
Available online at www.sciencedirect.com
Computers & Industrial Engineering 54 (2008) 453–473

www.elsevier.com/locate/dsw
Evolving dispatching rules using genetic programming
for solving multi-objective flexible job-shop problems

Joc Cing Tay *, Nhu Binh Ho

Evolutionary and Complex Systems Program, School of Computer Engineering, Nanyang Technological University,

Singapore 639798, Singapore

Received 29 March 2006; received in revised form 27 June 2007; accepted 29 August 2007
Available online 7 September 2007
Abstract

We solve the multi-objective flexible job-shop problems by using dispatching rules discovered through genetic program-
ming. While Simple Priority Rules have been widely applied in practice, their efficacy remains poor due to lack of a global
view. Composite dispatching rules have been shown to be more effective as they are constructed through human experi-
ence. In this paper, we evaluate and employ suitable parameter and operator spaces for evolving composite dispatching
rules using genetic programming, with an aim towards greater scalability and flexibility. Experimental results show that
composite dispatching rules generated by our genetic programming framework outperforms the single dispatching rules
and composite dispatching rules selected from literature over five large validation sets with respect to minimum makespan,
mean tardiness, and mean flow time objectives. Further results on sensitivity to changes (in coefficient values and terminals
among the evolved rules) indicate that their designs are robust.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Flexible job shop; Production scheduling; Genetic programming; Dispatching rules
1. Introduction

In today’s highly competitive marketplace, a high level of delivery performance has become necessary to
satisfy customers. Due to market trends, product orders of low volume, high variety types have been increas-
ing in demand. Hoitomt, Luh, and Pattipati (1993) mentions that these products comprise between 50% and
75% of all manufactured components, thereby making schedule optimization an indispensable step in the
overall manufacturing process.

The job-shop scheduling problem (JSP) is one of the most popular manufacturing optimization models
used in practice (Jain & Meeran, 1998). It has attracted many researchers due to its wide applicability and
inherent difficulty (Carlier & Pinson, 1999; Kolonko, 1999; Nowicki & Smutnicki, 1996; Yamada &
Nakano, 1996). It is also well known that the JSP is NP-hard (Garey, Johnson, & Sethi, 1996), hence
0360-8352/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cie.2007.08.008

* Corresponding author. Tel.: +65 6790 6266.
E-mail address: asjctay@ntu.edu.sg (J.C. Tay).

mailto:asjctay@ntu.edu.sg

454 J.C. Tay, N.B. Ho / Computers & Industrial Engineering 54 (2008) 453–473
general, deterministic methods of search are inefficient as the problem size grows larger. The nxm classical
JSP involves n jobs and m machines. Each job is to be processed on each machine in a predefined
sequence and each machine processes only one job at a time. In practice, the shop-floor setup typically
consists of multiple copies of the most critical machines so that bottlenecks due to long operations or busy
machines can be reduced. As such, an operation may be processed on more than one machine having the
same function. This leads to a more complex problem known as the flexible job-shop scheduling problem
(FJSP). The extension involves two tasks; assignment of an operation to an appropriate machine and
sequencing the operations on each machine. In addition, for complex manufacturing systems, a job can
typically visit a machine more than once (known as recirculation). These three features of the FJSP sig-
nificantly increase the complexity of finding even approximately optimal solutions (Pinedo & Chao,
1999, chap. 3). Furthermore, instead of considering only a single objective, most scheduling problems
in practice involve simultaneous optimization of several competing objectives. Therefore, in order to tackle
the FJSP problems found in practice, efficient optimization strategies are required to deal with both multi-
ple objectives and exponential search space complexity.

The classical JSP and FJSP (in single or multi-objectives) have been solved by many stochastic local search
methods, such as Simulated Annealing (Kolonko, 1999), Tabu Search (Brandimarte, 1993; Mastrolilli & Gam-
bardella, 2000; Nowicki & Smutnicki, 1996), Genetic Algorithms (Ho & Tay, 2004; Kacem, Hammadi, &
Borne, 2002a, Kacem, Hammadi, & Borne, 2002b; Tay & Wibowo, 2004) or Artificial Immune Systems
(Ong, Tay, & Kwoh, 2005). The reported results of applying them show that good approximations of optimal-
ity can be found, albeit at the expense of huge computational cost, particularly when the problem size is large.
In practice, dispatching rules have been applied to avoid these costs (Blackstone, Phillips, & Hogg, 1982; Oli-
ver & Chandrasekharan, 1997; Panwalkar & Wafik, 1977). Although the qualities of solutions produced by
dispatching rules are no better than the local search methods, they are the more frequently applied technique
due to their ease of implementation and their low time complexities. Whenever a machine is available, a pri-
ority-based dispatching rule inspects the awaiting jobs and selects one with the highest priority to be processed
next. Recently, the introduction of composite dispatching rules (CDR) have been increasingly investigated by
the some researchers (Jayamohan & Rajendran, 2004; John & Xiaoming, 2004), but typically only for classical
JSPs. These rules are the heuristic combination of single dispatching rules that aim to inherit the advantages of
the former. Empirically, results show that with careful combination, the composite dispatching rules will per-
form better than the single ones with regards to the quality of schedules. However, little is yet known about the
robustness of such human-made designs to changes in the parameter and operator spaces.

In this paper, we investigate the potential use of genetic programming (GP) for evolving effective and
robust composite dispatching rules for solving the multi-objective FJSP. Although there are many multi-
objective approaches for searching continuous and/or discrete search spaces (Coello, 2005), a survey of the
research literature shows that there are few previous works on dispatching rules that satisfy multiple
objectives simultaneously (Barman, 1997; Jayamohan & Rajendran, 2004; Oliver & Chandrasekharan,
1997). The purpose of this research is to find effective and robust CDRs that perform better than the dis-
patching rules presented in literature for solving the multi-objective FJSP problems. By using a wide train-
ing data set, we believe that the evolved CDRs can be applied directly in practice without further
modifications. Furthermore, these CDRs can be used for population generation in other local search
methods for solving FJSPs, such as Genetic Algorithms (Ho & Tay, 2004; Tay & Wibowo, 2004) or Arti-
ficial Immune Systems (Ong et al., 2005).

The remainder of this paper is organized as follows. Section 2 gives the formal definition of the multi-objec-
tive FJSP. Section 3 gives an overview of GP, reviews recent works for solving the JSP and FJSP using dis-
patching rules, as well as the development of multi-objective Evolutionary Algorithms in literature. Section 4
describes our proposed GP framework for evolving CDRs. Section 5 presents the design of experiments for
performance evaluation while Section 6 analyzes the performance results of using the evolved CDRs obtained
with GP in comparison to the other well-known dispatching rules such as EDD (Earliest Due Date) and SPT
(Shortest Processing Time) for solving the multi-objective FJSPs. We present our results by evaluating the
components of effective CDRs through single-objective optimizations, and then evaluating the evolved CDRs
for multiple objectives simultaneously. Finally, Section 7 gives some concluding remarks and directions for
future work.

J.C. Tay, N.B. Ho / Computers & Industrial Engineering 54 (2008) 453–473 455
2. Problem definition

Similar to the classical JSP, solving the FJSP requires the optimal assignment of each operation of
each job to a machine with known starting and ending times. However, the task is more challenging
than the classical one because it requires a proper selection of a machine from a set of machines to
process each operation of each job. Furthermore, if a job is allowed to recirculate, this will significantly
increase the complexity of the system (Pinedo, 2002, chap. 2). The multi-objective FJSP is formulated as
follows:

• Let J = {Ji}16i6n, indexed i, be a set of n jobs to be scheduled.
• Each job Ji consists of a predetermined sequence of operations. Let Oi,j be operation j of Ji.
• Let M = {Mk}16k6m, indexed k, be a set of m machines.
• Each machine can process only one operation at a time.
• Each operation Oi,j can be processed without interruption on one of a set of machines Mk in a given set

li,j �M with pi,j,k time units.

