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Abstract
Nowadays, large distributed databases are commonplace. Client applications increasingly rely on accessing objects from multiple remote hosts.

The Internet itself is a huge network of computers, sending documents point-to-point by routing packetized data over multiple intermediate relays.

As hubs in the network become overutilized, slowdowns and timeouts can disrupt the process. It is thus worth to think about ways to minimize these

effects. Caching, i.e. storing replicas of previously-seen objects for later reuse, has the potential for generating large bandwidth savings and in turn a

significant decrease in response time. En-route caching is the concept that all nodes in a network are equipped with a cache, and may opt to keep

copies of some documents for future reuse [X. Tang, S.T. Chanson, Coordinated en-route web caching, IEEE Transact. Comput. 51 6 (2002) 595–

607]. The rules used for such decisions are called ‘‘caching strategies’’. Designing such strategies is a challenging task, because the different nodes

interact, resulting in a complex, dynamic system. In this paper, we use genetic programming to evolve good caching strategies, both for specific

networks and network classes. An important result is a new innovative caching strategy that outperforms current state-of-the-art methods.

# 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The Internet is a distributed, heterogeneous network of

computers. From a user’s point of view, it can be regarded as a

large database of data objects—‘‘documents’’ that are available

for retrieval via their uniform resource locator (URL). Access

to files on the net is based on a client-server architecture: a

client computer generates a request, opens up a connection to a

server host, and retrieves the document from the server.

Applications based on Internet protocols, such as web

servers and browsers, are usually unaware of the underlying

transport layer. They see the net as an all-to-all, fully connected

network where each host can talk directly to any other.

Underneath, there is a real network of computers connected

to each other via physical links of various kinds (coaxial and

fiber optics cables, satellite links and so on; see Fig. 1) that relay

each message, passing it along until it reaches its destination.
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The average number of intermediate steps (hops) can be quite

substantial depending on the topology of the network, the origin

and destination, and the routing algorithm.

The coexistence of multiple superimposed paths creates the

potential for bottlenecks and congestion. Internet users

experience latency when there is an extended wait between

the moment a document is requested and that of its reception, and

low perceived bandwidth when the transmission of the document

is slow. In order to avoid infinite queues from forming, relaying

hosts usually implement a timeout feature, killing documents

when the transmission is delayed more than a certain threshold,

so some documents never arrive at their destinations.

These problems can be prevented either by expanding the

capacity and bandwidth of overloaded links, in order to match

peak time demand, or by making a more efficient use of the

existing capacity. One such proposal is en-route caching, an

approach to minimize network traffic by exploiting regularities

in document request patterns [1,2].

Popular documents on the net (portals, for example) are

requested all the time, while others are almost never requested.

Therefore, it makes sense to store copies (replicas) of popular

documents at several places in the network. This phenomenon

has prompted hosting companies (e.g. Akamai.com) to position
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Fig. 1. Map of the Internet (fragment). Nodes correspond to ip addresses, edges to

links between them. Based on data by The Opte Project (http://www.opte.org/).
hosts all over the world, creating forms of mirroring to save

bandwidth by servicing requests from hosts that are closer, in

Internet topology terms, to the clients making the requests.

However, this solution works only for long-term data access

patterns in which a commercial interest can be matched with

monetary investments in distributed regions of the globe.

For the en-route caching perspective, observe that when two

neighbors in the same street request the same web page, each one

of them creates a channel to the remote server hosting the

document, even though both requesting computers are connected

to the same trunk line. The same data is sent over from the host

twice, and relayed by the same intermediate routers. It would

make sense, for any of the intermediate hosts, to keep a copy of

the document, allowing it to service the second request directly,

without having to contact the remote host at all.

Proxy servers sometimes have caching capability, being able

to optimize Internet access for a group of users in a closed

environment, such as a corporate office or a campus network.

However, much better savings and scalability are possible by

using this strategy at all levels: If the campus proxy fails to

retrieve the page from the cache, or even, if the two requests

come from neighboring university campuses in the same city,

then a node further down the chain would have the opportunity

of utilizing its cache memory, for the same opportunity exists in

every single router on the Internet. The proposal of en-route

web caching is to provide every intermediate host with the

option to respond to a request by sending back a cached copy of

a document that was previously requested.

