The mean of ten 10-fold cross-validation simulations and the standard deviation is given

Classi®er Accuracy (%) Sensitivity (%) Speci®city (%)

1NN 76.10 ^ 2.21 79.93 ^ 2.14 72.82 ^ 3.52

LVQ 87.36 ^ 2.44 75.30 ^ 2.02 97.49 ^ 1.92

D-Tree 87.26 ^ 0.99 75.30 ^ 1.76 95.44 ^ 1.66

2-Phase-RBF (data points) 87.36 ^ 2.44 77.39 ^ 1.64 96.04 ^ 2.20

2-Phase-RBF (k-means) 86.94 ^ 2.16 76.54 ^ 3.12 95.88 ^ 2.26

2-Phase-RBF (LVQ) 87.36 ^ 1.56 75.99 ^ 2.52 96.88 ^ 1.33

2-Phase-RBF (D-Tree) 88.10 ^ 1.05 79.35 ^ 1.69 95.65 ^ 1.25

3-Phase-RBF (data points) 87.15 ^ 1.03 77.38 ^ 1.83 95.63 ^ 2.00

3-Phase-RBF (k-means) 86.63 ^ 2.35 76.54 ^ 3.74 95.30 ^ 1.56

3-Phase-RBF (LVQ) 87.36 ^ 1.15 75.99 ^ 2.05 96.89 ^ 1.29

3-Phase-RBF (D-Tree) 88.10 ^ 1.05 79.35 ^ 1.69 95.65 ^ 1.25

SV-RBF 88.36 ^ 0.70 77.39 ^ 1.69 96.04 ^ 1.21



®rst two steps as a fast way of computing a good initializa-

tion for the ®nal gradient descent. In our applications, the

performance of classi®ers trained by two-phase learning

was improved through a third learning phase. The perfor-

mance of RBF networks trained by three-phase learning and

support vector learning is comparable, but RBF networks

trained by support vector learning often lead to a more

complex network structure. A practical advantage of two-

and three-phase learning in RBF networks is the possibility

to use unlabeled training data and clustering algorithms for

the ®rst training phase of the RBF centers.

Comparing RBF networks with MLP networks with one

hidden layer, there seems to be a lot of similarity at ®rst

sight. Both types of networks are based on a universal

approximation scheme, where the network complexity

simply increases with the number of hidden MLP- or RBF

units. In both cases, we have the statistical problem of

choosing the right model complexity, also called the bias±

variance dilemma (Geman, Bienenstock & Doursat, 1993),

but there are important differences. Supervised optimiza-

tion, usually implemented as back-propagation or one of

its variants, is essentially the only resource for training an
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Fig. 13. Distance matrices (Euclidean distance) of 12 RBF centers for the VLP data set (three input features) before (left ®gure) and after (right ®gure) the third

learning phase in an RBF network. The centers cj are sorted by the classmemberships in such a way that the centers c1, ¼, c6 are representing class 0 and

centers c7, ¼, c12 representing class 1. Distances d�ci; cj� are encoded through gray values.

Table 4

Classi®cation results for the beat-to-beat input features (141 features). The mean of ten 10-fold cross-validation simulations and the standard deviation is given

Classi®er Accuracy (%) Sensitivity (%) Speci®city (%)

1NN 77.57 ^ 2.29 62.44 ^ 3.14 87.00 ^ 2.67

LVQ 76.10 ^ 2.44 61.55 ^ 2.87 88.92 ^ 3.46

D-Tree 71.68 ^ 1.72 70.74 ^ 4.95 72.51 ^ 5.15

2-Phase-RBF (data points) 74.73 ^ 2.44 67.39 ^ 3.01 80.92 ^ 2.55

2-Phase-RBF (k-means) 75.68 ^ 3.71 68.40 ^ 4.92 81.97 ^ 3.80

2-Phase-RBF (LVQ) 74.94 ^ 2.52 69.42 ^ 5.34 79.81 ^ 3.33

2-Phase-RBF (D-Tree) 73.89 ^ 3.25 72.31 ^ 4.69 75.19 ^ 4.27

3-Phase-RBF (data points) 76.10 ^ 2.58 69.90 ^ 2.91 81.28 ^ 3.02

3-Phase-RBF (k-means) 77.05 ^ 1.87 71.79 ^ 2.29 81.62 ^ 2.92

3-Phase-RBF (LVQ) 77.05 ^ 2.52 71.41 ^ 3.56 82.00 ^ 3.86

3-Phase-RBF (D-Tree) 74.52 ^ 3.04 70.32 ^ 4.84 78.17 ^ 3.31

SV-RBF 79.05 ^ 1.26 71.79 ^ 2.36 82.38 ^ 2.87

Fig. 14. Distance matrices (Euclidean distance) of 12 RBF centers for the beat-to-beat data set (141 dimensional input features) before (left panel) and after

(right panel) the learning phase in an RBF network. The centers cj are sorted by the classmemberships in such a way that the centers c1, ¼, c6 are representing

class 0 and centers c7, ¼, c12 representing class 1. Distances d�ci; cj� are encoded through gray values. After the third training phase small distances between

centers of different class cannot be observed.