Let ri, Ci, and di be the release date, completion time and the due date of the job Ji, respectively. The objec-
tives of this problem are to find a schedule that simultaneously satisfies (in a pareto-sense):

• Minimization of makespan: F1 = max{Ci j i = 1, . . . ,n.}

• Minimization of mean tardiness: F 2 ¼
Pn

i¼1
maxfCi�di;0g

n

• Minimization of mean flow time: F 3 ¼
Pn

i¼1
ðCi�riÞ
n

The three objectives in the definition are the typical objectives in production scheduling (Jayamohan
& Rajendran, 2004) that frequently trade-off against each other. For instance, a schedule that satisfies
the minimization of makespan can lead to a larger mean tardiness and mean flow times. Another
example is when a job is scheduled as early as possible to minimize tardiness, this may cause an
increase in the mean flow time. Therefore, the ideal schedule is a schedule that produces trade-offs
among different objectives. In this study, the objective function is constructed by combining the differ-
ent objectives into a weighted sum where all the objectives have the same priority. It can be defined as
follows:
F ¼ 1

3
F 1 þ

1

3
F 2 þ

1

3
F 3
The multi-objective FJSP can also be considered to be a Multi-Purpose Machine (MPM) job-shop (Bruc-
ker, Jurisch, & Krämer, 1997). Using the ajbjc notation of Graham, Lawler, Lenstra, and Kan (1979), the
problem we wish to solve can be denoted by
J MPM j prec ridi j CmaxT �F
where J denotes a job-shop problem, MPM denotes a multi-purpose machine, prec represents a set of
independent chains while ri and di represents release date and due date given to each job Ji, respec-
tively, Cmax represents makespan, T represents mean tardiness and finally F represents mean flow
time.

In this paper, we shall assume that:

• All machines are available at time 0.
• Each job has its own release date and due date.
• The order of operations for each job is predefined and invariant.
• A machine can execute only one operation at a time.

456 J.C. Tay, N.B. Ho / Computers & Industrial Engineering 54 (2008) 453–473
3. Previous works

3.1. Multiple objective optimization for job-shop scheduling

Evolutionary Algorithms (EAs) have been used widely to solve multi-objective optimization problems.
Generally, they can be classified into three approaches: population-based, pareto-based, and aggregation func-
tion (Coello, 2005). Population-based approaches, such as VEGA (Schaffer, 1985), are based on the division of
the current population into s sub-populations where s is the number of objectives. At each generation, s sub-
populations are generated by performing proportional selection according to each objective. The crossover
and mutation operators can be applied as usual to this new population. The drawback of this approach is
to focus only on one objective (per sub-population) at a time. Therefore, the results that are good for more
than one objective may be discarded before combining together to form new population. Pareto-based
approaches use the concept of domination to find the optimal results. It is described as follows: a solution
X dominates a solution Y if the solution X has at least one objective that is better than the corresponding
objective in the solution Y. The image of the Pareto set under the objective function is called the Pareto front.
There are many Pareto-based approaches that are presented in literature. The more popular ones are
NSGA-II (Deb, Pratap, Agarwal, & Meyarivan, 2002) and SPEA (Zitzler & Thiele, 1999) that depend on
elitist selection, fitness sharing, and Pareto ranking. Elitist selection preserves the elite individuals from the
last generation, fitness sharing degrades the fitness values of all competing members of a niche while Pareto
ranking uses dominance concepts for selection to eliminate inferior individuals. The challenge of Pareto-based
approaches is to keep the diversity of the population towards the Pareto front of the problems. The aggrega-
tion function approach, such as the application of Memetic Algorithms for solving flow shop problems in
Ishibuchi, Yoshida, and Murata (2003), is to combine all objectives into a single one using appropriate
combination operators. Due to its simplicity and applicability to GP-based evolution, we employ this
approach to solve the multi-objective FJSP with the same priority for each objective (see Section 2). The dif-
ference between this work and previous approaches on multi-objective evolutionary optimization is that the
latter samples the search space directly without prior training (or with at most incremental training). This
is computationally expensive. Our approach is to use evolutionary-based learning to discover good dispatch-
ing rules and then apply them to schedule jobs. The cost incurred by this training phase is offset by the
constant time complexity of scheduling jobs using the evolved CDRs. We will show that the evolved CDRs
can obtain acceptably good results.

3.2. Types of dispatching rules

Dispatching rules have received much attention from researchers over the past decades (Blackstone et al.,
1982; Oliver & Chandrasekharan, 1997; Panwalkar & Wafik, 1977). In general, whenever a machine is freed, a
job with the highest priority in the queue is selected to be processed on a machine or work center. A compre-
hensive survey on dispatching rules is by Panwalkar and Wafik (1977) and Blackstone et al. (1982). Depending
on the specification of each rule, it can be classified into (Panwalkar & Wafik, 1977):

• Simple Priority Rules,
• CDRs,
• weighted priority indexes, and
• heuristic scheduling rules.

Simple Priority Rules (SPR) are usually based on a single-objective function. They usually involve only one
model parameter, such as processing time, due date, number of operations or arrival time. The Shortest Pro-
cessing Time (SPT) rule is an example of a SPR. When a machine is freed, the next job with the shortest time in
the queue will be removed for processing. SPT has been found to be the best rule for minimizing the mean flow
time and number of tardy jobs simultaneously (Oliver & Chandrasekharan, 1997). The Earliest Due Date
(EDD) rule is another example of a SPR where the next job to be processed is the one with the earliest
due date. Unfortunately, no SPR performs well across every performance measure such as tardiness or flow

J.C. Tay, N.B. Ho / Computers & Industrial Engineering 54 (2008) 453–473 457
time (Barman, 1997). To overcome this limitation, CDRs have been studied to combine good features from
such SPRs.

There are two kinds of CDRs presented in literature; the first type involves deploying a select number of
SPRs at different machines or work centers. Each machine or work center employs a single rule. When a
job enters a specific machine or work center, it is processed by the SPR that is preselected for that machine
or work center. For instance, Barman (1997) applied three different SPRs to solve the flow shop problem cor-
responding to three work centers. Experimental results show that it obtains better results than a single SPR
that is common to all three machines. However, this approach may not be suitable for a shop floor with large
number of machines or work centers, and the best independent distribution of single SPRs is difficult to pre-
determine. Furthermore, it still has the limitation of a localized view. The second type involves applying the
composition of several SPRs (otherwise known as a CDR) to evaluate the priorities of jobs on the queue (Oli-
ver & Chandrasekharan, 1997). The latter type is executed similarly to SPRs; when a machine is free, this
CDR evaluates the queue and then selects the job with the highest priority. For example, Oliver and Chan-
drasekharan (1997) present five CDRs for solving the JSP. Their results indicate that CDRs are more effective
compared to individual SPRs in that the former inherits the simplicity of SPRs while achieving some scalabil-
ity as the number of machines increase. Furthermore, if well designed, CDRs can solve realistic problems with
multiple objectives (Pinedo & Chao, 1999, chap. 3). However, the challenge is to find a good combination and
way of combining of SPRs to form effective CDRs.

Weighted priority index rules are the linear combination of SPRs described above with computed weights
(Jayamohan & Rajendran, 2004; John & Xiaoming, 2004). Depending on specific business domains, the
importance of a job determines its weight. For instance, consider n jobs with different weights w, each job
Ji is assigned weight wi. The minimization of weighted tardiness of all jobs is considered as an objective func-
tion. The sum of the weighted tardiness is given as follows:
T ¼
Xn

i¼1

wiT i ¼
Xn

i¼1

wi �maxð0;Ci � diÞ
In this paper, weighted priority rules are not considered as they are a generalization of our current formu-
lation of total tardiness where we have assumed instead that all jobs have unit weights (or all jobs are equally
important) (see Section 2).

Heuristic rules are rules that depend on the configuration of the system. These rules are usually used
together with previous rules, such as SPRs, CDRs or weighted priority index rules. For instance, the heuristic
rules may use the expertise of human experience, such as inserting an operation of a job into an idle time slot
by visual inspection of a schedule (Panwalkar & Wafik, 1977).