The difficult question is how to decide which documents to

store, and where to store them. With finite memory, it is

impossible for individual hosts to cache all the documents they

see.

A global policy control in which a centralized decision-

making entity distributes replicas among servers optimally is

impractical, for several reasons: the tremendous complexity,

because the Internet is dynamically changing all the time, and

because no global authority exists. Thus, each server has to

decide independently which documents it wants to keep a

replica of. The rules used for such decisions are also known as

caching strategies.

Today, many routers with caching—such as a campus

network proxy—use the well-known least recently utilized

(LRU) strategy: objects are prioritized by the last time they

were requested. The document that has not been used for the

longest time is the first to be deleted. Although this makes sense
for an isolated router, it is easy to see why LRU is not an optimal

policy for a network of caching hosts. In our example above, all

the intermediate hosts between the two neighbors that requested

the same document, and the server at the end of the chain, will

store a copy of the document because a new document has the

highest priority in LRU. However, it would be more efficient if

only one, or a few, but not all intermediate nodes kept a copy—

leaving room for caching other highly requested documents. In

isolation, a caching host tries to store all the documents with

highest priority. In a network, a caching host should try to cache

only those documents that are not cached by its neighbors.

The possible economic benefits of en-route web-caching are

obvious: it has not only the potential to remove congestions and

thus reduce latency and save time for the end user, but it could

also reduce bandwidth requirements and even the load of highly

popular servers by shielding off some traffic and serving the

requests locally. Finally, the distributed structure of en-route

web caching could reduce the impact of link or server failures.

As the Internet grows in size and importance and file sizes grow

due to an increasing amount of multimedia content, these issues

will gain even more importance.

However, designing good en-route caching strategies for a

network is a non-trivial task, because it involves trying to create

global efficiency by means of local rules. Furthermore, caching

decisions at one node influence the optimal caching decisions

of the other nodes in the network. The problem of cache

similarity of the above example is one of symmetry breaking:

when neighbors apply identical, local-information based

strategies, they are likely to store the same documents in their

caches. In this scenario, the network becomes saturated with

replicas of the same few documents, with the consequent

degradation of performance.

In this paper, we attempt to design good caching strategies

by means of genetic programming (GP). As we will show, GP is

able to evolve new innovative caching strategies, outperforming

other state-of-the-art caching strategies on a variety of

networks.

The paper is structured as follows: first, we will cover related

work in Section 2. Then, we describe our GP framework and the

integrated network simulator in Section 3. Section 4 goes over

the results based on a number of different scenarios. The paper

concludes with a summary and some ideas for future work.

2. Related work

There is a huge amount of literature on caching at the CPU

level (see e.g. [3]). Caching Internet documents is a special field

of caching. For a survey, see Wang [4]; Davison [5], and, with a

particular focus on cache replacement strategies, Podlipnig and

Boszormenyi [6]. But even those are primarily concerned with

caching on the receiving end, like browser caches or proxy

caching. As we have argued in the introduction, much higher

benefits can be achieved by allowing documents to be cached

anywhere on the network. Such network or web caching has

only recently received some attention.

Generally, the literature on web caching can be grouped into

two categories:

http://www.opte.org/
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(1) C
entralized control: this is the idea of a central authority

overseeing the entire network, deciding globally which

replicas should be stored on which server. It is usually

assumed that the network structure and request pattern are

known.
(2) D
ecentralized control: in this group, decentralized caching

strategies are proposed, i.e., rules that allow each server to

independently decide which recently seen documents to

keep. Since these rules are applied on-line, it is important

that they can be processed efficiently and that they do not

cause additional communication overhead.
The centralized control version is also known as the ‘‘file

allocation problem’’. For a classification of file allocation

algorithms, see Karlsson et al. [7]. In Loukopoulos and Ahmad

[8], an evolutionary algorithm is used to find a suitable

allocation of replicas to servers. Besides retrieval cost, Sen [9];

Pierre et al. [10] additionally consider the issue of maintaining

consistency after a document is modified, an aspect which we

deliberately ignore here. In any case, while the centralized

approach may be valid for small networks, it becomes

impracticable for larger networks, as the data analysis, the

administrative costs, and the conflict between local authorities

make it impracticable.