MLP network. There is no option for training the two

network layers separately and there is no opportunity of

network initialization as in RBF networks. MLP units in

the hidden layer can be viewed as soft decision hyperplanes

de®ning certain composite features that are then used to

separate the data as in a decision tree. The RBF units, on

the other hand, can be viewed as smoothed typical data

points.

Given a new data point, the RBF network essentially

makes a decision based on the similarity to known data

points, whereas the MLP network makes a decision based

on other decisions. By this characterization, one is reminded

of the distinction made in arti®cial intelligence between

rule-based and case-based reasoning. It seems that the deci-

sion made by an MLP is more rule-based, whereas that

made by RBF networks is more case-based. This idea is

plausible, as RBF centers can indeed be recognized as repre-

sentative data points and they can actually be displayed and

interpreted in the same way as data points. In our applica-

tions, we observe that the RBF centers moved only a little

during the gradient descent procedure, so that the units in

the RBF network can still be interpreted as representative

data points. This is an important property of RBF networks

in applications where the classi®er system has to be built by

a non-specialist in the ®eld of classi®er design.

Appendix A. Support vector learning in RBF networks

Here, we give a short review on support vector (SV)

learning in RBF networks (Cristianini & Shawe-Taylor,

2000; SchoÈlkopf, Burges, & Smola, 1998; Vapnik, 1998).

The support vector machine (SVM) was initially developed

to classify data points of a linear separable data set. In this

case, a training set consisting of M examples �xm
; ym�; xm [

Rd
; and ym [ { 2 1; 1} can be divided into two sets by a

separating hyperplane. Such a hyperplane is determined by

a weight vector w [ Rd and a bias or threshold u [ R

satisfying the separating constraints

ym� xm
;wh i1 u� $ 1; m � 1;¼;M: �44�

The distance between the separating hyperplane and the

closest data points of the training set is called the margin.

Intuitively, the larger the margin, the higher the generaliza-

tion ability of the separating hyperplane. The optimal separ-

ating hyperplane with maximal margin is unique and can be

expressed by a linear combination of those training exam-

ples lying exactly at the margin. These data points are called

the support vectors. This separating hyperplane with maxi-

mal margin has the form

H�x� �
XM
m�1

ap
mym x;xmh i1 ap

0 �45�

where ap
1;¼;ap

M is the solution optimizing the functional

Q�a� �
XM
m�1

am 2
1

2

XM
m;n�1

amany
myn xm

; xnh i �46�

subject to the constraints am $ 0 for all m � 1, ¼, M andXM
m�1

amym � 0: �47�

A vector of the training set xm is a support vector if the

corresponding coef®cient ap
m . 0: Then, the weight vector

w has the form

w �
XM
m�1

amymxm �
X

m;am.0

amymxm

and the bias ap
0 is determined by a single support vector

�xs
; ys�:

ap
0 � ys 2 w; xsh i:

The SVM approach has been extended to the non-separable

situation and to the regression problem. In most applications

(regression or pattern recognition problems) linear hyper-

planes as solutions are insuf®cient. For example, in real

world pattern recognition problems it is common to de®ne

an appropriate set of nonlinear mappings g � �g1; g2;¼�;
where the gj are de®ned as real valued functions, transform-

ing an input vector xm to a vector g(xm) which is an element

of a new feature space H. Then, the separating hyperplane

can be constructed in this new feature space H and can be

expressed by

H�x� �
XM
m�1

amym g�x�; g�xm�h i1 a0: �48�

Provided H is a Hilbert space and K a kernel K :

H £ H! R satisfying the condition of Mercer's theorem

an explicit mapping g : Rd !H does not need to be

known, because it is implicitly given through

K�x; xm� � g�x�; g�xm�h i:
Kernel function K is representing the inner product

between vectors in the feature space H. With a suitable

choice of a kernel function, the data can become separable

in feature space despite being not separable in the input

space. Using such a kernel function K, the separating

hyperplane is given by

H�x� �
XM
m�1

amymK�x; xm�1 a0:

The coef®cients am can be found by solving the optimiza-

tion problem

Q�a� �
XM
m�1

am 2
1

2

XM
m;n�1

amany
mymK�xn

; xn�

subject to the constraints 0 # am # C for all m � 1, ¼, M

F. Schwenker et al. / Neural Networks 14 (2001) 439±458456



and

XM
m�1

amym � 0

where C is a prede®ned positive number. An important

kernel function satisfying Mercer's condition is the Gaus-

sian kernel function

K�x; y� � e2ix2yi2
=2s 2

:

The separating surface obtained by the SVM approach

is a linear combination of Gaussian functions located at

the support vectors. The SVM reduces to an RBF

network. In contrast to RBF networks described

previously, the centers are now located at certain data

points of the training set and the number of centers is

automatically determined in this approach. Furthermore,

all Gaussians are radially symmetric, all with the same

kernel width s 2.
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