The results from recent researchers (Barman, 1997; Oliver & Chandrasekharan, 1997) show that CDRs out-
perform individual SPRs in improving the overall efficiency of a shop floor. Furthermore, Jayamohan and
Rajendran (2000) mention that there are no rules so far that have been found to perform well on multiple
objectives related to flow time and due date. In this work, we focus on finding a computational method to
build effective and robust CDRs that are based on the composition of fundamental measures rather than
on the algebraic combination of SPRs. These CDRs are evolved to obtain good schedules on multiple objec-
tives, instead of only a single objective. However, this may be difficult to enumerate manually due to the large
parameter and operator space, hence we employ a GP framework.

3.3. Evolving dispatching rules with genetic programming

Genetic programming (GP) (Koza, 1992) belongs to a family of evolutionary computation methods. It is
based on the Darwinian principle of reproduction and survival of the fittest. Given a set of functions and ter-
minals and an initial population of randomly generated syntax trees (representing programs), these programs
are then evolved through genetic recombination and natural selection. GP has been applied to many different
problems; from classical tasks, such as function fitting or pattern recognition, to non-trivial tasks that are
competitive with significant human endeavours such as designing electrical circuits (Koza, Bennett, Andre,
Keane, & Dunlap, 1997) or antennas (Lohn, Hornby, & Linden, 2004).

458 J.C. Tay, N.B. Ho / Computers & Industrial Engineering 54 (2008) 453–473
The most important feature that distinguishes GP from the canonical GA is its ability to dynamically
vary the logical structure and size of evolved computer programs. It can therefore solve more challenging
problems that have eluded the canonical GA due to the latter’s requirement of a fixed-length chromosome.
However, GP has rarely been directly applied to solve schedule optimization (Dimopoulos & Zalzala,
2001) problems; this is due to the direct permutation property of scheduling where jobs and/or machines
can be simply reordered (in the case of JSP) to improve optimality. For instance, the chromosomes pre-
sented in Kacem et al. (2002a, 2002b), Ho and Tay (2004), Tay and Wibowo (2004) have fixed lengths,
which can be evolved easily by direct permutation. On the other hand, GP uses a tree-based encoding with
dynamic length; making it difficult to encode the JSP (for that matter, a FJSP) into a tree-based chromo-
some. Unlike previous approaches (Barman, 1997; Jayamohan & Rajendran, 2004; John & Xiaoming,
2004; Oliver & Chandrasekharan, 1997), where a predefined set of SPRs were combined in advance by
human experience, we apply GP to find superior constructions of CDRs which are composed of fundamen-
tal terminals (see Table 1).

4. Design of the GP framework

In GP, an individual (i.e., computer program) is composed of terminals and functions. Therefore, when
applying GP to solve a specific problem, they should be carefully selected and designed to satisfy the require-
ments of the current problem. After evaluating many parameters related to the FJSP, the terminal set and the
function set that are used in our algorithm are described as follows.

4.1. Terminal set

In job-shop scheduling, there are many operational parameters that can effect the quality of results;
potentially, all of them can be considered to comprise a dispatching rule. However, in order to create a
short and meaningful dispatching rule, only a small number of parameters is used. Doing so also
reduces the search space and improves the efficiency of the scheduling algorithm. Based upon the dis-
patching rules involving due dates in Panwalkar and Wafik (1977), Blackstone et al. (1982), Oliver
and Chandrasekharan (1997) and our experimental work, the terminal set proposed in this study is given
in Table 1.

In Table 1, CurrentTime represents the time when a particular machine is free and starts to select a job to
process on its queue. RemainingTime corresponds to the elapsed time for the current job to finish. Some
previous dispatching rules use total processing time of each job as one of their parameters. However, in FJSP,
as an operation of each job can be processed on a set of machines (see Section 2), we therefore normalize the
average processing time of each operation with the following formula:
Table
Termin

Termin

Relea

DueDa

Proce

Curre

Remai

numOf

avgTo
�pi;j ¼
P

nðF ðOi;jÞÞpi;j;k

nðF ðOi;jÞÞ

where pi,j,k stands for processing time of operation Oi,j on machine Mk and n(F(Oi,j) represents the number of
machines that can process Oi,j.
1
al set

al Meaning

seDate Release date of a job (RD)
te Due date of a job (DD)
ssingTime Processing time of each operation (PT)
ntTime Current time (CT)
ningTime Remaining processing time of each job (RT)
Operations Number of operations of each job (nOps)
talProcTime Average total processing time of each job (aTPT)

Table 2
Function set

Function Meaning

+ Addition
� Subtraction

* Multiplication
/ Division
ADF(x1,x2) Automatically defined function

J.C. Tay, N.B. Ho / Computers & Industrial Engineering 54 (2008) 453–473 459
4.2. Function set

Similar to other applications of GP (Koza, 1992; Koza et al., 1997; Lohn et al., 2004) for solving optimi-
zation problems, we use four basic operators: addition, subtraction, multiplication, and division for creating
our CDR. Furthermore, we employ the well-known automatically defined function (ADF) (proposed by
Koza, 1994, chap. 4). The ADF is sub-tree which can be used as a function in the main tree. The size of
the ADF is varied in the same manner as the main tree. It enables GP to define useful and reusable subroutines
dynamically during its run. The results from Koza (1994, chap. 4) indicate that GP using ADF outperforms
GP without ADF in solving the same optimization problem. As more parameters are used in ADF, more
changes will be needed for GP to evolve good subroutines. This can lead to a higher number of generations,
hence we limit the ADF used in our approach to two parameters. The operators used in the ADF are also the
four basic operators mentioned above (listed in Table 2).
4.3. Fitness function

The obtained results from each generation of GP are a set of computer programs represented as trees. As
mentioned in Section 2, the objective in our study is to find effective CDRs for solving the multi-objective
FJSPs. Therefore, we propose a method to form a CDR from the tree-based result of GP. This CDR is then
combined with the least waiting time assignment (Ho & Tay, 2004) to evaluate the fitness value of the FJSPs.
These two processes are described in detail as follows.

To find a suitable machine to process an operation Oi,j, we apply the least waiting time assignment on the set
of setting machines that can process Oi,j. This assignment is intended to reduce the workloads of the machines
by balancing operations to be assigned. It is calculated by summing all the subsequent operations in the wait-
ing list plus the remaining processing time on each machine and the processing time of Oi,j. Therefore, it
depends on the total time this operation has to wait to be processed in the worst case, not relying only on
its own processing time.

In determining the proper order of operations on the queue of a particular machine, we use the CDR gen-
erated by GP. When a machine is freed, the generated rule is applied directly to the set of operations that are
waiting in the queue of the machine. The operation with the highest priority is then selected to be processed on
the machine. Fig. 1 below gives an example of a dispatching rule tree generated by GP:

Fig. 1 shows the overall structure of the generated tree that gives a possible CDR. The left child of progn

shows the function-defining branch (containing the defun). In this case, the ADF function is defined by:
ADF(x1,x2) = x1 * x2. The right child gives the result-producing branch. This CDR therefore represents
the following formula:
ðDD� CRÞ
ðDD�RDÞ þADFðPT; nOpsÞ
Since ADF(x1,x2) = x1 * x2, we obtain:
ðDD� CRÞ
ðDD�RDÞ þ ðPT � nOpsÞ

values

defun

ADF x1 x2

∗

x1 x2

progn

values

/

DD

− +

nOps

CR − ADF

DD RD PT

Fig. 1. Example of a GP tree with defined functions and terminals.