Given the difficulties with a centralized approach, in this

paper we focus on decentralized control. We try to find simple

strategies that can be applied independently on a local level,

thereby making a global control superfluous. This approach is

more or less independent of the network structure and request

pattern, and can thus adapt much quicker to a changing

environment.

Early work on web caching has simply used or adapted

traditional caching strategies from the CPU level, such as

LRU and least frequently used (LFU), see e.g. Williams et al.

[11]. The disadvantages of these, namely that they lead to

cache symmetry, were described in the introduction. An

example of a network-aware caching strategy is greedy dual

size frequency (GDSF), which considers the number of times

a particular document has been accessed, its size and the cost

to retrieve that document from a remote server (in our case,

the distance, measured in hops, to the server holding the next

replica).

GDSF’s cost-of-retrieval factor avoids the cache repetition

problem by reducing the priority of documents that can be

found in nearby caches. It has been shown to be among the best

caching strategies for networks [12,13]. Another comparison of

several web caching strategies can be found in Bahn et al. [14].

An interesting alternative has recently been suggested in

Tang and Chanson [1]. There, a node holding a document and

receiving a request uses a dynamic programming based method

to determine where on the path to the requesting node replicas

should be stored. While this approach certainly holds great

potential, it requires that all nodes in the network cooperate, and

the computation of the optimal allocation of replicas to servers

is time-consuming. Furthermore, request frequency informa-

tion must be stored not only for documents in the cache, but all

documents ever seen.
As has already been noted in the introduction, in this paper we

attempt to evolve a decentralized caching strategy by means of

GP. Previous examples of using GP for the design of caching

strategies were demonstrated in Paterson and Livesey [15];

O’Neill and Ryan [16] for the case of the instruction cache of a

microprocessor. Some of their fundamental ideas are similar to

ours: GP is a tool that can be used to explore a space of strategies,

or algorithms for caching. However, the nature of the CPU cache

is different from the problem of distributed network caching

because it does not involve multiple interconnected caches.

The present paper is a more detailed and extended version of

a previous publication [17].

3. A genetic programming approach to the evolution of

caching strategies

In this section, we will describe the different parts of our

approach to evolve caching strategies suitable for networks. We

will start with a more precise description of the assumed

environment and the network simulator used, followed by the

GP implementation.

3.1. Network simulator

The overall goal of our study was to evolve caching

strategies for complex data networks like the Internet. However,

for testing purposes, we had to design a simplified model of the

network.

3.1.1. Edges and nodes

Our network consists of a set of servers (nodes), connected

through links (edges). Each server has a number of original

documents (which are never deleted), some excess storage

space that can be used for caching, and a request pattern. All

hosts function simultaneously as clients, requesting documents,

and content providers, distributing their original documents.

We assume that the shortest paths from each server to all

other servers, as well as the original locations of all documents,

are known. Thereby, we are obviating the problem of routing

and focusing only on the caching decisions.

When a host asks for a document, it sends out a request along

the route (shortest path) to the remote server that keeps the

original copy of the file (publisher). The request goes initially to

the first host in the path, which passes it along to the next one,

and so on until reaching the destination. Each one of these

intermediate nodes check whether they have a cached replica of

the requested document. If not, the request is passed through.

Whenever a cached replica or the original document have been

found, the document is sent back to the requesting server

following the inverse route. All the intermediate nodes receive

the document’s packets and pass them along the path to the next

node, until the document arrives at its destination. An example

is depicted in Fig. 2.

3.1.2. Bandwidth, queuing and packetizing

When a document travels through the network, it is divided

into many small packets. Each link has an associated
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Fig. 2. When node i requests a document from server j, the request is sent along

the shortest path (bold), and the first replica found in this path is sent back (say

from node k). Other possible replicas not on the path are ignored (e.g., a replica

on node m).
bandwidth, being able to deliver a limited number of bytes per

second. Excess packets wait in an infinite FIFO queue until they

can be serviced. We simplified the network operation somewhat

by ignoring timeouts.

3.1.3. Efficiency

The main goal is to minimize the average latency of the

requests, which is defined as the average time from a request

until the arrival of (the last packet of) the document.

3.2. Evolving caching strategies

3.2.1. Caching as deletion

It is easy to see that servers which have not yet filled up their

memories should store every single document they see. Even if

an oracle was available to tell that a particular object will never

be accessed again, there would be no harm in storing it. The

problem comes when the caching memory fills up, and a storage

action requires the deletion of some other previously cached
Fig. 3. Optimal distribution of repli

Fig. 4. Caching strategy for the linear network (in LISP form for brevity), denote
object. Internet hosts have finite memory and disk space and so

they must eventually discard old copies to make room for new

requests.

In order to evolve caching strategies we thus focused on the

problem of deletion. The nodes in our simulated networks store

all the documents they receive, until their caches are filled up.

If, however, there is not enough memory available to fit the next

incoming object, some space must be freed. In order to do that,

all cached objects are first sorted, according to a priority

function. Then, the document with the lowest priority is

trashed. The operation is repeated until enough documents have

been deleted so that there is enough space to save the

newcomer. In the remainder of this paper we shall define

caching strategy as the priority function used for deletion.

3.2.2. Genetic programming

Given the difficulties to define a restricted search space for

caching strategies, we decided to use genetic programming

(GP) [18,19], which allows an open-ended search of a space of

more or less arbitrary priority functions.

GP is a well-established technique within the realm of

Evolutionary Computation (which includes Genetic Algorithms

(GAs) and other related methods). As with other evolutionary

algorithms, GP solvers maintain an ‘‘evolving’’ set of candidate

solutions. The candidates are evaluated with respect to a certain

metric (latency in our case). A new set of candidate solutions

(‘‘next generation’’) is then built iteratively by randomly picking

some candidates from the previous generation—with the better

ones having higher probability of being selected—and introdu-

cing new variations by altering (‘‘mutation’’) and re-combining

(‘‘crossover’’) the previous ones.

The main difference between GP and other evolutionary

algorithms is that in GP, candidate solutions are mathematical

expressions built from a set of functions of one or more

parameters, and a set of terminals (see Fig. 4 for an example). A

Mutation operation introduces variations by replacing a

subexpression with a different random subexpression, and a

Crossover operation introduces variations by combining two

parents, replacing a subexpression from one of the parents with

a subexpression taken from the other one.
cas on a simple linear network.

d as BESTGP in the paper. The terminals a through f are defined in Table 2.
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Table 2

Terminals used for GP

Variable Long name Meaning

A TimeCreated Time when replica was stored in cache

B Size Size of document in kilobytes

C AccessCount Number of times the document

has been accessed

D Last time accessed Time of last access to document

E Distance Distance from node that sent

the document (in number of hops)

F Frequency Observed frequency of access

(in accesses per second)

R Random constant

Table 1

Functions used for GP

Function Meaning Function Meaning

add(a,b) a + b sin(a) sin(a)

sub(a,b) a � b cos(a) cos(a)

mul(a,b) a � b exp(a) ea,a2[�100,100]

div(a,b) a

b
: ðb 6¼ 0Þ

1 : ðb ¼ 0Þ

(
iflte(a, b, c, d) c : ða< bÞ

d : ða� bÞ

�

In order to explore the space of caching policies, we

employed a generic set of GP functions (Table 1). The set of

terminals represents the local information available about each

document (Table 2). Each node computes this observable

information about the objects as they are sent, received and

forwarded. One of the observables, for example, is the number

of hops a document traveled before reaching the host (distance

from sender). Other measures of distance, such as ‘‘distance to

nearest replica’’ were not used because they could only be

determined through additional communication.