460 J.C. Tay, N.B. Ho / Computers & Industrial Engineering 54 (2008) 453–473
Any tree in the genomic population of GP that contains our defined functions and terminals can be inter-
preted as a CDR in the same way.
5. Experimental design

In this section, we describe the parameter settings used for our GP framework and the generation of test
cases for evolving and evaluating CDRs.
5.1. GP parameter setting

Through experimentation, the set of parameters used in our GP framework is listed in Table 3.
We implemented Ramped half and half to generate the initial population of GP. This method was proposed

by Koza (1992) and it has been widely used by previous researchers. It divides the initial population into two
parts; half of which contains the randomly generated trees with maximum depth (in this experiment is 7) and
the remaining half contains the randomly generated trees with depth values ranging from one to the maximum
depth. In order to keep the best trees that may be destroyed by GP’s operators, we sort the current population
and copy five of them to the next generation. Although the size of the population is 100, we maintain its diver-
sity by using high values of crossover, mutation rates (maximum depth for creation 7, maximum depth for
crossover 17, crossover probability 100%, swap mutation probability 3%, shrink mutation probability 3%)
and the creation type Ramped half and half.
5.2. Test case generation

Various experiments were conducted to evaluate the efficiency of our proposed algorithms. In practice, an
operation can be processed on any of a group of machines that constitute a work center. We model this with
Table 3
Choice of parameter values

Parameter Values

Population size 100
Number of generations 200
Creation type Ramped half and half
Maximum depth for creation 7
Maximum depth for crossover 17
Crossover probability 100%
Swap mutation probability 3%
Shrink mutation probability 3%
Number of best rules copy to new generation 5

Table 4
Simulation parameters

Parameter Value

Flexibility 100% (FJSP-100), 50% (FJSP-50), 20% (FJSP-20)
nJobs · nMachines 10 · 5, 20 · 5, 50 · 5, 20 · 10, 50 · 10, 100 · 10, 50 · 15, 100 · 15,

and 200 · 15
pi,j,k U[(nMachines)/2, (nMachines) · 2]
dev(pi,j,k,pi,j,l) 5
ri if nJobs � 50: U[0,40]; otherwise, U[0,20]
c 1.2 (tight), 1.5 (moderate), 2 (loose)
di ri þ c�

Pni
j¼1pij

J.C. Tay, N.B. Ho / Computers & Industrial Engineering 54 (2008) 453–473 461
three experimental designs: FJSP with 100% flexibility (FJSP-100), FJSP with 50% flexibility (FJSP-50), and
FJSP with 20% flexibility (FJSP-20). FJSP with c% flexibility implies that at most c% of the total number of
machines are available to process an operation. The number of jobs (nJobs) and the number of machines
(nMachines) range from 10 to 200 and 5 to 15, respectively. The processing time of each operation was drawn
out of U[(nMachines)/2, (nMachines) · 2], where U refers to the uniform distribution. The variance of these
processing times is in practice, ideally zero or very small. Therefore, in our test cases, we set the maximum
processing time difference between two operations to be 5 unit times. The release date of each job depends
on the number of jobs in a particular test case. If the number of jobs is larger than 50, the release date is drawn
out of U[0, 40], else it is taken from U[0,20]. Baker (1984) proposed a formula to estimate the due date of a job
using the TWK-method:
di ¼ ri þ c�
Xni

j¼1

pij
where ri and di denote the release and due dates of job i, respectively. pij presents the processing time of
operation Oij, and c denotes the tightness factor of the due date. The larger the value of c, the looser is
the job’s due date. We adapt this formula to generate due dates of jobs by replacing the parameter piq

with �piq. Depending on the tightness of the due date, we separate the samples of each class FJSP-100,
FJSP-50 or FJSP-20 into tight, moderate, or loose due date corresponding to values of c = 1.2, 1.5,
and 2. We also generate mixed samples where each sample contains 34% of jobs with tight due dates,
33% of jobs with moderate due dates and the remaining ones with loose due dates. Specifically, the class
FJSP-100 holds 9 samples of tight due dates, 9 samples of moderate due dates, 9 samples of loose due
dates, and 9 samples of mix due dates. Similarly for FJSP-50 and FJSP-20, with 36 samples each. The
simulation parameters are summarized in Table 4 below:

With the simulation parameters described above, our training set contains three classes of 108 FJSP prob-
lems with different quantities of jobs and machines, associated with different flexibilities. The total number of
jobs that are used to calculate mean tardiness and mean flow time for each class is 2400. Another five valida-
tion sets of a similar composition using the same simulation parameters were generated. The training set is
employed as input to the GP framework to evolve CDRs. These rules are applied to then solve the multi-objec-
tive FJSP problems in the five validation sets. The average results of the five validation sets are reported in the
following section.
6. Analysis of experimental results

This section reports and analyses the results of our experiments for evolving CDRs using our GP frame-
work. The system was implemented using C++, running on a 2 GHz PC with 512 MB RAM. Firstly, the best
five evolved CDRs and five selected SDRs and CDRs in literature are reported. As mentioned earlier in Sec-
tion 4.3, the least waiting time assignment (Ho & Tay, 2004) is used to find a suitable machine to process an
operation Oi,j. However for the first assignment, all the machines are idle, therefore there are no operations on

462 J.C. Tay, N.B. Ho / Computers & Industrial Engineering 54 (2008) 453–473
the machine’s queues waiting for processing. Hence, we generate a random array of job orders and assign their
first operations for the first machine assignment. The remaining ones are automatically assigned by the least

waiting time assignment and by a CDR. Depending on the positions of the first operations in the job order, the
end result could be different. In order to analyze the efficacy of the evolved rules and the appropriate combi-
nation of parameters to generate CDRs by GP, they are evaluated with respect to mean values of makespan,
total tardiness and mean flow time after 500 runs. Besides the three objectives described in Section 2, our
results also show that the percentage of tardy jobs is reduced significantly. This measurement is common in
literature in comparing the performance of dispatching rules (Barman, 1997; Jayamohan & Rajendran,
2004; Oliver & Chandrasekharan, 1997). The performances of the evolved CDRs on each objective and on
all objectives are analyzed and discussed. For comparative studies, we employed the technique called one
way analysis of variances (ANOVA) (Johnson, 2001; Quek & Tay, 2000). The function of the ANOVA is
based on the ratio of variations. It tests the difference between the means of two or more groups. In this paper,
it is used to compare the sample mean of a particular objective for an evolved rule with other sample means
(for other rules) that overlap with the former’s confidence interval (CI). If an overlap exists, this implies some
uncertainty concerning the existence of a performance differential. The values of 95% CI for each sample mean
were calculated and presented.

6.1. The best five evolved CDRs

The best five dispatching rules selected from 5 runs of GP on the training set are given in Table 5; where
possible, they have been simplified algebraically.

In order to compare the effectiveness of the evolved rules over that of human-made rules presented in lit-
erature, five frequently used single and composite dispatching rules were selected as benchmarks:

• FIFO (First In First Out): select the next job in front of the queue. This rule is often used in practice since it
is simple and easy to implement (Blackstone et al., 1982).

• SPT (Shortest Processing Time): select the job with the shortest processing time. This rule is commonly used
as a benchmark for minimizing mean flow time and percentage of tardy jobs (Jayamohan & Rajendran,
2000).

• EDD (Earliest Due Date): select the job with the earliest due date. This rule is the most popular due date
based rule. It is known to be used as a benchmark for reducing maximum tardiness and variance of tardi-
ness (Jayamohan & Rajendran, 2000).

• MDD (Modified Due Date) (=max{CT + PTi,DDi}): process the jobs in non-decreasing order of MDD.
This rule is aimed to minimize total tardiness of jobs (John & Xiaoming, 2004).

• SL (Slack Time) (=DDi � CT � RTi): select the job with the minimum slack time. This rule is also used to
reduce total tardiness of jobs (Oliver & Chandrasekharan, 1997).