Another important decision was to avoid metrics that need to

be recomputed before each usage. This allows a host to

maintain its cache sorted rather than re-computing and re-

sorting before each deletion. Measures such as ‘‘time elapsed

since last usage’’, or ‘‘access frequency’’ change with every tick

of the clock, for all cached objects. They would force re-

computing each time they need to be used. Instead we have used

‘‘time of last usage’’ and ‘‘inverse mean time between

accesses’’ which do not change their value over time, unless

the object itself is accessed again (see [14]).

Since our focus was more on the application than the search

for optimal parameter settings, we used rather standard settings

for the test runs reported below: GP has been run with a

population size of 60 for 100 generations, the initial population

has been generated randomly with depth of at most 6.

Tournament selection [20] with tournament size of 2 was used,

and a new population was generated in the following way:
� T
he best 1/3 of the individuals were simply transferred to the

next generation (elite).
� 1
/3 of the individuals were generated by crossover of parents

selected by tournament selection.
� 1
/3 of the individuals were generated by mutation of parents

selected by tournament selection.

Crossover was the usual swapping of sub-trees, mutation

replaced a sub-tree by a new random tree.

3.3. Evaluating caching strategies

Evaluating caching strategies analytically is difficult.

Instead, we tested them, using the simulation environment

described in Section 3.1. There are two possible scenarios: if

the network topology, and the location and request patterns of

all documents are known, GP can be used to tailor a caching

strategy exactly to the situation at hand. Evaluation is

deterministic, as we can simulate the environment exactly

and simply test the performance of a particular caching strategy

in that environment.

On the other hand, such topology and patterns may be

known only approximately (e.g., ‘‘the document request

frequencies follow a scale-free distribution’’). We would like

to evolve caching strategies that perform well over a whole

class of possible scenarios. In other words, we are looking

for a solution that applies in general to all networks within

the range of characteristics we expect to find in the real

world. Since it is impossible to test a caching strategy against

all possible networks, we defined classes of scenarios and

tested each caching strategy against a random representative

from that class. Of course, that made the evaluation function

stochastic. Following observations from other evolutionary

algorithms used for searching robust solutions [21], we

decided to evaluate all individuals within one generation by

the same network/request pattern, changing the scenario

from generation to generation. Naturally, elite individuals

transferred from one generation to the next have to be re-

evaluated.

Note that using a simulation for evaluation is rather time

consuming. A single simulation run for the larger networks

used in our experiments takes about 6 min. Thus, even though

we used a cluster of 6 Linux workstations with clock rates of

2 GHz each, and even though we used a relatively small

population size and only 100 generations, a typical GP run took

about 5 days.

4. Results

4.1. Linear networks

First, we tested our approach by evolving strategies for linear

networks, for which we were able to determine the optimal

placement of replicas by means of complete enumeration.

The first test involved a purely linear network with 10 nodes

connected in a line (i.e. the first and last node have exactly one

neighbor, all other nodes have exactly two neighbors). Every

node has one original document, each document has the same

size, and each node has excess memory to store exactly one

additional document. The request pattern is uniform, i.e. each

document is requested equally often (on average). For such a
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Fig. 5. Sample GP run on the linear network problem. (a) Fitness of best individual per generation. (b) Performance of best individual on 10 other request patterns.

Table 3

Average latency of different caching strategies on the linear network � S.E.

Caching Strategy 1 latency

OPTIMAL 31.58 � 0.03

BESTGP 31.98 � 0.06

GDSF 47.67 � 1.17

DISTANCE 50.40 � 1.24

RANDOM 61.65 � 0.14

LRU 74.77 � 0.19
simple setting, the optimal placement of replicas can be

determined by complete enumeration and is depicted in Fig. 3.

A typical test run is shown in Fig. 5, where part (a) shows the

observed average latency of the best individual in each

generation, as observed by GP, and part (b) shows the

performance of these individuals on 10 additional random

request patterns to test how the solution generalizes. The

caching strategy evolved is rather complex and difficult to

understand (see Fig. 4). Its performance, however, was

excellent.

Table 3 compares the latency of different caching

strategies over 30 additional tests with different random

request patterns. Note that GP is a randomized method, and
Fig. 6. Sample random scale-free network with 100 nodes, as generated with

our network generator and laid out for visualization using a spring algorithm

[28].
starting with different seeds is likely to result in different

caching strategies. Therefore, we ran GP 5 times, and used

the average performance over the resulting 5 caching

strategies as result for each test case. OPTIMAL is the

latency observed with the optimal distribution of replicas on

this linear network, which is a lower bound. As can be seen,

the strategy evolved by GP (BESTGP) was able to find a

solution that performs very close to the lower bound. Other

standard caching strategies such as GDSF or LRU, perform

poorly, LRU even worse than RANDOM1, where it is

randomly decided whether to keep or delete a particular

document. Looking at distance only (DISTANCE) is better

than looking at the last time accessed only (LRU), but also

much worse than the evolved strategy.

4.2. Scale-free networks

The physical layer of the Internet, composed of hosts,

routers, physical links and wireless links, has a scale-free

structure, with a few highly connected servers, and many

servers with just a few connections [22–24]. The tests in this

subsection are obtained using a scale-free network with 100

nodes. We used the generalized linear preference (GLP) growth

model described in Bu and Towsley [25] to generate random

scale-free networks with the same characteristics as the Internet

(Fig. 6 shows an example).

There are 100 original documents scattered uniformly

among the nodes in the network, with document size uniformly

distributed between 0.1 and 2 MB. In each of 1000 simulated

seconds, an average of 1100 requests are generated in a

simulated Poisson process. Request frequencies for each

document follow a random power-law distribution as well

[26], so that some documents are requested much more often

than others. All nodes and links are assumed to be of identical

capacities in terms of storage size and communication

bandwidth.

With the characteristics of the network defined only as

distributions, we searched for individual strategies that could

perform well over a wide range of networks in the class. As
1 A random strategy, in spite of being completely blind, has the advantage of

breaking symmetry (cf. page 4) because all hosts use different random number

seeds, thus their caches tend to complement each other.
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Fig. 7. Exemplary GP-run on the class of scale-free networks. (a) Fitness of best individual per generation. (b) Performance of best individual on 20 other instances.

Table 4

Comparison of different caching strategies on the class of scale-free networks

with 100 nodes

Caching Strategy 1 Latency 1 Rank

RUDF 3671 1.53 � 0.12

GPfinal 6373 1.70 � 0.11

GDSF 24414 3.80 � 0.15

DISTANCE 8473 4.00 � 0.30

LRU 25390 4.70 � 0.16

RANDOM 24903 5.27 � 0.14

Table shows latency and rank (1=best, 6=worst) averaged over 30 runs � S.E.
explained in Section 3.3, this was achieved by using a different

random network and request pattern in each generation.

Our test case generator produced a different combination of

network topology, object sizes, and object request frequency

each time. The resulting problems ranged from ‘‘easy’’ cases—

where even without caching, the network bandwidth was

sufficient to service requests with minimal latency—to

‘‘impossible’’ cases—where even the best caching strategy

was overwhelmed by too many requests, leading to huge

waiting times.

As predicted by basic queuing theory, a link can be either

underutilized (bandwidth > request load) or overutilized

(bandwidth < request load). In the first case, latency remains

close to zero, and in the second it grows to infinity. In order to

provide for an adequate level of challenge for caching

strategies, we have deliberately set the parameters in our

simulation so that they generate networks around to the

saturation point. The interesting cases, from the point of view of

caching, are those which are neither ‘‘impossible’’ nor

‘‘easy’’—thus providing an opportunity for a good strategy

to make a difference.

This high variance between scenarios became a difficulty for

our GP algorithm. We decided to evaluate each individual three

times per generation, on three different random networks, and

use the average as fitness for selection. Even then, the

randomness was substantial, as can be seen in the oscillations in

performance of the best solution in Fig. 7 (again, part (a) shows

the fitness of the best individual as observed by GP, while part

(b) shows the performance of that individual on 20 additional

tests).