Blackstone et al. (1982) mentions that the study of job shops by analytic techniques, such as queuing the-
ory, becomes extremely complex even for small problems. Therefore, the use of simulation for analyzing dis-
patching rules is unavoidable. Due to the same difficulty in examining the dispatching rules for solving FJSPs,
we also rely on simulation to study the rules’ effectiveness.
Table 5
GP generated dispatching rules

Rule Expression

Rule_1 RD + 2PT + 2aTPT + nOps
Rule_2 RD + PT + 2aTPT
Rule_3 7aTPT + 11PT + 12(nOps + RD)
Rule_4 (RD + DD) + 2(RD + aTPT) + PT � nOps
Rule_5 (RD + DD) + (aTPT + PT) � 2(RD/nOps)

800

820

840

860

880

900

920

940

960

980

FJSP-100 FJSP-50 FJSP-20

FJSP Data

M
ak

es
pa

n

FIFO
SPT
EDD
MDD
SL
Rule_1
Rule_2
Rule_3
Rule_4
Rule_5

Fig. 2. Comparing makespan of dispatching rules on different FJSP data.

J.C. Tay, N.B. Ho / Computers & Industrial Engineering 54 (2008) 453–473 463
6.2. Makespan

Fig. 2 shows the makespan results of dispatching rules presented in Section 6.1 on different FJSP data. The
results indicate that the FIFO rule emerges as the best in minimizing the makespan objective in all cases
regardless of changing the flexibility of the problem instances. This is because FIFO uses the release dates
(RD) to schedule the jobs on the queue. The jobs with early release dates are more likely to be selected to
be processed than the later ones. Therefore, the overall completion time of the schedule (makespan) is reduced.
The composite dispatching rule SL ranks second in minimizing the makespan objective. The reason for good
performance of this rule is that it reduces the deviation of job completion from the due date. Consider two jobs
that have the same due date, the job with the larger remaining time (RT) will have higher priority. Among the
five selected rules from literature (FIFO, SPT, EDD, MDD, SL), the EDD rule is the worst in minimizing the
makespan. This is because EDD concentrates only on due dates. The obtained schedule minimizes the objec-
tives related to due date, such as mean tardiness, but the completion time of whole system is ignored.

The makespan values of the five evolved rules fare better than the EDD. Fig. 3 represents the mean make-
spans of EDD and five evolved rules with 95% CI after 500 runs. The X axis represents the rules and the Y axis
represents the mean values of each rule with 95% CI. Among these rules, Rule_3 achieves better results than
the others. Furthermore, its CI does not overlap with the others. Therefore, it is considered the best rule
among EDD and the evolved rules for minimizing the makespan. These results could be explained by the pres-
ence of the parameter 12 · RD in its formula. Similar to the FIFO rule where release date (RD) contributes
mainly in reducing makespan objective, this parameter also helps Rule_3 obtain better results than remaining
ones. Another plausible inference of the importance of the parameter RD is the fact that Rule_3 is better than
the others due in part as their formulas contain only 1 · RD, 2 · RD, or 3 · RD.
6.3. Mean tardiness

Fig. 4 compares the mean tardiness of dispatching rules on different FJSP data. The FIFO rule obtains
good results in minimizing the makespan (see Section 6.2). However, it performs poorly in minimizing mean
tardiness in comparison with the others. This is because the due dates of jobs are ignored by FIFO. The com-
posite dispatching rule SL can obtain better results than FIFO in minimizing mean tardiness but its results are
still poor in comparison to the remaining rules. The results of minimizing mean tardiness in Fig. 4 indicate that
MDD and EDD outperform SL. From the definitions of MDD and SL described above, we observe that
although these two composite rules contain similar parameters (DD and CT), the gap between the results
of the two rules are quite large due to different algebraic combinations of the parameters. This implies that
the functions that combine the rules can significantly affect the results. Blackstone et al. (1982) mentions that
the SPT seems to be the best rule when the problem does specify due dates or have very tight due dates for a

500500500500500500N =

Rule_5Rule_4Rule_3Rule_2Rule_1EDD
500500500500500500N =

Rule_5Rule_4Rule_3Rule_2Rule_1EDD

500500500500500500N =

Rule_5Rule_4Rule_3Rule_2Rule_1EDD

95
%

 C
I M

ak
es

pa
n

847

846

845

844

843

842

95
%

 C
I M

ak
es

pa
n

897

896

895

894

FJSP-100 FJSP-50

95
%

 C
I M

ak
es

pa
n

989

988

987

986

985

984

FJSP-20

Fig. 3. Mean makespan data distribution with 95% confidence interval after 500 runs.

464 J.C. Tay, N.B. Ho / Computers & Industrial Engineering 54 (2008) 453–473
classical job shop. When the problem specifies loose or moderate due dates then EDD seems to be the best.
However, the results presented in Fig. 4 indicate the contrary, that EDD outperforms SPT for all classes of
due date constraints. The EDD is the best rule among five dispatching rules selected from literature for solving
the FJSPs. This could be explained by the flexibility feature of FJSPs where an operation can be processed on
one of several machines. When a FJSP specifies tight due dates, each job in this problem still has alternative
routes to take through the system, not just one route as in the classical JSP. Therefore, if the job on the queue
is selected by EDD, it is more likely to finish on time. Although the other rules such as SL or MDD also con-
tains the parameter – due date (DD), EDD obtains almost 30% better results than these rules. This again dem-
onstrates that if an ineffective composite dispatching rule is applied to specific problems, it may achieve worse
results than the single ones.

Fig. 5 represents the mean tardiness values of EDD and five evolved rules with 95% CI. The best perform-
ing rule in minimizing mean tardiness is the generated rule – Rule_1 (RD + 2PT + 2aTPT + nOps). Since its
CI does not overlap with the others, it is considered to be the best rule among them to minimize mean tardi-
ness. Statistical analysis shows that all evolved rules perform statistically better than the EDD at the 5% level

200

250

300

350

400

450

500

FJSP-100 FJSP-50 FJSP-20

FJSP Data

M
ea

n
Ta

rd
in

es
s

FIFO

SPT

EDD

MDD

SL

Rule_1

Rule_2

Rule_3

Rule_4

Rule_5

Fig. 4. Comparing mean tardiness of dispatching rules on different FJSP data.

J.C. Tay, N.B. Ho / Computers & Industrial Engineering 54 (2008) 453–473 465
of significance. Jayamohan & Rajendran (2000) mentions that the use of both due date information and pro-
cessing time can lead to good results in minimizing mean tardiness. Our five evolved rules present evidence for
this conclusion as their formulation contains these parameters. Furthermore, we find that some parameters,
such as total number of operations (nOps) and total processing time of job (aTPT), are ignored or considered
insignificant by previous researchers but do contribute to reducing mean tardiness. For example, the formula
of Rule_3 indicates that jobs with higher number of operations have higher priority. Furthermore, the results
of Rule_4 in Fig. 5 also demonstrate the sensitivity of parameter combinations. Rule_4 also has parameter
nOps. However, its results are worse than the other due to the factor �1 is used (�nOps) to form the rule.

6.4. Mean flow time

Fig. 6 shows the mean flow times of dispatching rules on different FJSP data. The results indicate that
FIFO obtains the worst result since it has the same disadvantages described in the previous section. The
EDD rule gets the best results in all cases among the five selected rules from literature. The second rank goes
to the MDD rule. These results are contrary to the results of minimizing the flow time for a flow shop (Bar-
man, 1997) where the SPT was reported to outperform the EDD. This anomaly could be explained by the flex-
ibility of the FJSP where an operation has more than one machine to select to be processed. The least waiting

time assignment (see Section 4.3) already helps to find suitable machines to assign jobs. Consequently, the wait-
ing time of the whole system is reduced. Therefore, if a job with early due date is considered, it is more likely to
finish sooner.

Fig. 7 represents the mean flow times of EDD and five evolved rules with 95% CI. Rule_3 is the best for
solving both FJSP-100 data and FJSP-50 data. In the FJSP-20 data, although the mean value of Rule_1 is
smaller than the mean value of Rule_3, we cannot conclude that Rule_1 is better than Rule_3 as their CIs over-
lap. In order to verify that Rule_1 is significantly different from the remaining ones, we applied ANOVA to
analyze the data. Since F = 1248.86 is greater than Fcritical = 2.21, there is sufficient evidence to reject the null
hypothesis that the samples are not significantly different. Therefore, Rule_1 is the best for solving FJSP-20
data with mean flow time objective. Fig. 7 also shows that the evolved rules outperform EDD in all cases.
A closer look at the formulas of the five evolved rules validates the conclusion from Barman (1997) where
the combination of the SPT and the EDD provide excellent mean flow time performance. All of them contain
the parameters – release date (RD) and processing time (PT) which help to reduce the flow time of the jobs.
Moreover, the two best rules Rule_1, Rule_3 also contain the parameter – average total processing time
(aTPT). This provides an important factor to reduce the travel time of jobs in the system where the mean tar-
diness objective is concerned. With the contribution of this factor, a job with shorter total processing time is
more likely to finish early, and consequently the total flow time of all jobs will be minimized.

95
%

 C
I M

ea
n

Ta
rd

in
es

s

239.0

238.5

238.0

237.5

237.0

236.5

236.0

235.5

235.0

95
%

 C
I M

ea
n

Ta
rd

in
es

s

258

257

256

255

254

FJSP-100 FJSP-50

95
%

 C
I M

ea
n

Ta
rd

in
es

s

286

285

284

283

282

281

280

FJSP-20

500500500500500500N =

Rule_5Rule_4Rule_3Rule_2Rule_1EDD
500500500500500500N =

Rule_5Rule_4Rule_3Rule_2Rule_1EDD

500500500500500500N =

Rule_5Rule_4Rule_3Rule_2Rule_1EDD

Fig. 5. Mean Tardiness Data Distribution with 95% confidence interval after 500 runs.

466 J.C. Tay, N.B. Ho / Computers & Industrial Engineering 54 (2008) 453–473
6.5. Percentage of tardy jobs

Fig. 8 shows the percentage of tardy jobs of dispatching rules on different FJSP data. Among the five
selected rules from literature, the FIFO rule again obtains the worst results in minimizing the percentage of
tardy jobs. The MDD rule emerges to be the best for this category. The EDD and the SPT rank second
and third, respectively. The deviation between the EDD and the MDD is statistically insignificant. The better
performance of the EDD and MDD in comparison to the SPT could be explained by the use of the due date
parameter. The job with early due date is scheduled to be processed sooner. Therefore, the number of tardy
jobs will increase.

Fig. 9 represents the mean percentage of tardy jobs of the EDD, MDD and the five evolved rules with 95%
CI. Among all the rules tested in Fig. 9, we can conclude that Rule_2 is the best for solving FJSP-50 data and
FJSP-20 data since it obtained the smallest mean values and its CIs do not overlap with the other rules. How-
ever, on FJSP-100 data, its mean value is the smallest one but its CI overlaps with the mean value of Rule_1.
By applying ANOVA, we obtain F = 5699.78 which is greater than Fcritical = 2.10. Therefore, there is sufficient
evidence to reject the null hypothesis that the samples are not significantly different. It implies that Rule_2 is

200

250

300

350

400

450

500

550

600

650

FJSP-10 0 FJSP-50 FJSP-20

FJSP Data

M
ea

n
Fl

ow
 T

im
e

FIFO
SPT
EDD
MDD
SL
Rule_1
Rule_2
Rule_3
Rule_4
Rule_5

Fig. 6. Comparing mean flow time of dispatching rules on different FJSP data.

J.C. Tay, N.B. Ho / Computers & Industrial Engineering 54 (2008) 453–473 467
the best for solving FJSP-100 data. Furthermore, the other evolved rules also get better results than the EDD
and MDD rules. The results of these rules are in agreement with the results in literature (Blackstone et al.,
1982; Jayamohan & Rajendran, 2000) where process time (PT) plays an important role with respect to min-
imizing percentage of tardiness. The parameter PT appears in the formulas of our five evolved rule. Besides
this parameter, we found that the release date (RD) parameter also contributes much to the success of min-
imizing this objective. It is used in all five evolved rules. The job with early release date will be selected to be
processed, and consequently the percentage of tardy jobs is reduced.

6.6. Sensitivity of parameters

Although the five evolved rules are only better than the EDD in minimizing the makespan objective, they
are all better than the other five selected rules with respect to the remaining objectives. In this sense, it can be
concluded that the evolved rules produced by our GP framework are very competitive with the human-made
rules selected from literature. In order to understand why these evolved rules are effective in solving the FJSP
with respect to multiple objectives, we now analyze the sensitivity of the parameters.

While single rules consider only one parameter of the shop, the evolved rules employ almost all the impor-
tant parameters. However, as mentioned early, the combination of these parameters plays an essential role to
the success of the rule. The parameters PT and RD could be important for solving the problem. They are pres-
ent in all the rules and contribute mainly to change the priority of one operation to be selected in a queue. We
also found that the two parameters aTPT and nOps appear in all the formulas of the evolved rules but are
usually ignored in literature. Consider the parameter aTPT in the formula of Rule_1. When the average total
processing time of a job is small, it indirectly effects the tight due date of the job, and the result of evaluating
Rule_1 will be small. This job then has high priority to be selected on the queue. Similarly, consider Rule_3

where nOps is one of its parameters. When the number of operations of the job is large, its formula produces
a small value. It therefore helps to assign a high priority to the job. Note that using the important parameters
is only one aspect of the success of the rule. The other aspect that is also essential is the algebraic combination
of these parameters. In order to understand how the parameters as well as the algebraic combination of these
parameters influence the obtained results. We generated five other modified rules from Rule_1 by eliminating
each parameter or slightly changing the parameter’s coefficient. The modified rules are presented in Table 6.

In Table 6, Rule_1_1 and Rule_1_2 are constructed from Rule_1 by eliminating the parameters RD and PT,
respectively. By changing the coefficient of aTPT in Rule_1’s formula from 2 to 12, we obtain Rule_1_3. Sim-
ilarly, Rule_1_4 is built by changing the coefficient of nOps in Rule_1’s formula from 1 to 10. These modified
rules are then applied to solve FJSP-50. Fig. 10 below compares their mean makespan, mean total tardiness,
mean flow time and mean percentage of tardy jobs with 95% CIs to Rule_1’s results after 500 runs.

95
%

 C
I M

ea
n

Fl
ow

Ti
m

e

243.5

243.0

242.5

242.0

241.5

241.0

240.5

95
%

 C
I M

ea
n

Fl
ow

Ti
m

e

259.0

258.5

258.0

257.5

257.0

256.5

256.0

FJSP-100 FJSP-50

95
%

 C
I M

ea
n

Fl
ow

Ti
m

e

309

308

307

306

305

FJSP-20

500500500500500500N =

Rule_5Rule_4Rule_3Rule_2Rule_1EDD
500500500500500500N =

Rule_5Rule_4Rule_3Rule_2Rule_1EDD

500500500500500500N =

Rule_5Rule_4Rule_3Rule_2Rule_1EDD

Fig. 7. Mean Flow Time Data Distribution with 95% confidence interval after 500 runs.

468 J.C. Tay, N.B. Ho / Computers & Industrial Engineering 54 (2008) 453–473
Fig. 10 indicates that although small modifications were made to a small number of parameters of an
evolved rule, some results from the modified rules were worse than the original one. This implies that the
evolved dispatching rules from the GP framework are well designed and robust. It also validates the impor-
tance of selecting proper parameters and of the proper algebraic combination of these parameters to construct
efficient CDRs. Any changes on the evolved rules could lead to poorer results of some objectives.

6.7. Overall observation

Fig. 11 below shows the overall performance of dispatching rules using the aggregation function F

(described in Section 2) on different FJSP data. Among the five selected rules from literature, the EDD rule
obtains the best results. The MDD rule ranks second but still far from the results of EDD. The worst results
come from the FIFO rule. Table 7 presents the detailed mean values drawn in Fig. 11. It shows that the five
evolved CDRs achieve better results than the five rules selected from literature and Rule_1 is the best.

The experimental results from Sections 6.2 to 6.6 and the overall results in Table 7 indicate that when the
flexibility of the FJSPs decrease (FJSP-100 to FJSP-20), the objective values increase. The reason is that in the

0.93

0.94

0.95

0.96

0.97

0.98

0.99

FJSP-100 FJSP-50 FJSP-20

FJSP Data

Pe
rc

en
ta

ge
 o

f T
ar

dy
 J

ob
s

FI FO

SPT

ED D

MDD

SL

Rule_1

Rule_2

Rule_3

Rule_4

Rule_5

Fig. 8. Comparing percentage of tardy jobs of dispatching rules on different FJSP data.

J.C. Tay, N.B. Ho / Computers & Industrial Engineering 54 (2008) 453–473 469
less flexible FJSP, the operations of the jobs do not have many machines to select to be processed on. Among
the five selected rules from literature, FIFO is the best with respect to minimizing makespan, EDD is the best
for minimizing both mean tardiness and mean flow time while the MDD and the EDD are found to be the best
in minimizing percentage of tardy jobs. This evidence emphasizes the results from literature (Blackstone et al.,
1982) that no rule is singularly effective for all criteria. As mentioned in Section 2, a trade-off always exists in
minimizing multiple objectives. The results of the FIFO rule explain this observation. The FIFO rule obtains
very good results in minimizing the makespan. However, it is poorer than the remaining ones in other objec-
tives. The converse is true for EDD. This is because when a rule prioritizes on shortening the completion time
of the whole system, the jobs with loose due dates will finish quite early. However, this leads to the tardiness of
jobs with short or moderate due dates. Consequently, this influences the objectives of mean tardiness and per-
centage of tardy jobs objectives. The results also suggest that the combination of the rules is not always effec-
tive. They are sometimes worse than the results of SPRs. For instance, the MDD and SL have the same
parameters DD and CT but the MDD is more efficient than the SL in almost all obtained results. Further-
more, they fail to get better results than the EDD which contains only one parameter DD. This indicates that
the efficacy of the rules not only depends on suitable parameters but also on the way that these parameters are
combined.

Generally, the overall experimental results justify that no SPR rules fare well on all objectives. CDR rules
are considered to obtain better results on multi-objective FJSPs. This is evidenced by the evolved CDR Rule_1

and its variants. Furthermore, two parameters aTPT and nOps that have received limited study from previous
research were found to contribute significantly towards the effectiveness of CDRs. However, the importance of
selecting proper parameters is only one aspect of building effective CDRs. The way to combine these param-
eters is also important. By investigating the potential use of GP for evolving effective CDRs, both parameters
and their combination are explored. The experimental results indicate that the obtained rules are promising to
apply to solve real world FJSPs.
7. Conclusion and future works

In this paper, a GP-based approach for discovering effective composite dispatching rules for solving the
multi-objective FJSP has been presented and analyzed. CDRs have been studied widely by previous research-
ers (Blackstone et al., 1982; Oliver & Chandrasekharan, 1997; Panwalkar & Wafik, 1977). However, all of
them were constructed based on the experience of a human scheduler. We employ a GP framework to generate
a CDR based on algebraic fundamental terminals that can effectively solve the multi-objective FJSP (together
with a machine assignment rule). Five composite dispatching rules were generated by our GP framework over

500500500500500500500N =

Rule_5Rule_4Rule_3Rule_2Rule_1MDDEDD

95
%

 C
I P

er
ce

nt
ag

e
of

 T
ar

dy
 J

ob
s

.946

.945

.944

.943

.942

.941

.940

.939

.938

.937

.936

.935

.934

95
%

 C
I P

er
ce

nt
ag

e
of

 T
ar

dy
 J

ob
s

.956

.954

.952

.950

.948

.946

FJSP-100 FJSP-50

95
%

 C
I P

er
ce

nt
ag

e
of

 T
ar

dy
 J

ob
s

.962

.960

.958

.956

.954

.952

FJSP-20

500500500500500500500N =

Rule_5Rule_4Rule_3Rule_2Rule_1MDDEDD

500500500500500500500N =

Rule_5Rule_4Rule_3Rule_2Rule_1MDDEDD

Fig. 9. Mean Percentage of Tardy Jobs Data Distribution with 95% confidence interval after 500 runs.

Table 6
Four modified dispatching rules from Rule_1

Rule Expression Modification(s) from Rule_1

Rule_1 RD + 2PT + 2aTPT + nOps Original version
Rule_1_1 2PT + 2aTPT + nOps Removed RD
Rule_1_2 RD + 2aTPT + nOps Removed PT
Rule_1_3 RD + 2PT + 12aTPT + nOps Changed aTPT’s coefficient from 1 to 12
Rule_1_4 RD + 2PT + 2aTPT + 10nOps Changed nOps’s coefficient from 1 to 10

470 J.C. Tay, N.B. Ho / Computers & Industrial Engineering 54 (2008) 453–473
a large training set. These rules are based on the combination of parameters such as processing time, release
date, due date, current time, number of operations and average total processing time of each job. Extensive
simulations have been carried out to evaluate the performance of the five evolved rules over varying degrees
of problem flexibility and due date tightness. Five other popular rules selected from literature were also eval-
uated and used as performance benchmarks.

500500500500500N =
Rule_1_4Rule_1_3Rule_1_2Rule_1_1Rule_1

95
%

 C
I M

ak
es

pa
n

897

896

895
500500500500500N =

95
%

 C
I M

ea
n

Ta
rd

in
es

s

256.0

255.8

255.6

255.4

255.2

255.0

254.8

254.6

254.4

254.2

Makespan Mean Tardiness

95
%

 C
I M

ea
n

Fl
ow

Ti
m

e

260.0

259.5

259.0

258.5

258.0

257.5

257.0

95
%

 C
I P

er
ce

nt
ag

e
of

 T
ar

dy
 J

ob
s

.949

.948

.947

.946

.945

.944

.943

Mean Flow Time Percentage of Tardy Jobs

Rule_1_4Rule_1_3Rule_1_2Rule_1_1Rule_1

500500500500500N =
Rule_1_4Rule_1_3Rule_1_2Rule_1_1Rule_1

500500500500500N =
Rule_1_4Rule_1_3Rule_1_2Rule_1_1Rule_1

Fig. 10. Comparing data distribution of each objective of modified rules with 95% confidence interval to Rule_1 after 500 runs.

J.C. Tay, N.B. Ho / Computers & Industrial Engineering 54 (2008) 453–473 471
The experimental results of these popular rules validate the literature finding that no rule performs well on
all criteria, and the algebraic combination of the parameters contributes to the efficacy of the rules. It was
found that EDD is significantly better than the other rules from literature in minimizing mean tardiness, mean
flow time and percentage of tardy jobs while it is poor in minimizing the makespan. However, all the generated
rules found by GP outperformed the EDD with respect to all objectives. It shows that the application of our
GP framework for constructing effective composite dispatching rules for solving the multi-objective FJSPs has
been successful. In particular, two parameters aTPT and nOps that have received limited study from previous
research was found to contribute significantly to the effectiveness of evolved CDRs. We have also shown sta-
tistically that our evolved CDRs are sufficiently well-designed through the use of ANOVA (which analyzed the
sensitivity to changes in the coefficient values and terminal parameters). Finally, by using a large training data
set, we believe that our evolved CDRs can be applied directed in practice without further modifications.

Several possible extensions of this study can be developed. Similar to other applications of GP where the
parameters are sensitive, denser terminal sets and more varied ADFs should be investigated to improve the
generated rules. The approach of this study can be applied to find the efficient composite dispatching rules
for other similar problems, such as a flow shop or the classical job shop. Further research about minimizing

420

470

520

570

620

670

FJSP-100 FJSP-50 FJSP-20
FJSP Data

O
ve

ra
ll

O
bs

er
va

tio
n

FIFO

SPT

EDD

MDD

SL

Rule_1

Rule_2

Rule_3

Rule_4

Rule_5

Fig. 11. Comparing overall observation of dispatching rules on different FJSP data.

Table 7
Overall observation data

FIFO SPT EDD MDD SL Rule_1 Rule_2 Rule_3 Rule_4 Rule_5

FJSP-100 609.13 536.82 442.32 501.20 567.99 440.96 441.61 440.70 441.53 441.17
FJSP-50 642.97 570.02 471.05 534.30 593.99 469.15 469.60 469.30 470.19 469.80
FJSP-20 689.65 618.18 527.52 585.30 628.29 524.09 525.09 524.58 526.37 525.74

472 J.C. Tay, N.B. Ho / Computers & Industrial Engineering 54 (2008) 453–473
both earliness and tardiness could be considered. The application of GP framework to construct CDRs for
dynamic job shop with breakdown machines will be investigated. The rules evolved from this GP framework
are still quite complex in structure. Therefore, an algebraic simplification tool could be used to make the for-
mula more meaningful. Consideration could even be given to including the number of parameters used as a
measure for minimization. In this paper, the same weight 1/3 is assigned to the three same priority objectives.
Different specifications of the weight values of different priority objectives can also be considered.

Acknowledgments

This research was funded in part by Nanyang Technological University and CEI Contract Manufacturing
Limited Company, Singapore.

References

Baker, K. R. (1984). Sequencing rules and due-date assignments in job shop. Management Science, 30(9), 1093–1104.
Barman, S. (1997). Simple priority rule combinations: An approach to improve both flow time and tardiness. International Journal of

Production Research, 35(10), 2857–2870.
Blackstone, J. H., Phillips, D. T., & Hogg, G. L. (1982). A state-of-the-art survey of dispatching rules for manufacturing job shop

operations. International Journal of Production Research, 20(1), 27–45.
Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. Annals of Operations Research, 22(3), 158–183.
Brucker, P., Jurisch, B., & Krämer, A. (1997). Complexity of scheduling problems with multi-purpose machines. Annals of Operations

Research, 70, 57–73.
Carlier, J., & Pinson, E. (1999). An algorithm for solving the job-shop problem. Management Science, 35(2), 164–176.
Coello, C. A. C. (2005). Recent trends in evolutionary multiobjective optimization. In Ajith Abraham, Lakhmi Jain, & Robert Goldberg

(Eds.), Evolutionary multiobjective optimization: Theoretical advances and applications (pp. 7–32). London: Springer-Verlag.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transaction

on Evolutionary Computation, 6(2), 181–197.

J.C. Tay, N.B. Ho / Computers & Industrial Engineering 54 (2008) 453–473 473
Dimopoulos, C., & Zalzala, A. M. S. (2001). Investigating the use of genetic programming for a classic one-machine scheduling problem.
Advances in Engineering Software, 32(6), 489–498.

Garey, M. R., Johnson, D. S., & Sethi, R. (1996). The complexity of flow shop and job-shop scheduling. Mathematics of Operations

Research, 1(2), 117–129.
Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. H. G. R. (1979). Optimization and approximation in deterministic sequencing and

scheduling: A survey. Annals of Discrete Mathematics, 5, 236–287.
Ho, N. B., & Tay, J. C. (2004). GENACE: An efficient cultural algorithm for solving the flexible job-shop problem. In Proceedings of the

congress on evolutionary computation CEC2004 (pp. 1759–1766).
Hoitomt, D. J., Luh, P. B., & Pattipati, K. R. (1993). Practical approach to job-shop scheduling problems. IEEE Transactions on Robotics

and Automation, 9(1), 1–13.
Ishibuchi, H., Yoshida, T., & Murata, T. (2003). Balance between genetic search and local search in memetic algorithms for multiobjective

permutation flowshop scheduling. IEEE Transactions on Evolutionary Computation, 7(2), 204–223.
Jain, A. S., & Meeran, S. (1998). Deterministic job-shop scheduling: Past, present and future. European Journal of Operational Research,

113(2), 390–434.
Jayamohan, M. S., & Rajendran, C. (2000). New dispatching rules for shop scheduling: A step forward. International Journal of Production

Research, 38, 563–586.
Jayamohan, M. S., & Rajendran, C. (2004). Development and analysis of cost-based dispatching rules for job shop scheduling. European

Journal of Operational Research, 157(2), 307–321.
Johnson, R. A. (2001). Statistics: Principles and methods. John Wiley.
John, J. K., & Xiaoming, L. (2004). A weighted modified due date rule for sequencing to minimize weighted tardiness. Journal of

Scheduling, 7(4), 261–276.
Kacem, I., Hammadi, S., & Borne, P. (2002a). Approach by localization and multiobjective evolutionary optimization for flexible job-shop

scheduling problems. IEEE Transactions on Systems, Man and Cybernetics, 32(1), 1–13.
Kacem, I., Hammadi, S., & Borne, P. (2002b). Pareto-optimality approach for flexible job-shop scheduling problems: Hybridization of

evolutionary algorithms and fuzzy logic. Mathematics and Computers in Simulation, 60(3), 245–276.
Kolonko, M. (1999). Some new results on simulated annealing applied to the job shop scheduling problem. European Journal of

Operational Research, 113(1), 123–136.
Koza, J. (1992). Genetic programming: On the programming of computers by means of natural selection. Cambrige, MA: MIT Press.
Koza, J. (1994). Genetic programming II, automatic discovery of resuable programs. MIT Press.
Koza, J. R., Bennett, F. H., III, Andre, D., Keane, M. A., & Dunlap, F. (1997). Automated synthesis of analog electrical circuits by means

of genetic programming. IEEE Transactions on Evolutionary Computation, 1(2), 109–128.
Lohn, J. D., Hornby, G. S., & Linden, D. S. (2004). An evolved antenna for deployment on NASA’s Space Technology 5 Mission. In

Proceedings of the genetic programming theory practice 2004 workshop (GPTP-2004).
Mastrolilli, M., & Gambardella, L. M. (2000). Effective neighborhood functions for the flexible job shop problem. Journal of Scheduling,

3(1), 3–20.
Nowicki, E., & Smutnicki, C. (1996). A fast Taboo Search algorithm for the job shop problem. Management Science, 42(6), 797–813.
Oliver, H., & Chandrasekharan, R. (1997). Efficient dispatching rules for scheduling in a job shop. International Journal of Production

Economics, 48(1), 87–105.
Ong, Z. X., Tay, J. C., & Kwoh, C. K. (2005). Applying the clonal selection principle to find flexible job-shop schedules. In Proceedings of

the international conference for artificial immune systems, LNCS 3627 (pp. 442–455).
Panwalkar, S., & Wafik, I. (1977). A survey of scheduling rules. Operations Research, 25(1), 45–61.
Pinedo, M. (2002). Scheduling theory, algorithms, and systems. Prentice Hall.
Pinedo, M., & Chao, X. (1999). Operations scheduling with applications in manufacturing and services. McGraw-Hill.
Quek, H. C., & Tay, J. C. (2000). Issues in the performance measurement of constraint satisfaction techniques. Artificial Intelligence in

Engineering, 14, 281–294.
Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of the first international

conference on genetic algorithms (pp. 93–100). Lawrence Erlbaum.
Tay, J. C., & Wibowo, D. (2004). An effective chromosome representation for evolving flexible job-shop schedules. In Proceedings of the

genetic and evolutionary computation GECCO2004 (pp. 210–221).
Yamada, T., & Nakano, R. (1996). A fusion of crossover and local search. In Proceedings of the IEEE International Conference on

Industrial Technology (pp. 426–430).
Zitzler, E., & Thiele, L. (1999). Multi-objective evolutionary algorithms: A comparative case study and the strength pareto approach.

IEEE Transactions on Evolutionary Computation, 4(3), 257–271.

	Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems
	Introduction
	Problem definition
	Previous works
	Multiple objective optimization for job-shop scheduling
	Types of dispatching rules
	Evolving dispatching rules with genetic programming

	Design of the GP framework
	Terminal set
	Function set
	Fitness function

	Experimental design
	GP parameter setting
	Test case generation

	Analysis of experimental results
	The best five evolved CDRs
	Makespan
	Mean tardiness
	Mean flow time
	Percentage of tardy jobs
	Sensitivity of parameters
	Overall observation

	Conclusion and future works
	Acknowledgments
	References