Since the fitness is a random variable, the best solution in the

final generation is not necessarily the truly best solution

discovered during the run. Furthermore, most of the strategies

generated were rather complicated (as the one in Fig. 4). In the

following, we will focus on the performance of two strategies:

the best strategy of the final generation (denoted GPfinal), and

a strategy that we found particularly appealing because—

besides a promising fitness—it was very simple. It could be

succinctly expressed as:

Priority ¼ last time accessed� ðdistanceþ access countÞ

The excellent performance of this strategy seems odd at a

first glance, as it adds quantities from different units, namely

the distance the document has traveled and the number of times
it has been accessed. But the combination has meaning: it keeps

the documents that have either a very high access count, or a

very high distance, but only if they have been accessed recently

(otherwise last Time Accessed would be small). We call this

evolved strategy RUDF for ‘‘Recently Used Distance plus

Frequency’’.

Again, we used 30 test runs to evaluate the strategies, with a

new random network and request pattern generated for each test

instance. Due to the large variance between test instances, the

mean latency is very dependent on some outliers and a

comparison based on mean latency has only limited

explanatory power. We therefore focus primarily a non-

parametric measure, namely the rank the caching strategy

achieved when compared to the other strategies tested (with 1

being the best rank, and 6 being the worst rank), averaged over

all test cases.

The results depicted in Table 4 show that both evolved

strategies (GPfinal and RUDF) work very well over the

randomly generated range of networks in the considered class

of scale-free networks. They significantly outperformed all the

other strategies tested, with a slight advantage of RUDF over

GPfinal. GDSF is the best conventional strategy with respect to

average rank, but worse than DISTANCE with respect to

latency, which means that it produces better results in the

majority of cases, but if it performs worse, the performance is

much worse.

In order to test how the evolved strategies would perform on

completely different networks, we additionally tested them on

the linear network (Section 4.1) from above, and on two scale-

free network classes with 30 and 300 nodes, respectively.

RUDF demonstrated to be quite robust to such changes from

the original environment. On the linear network, it resulted in a
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Table 5

Comparison of different caching strategies on the class of scale-free networks

with 30 nodes

Caching strategy 1 Latency 1 Rank

RUDF 94.1 1.03 � 0.03

GDSF 100.0 2.20 � 0.09

GPfinal 101.1 2.76 � 0.11

LRU 103.7 3.93 � 0.06

RANDOM 114.7 5.20 � 0.07

DISTANCE 118.7 5.70 � 0.10

Table shows average latency and rank � S.E.

Table 7

Comparison of different caching strategies on the class of scale-free networks

with 100 nodes, depending on whether metadata is maintained only for cached

documents (standard) or all documents (all metadata)

Caching strategy 1 Latency 1 Rank

RUDF 1191.7 � 27.1 1.33 � 0.13

GPMD w/metadata 1340.8 � 18.7 2.13 � 0.15

GDSF w/metadata 6206.8 � 80.2 3.0 � 0.16

RUDF w/metadata 9470.8 � 115.5 4.27 � 0.15

GPMD 3162.8 � 38.4 4.3 � 0.17

GDSF 18060.5 � 135.6 5.96 � 0.03

Table shows average rank according to latency � S.E.

Table 6

Comparison of different caching strategies on the class of scale-free networks

with 300 nodes

Caching strategy 1 Latency 1 Rank

RUDF 66786 1.10 � 0.05

GPfinal 93055 2.17 � 0.10

DISTANCE 118104 3.00 � 0.19

GDSF 150109 4.20 � 0.11

RANDOM 157801 5.20 � 0.15

LRU 151731 5.33 � 0.13

Table shows average latency and rank � S.E.
latency of 35.8 � 0.42, i.e. worse than the caching strategy

evolved particularly for the linear network, but still better than

all other tested strategies. The results on the two scale-free

network classes are shown in Tables 5 and 6. As can be seen,

RUDF significantly outperforms all other strategies indepen-

dent of the network size.

While GPfinal was very competitive on the 100-node

networks assumed during evolution, it is much less robust than

RUDF. Its average rank worsened from 1.7 on the 100-node

network to 2.17 on the 300 networks and 2.2 on the 30-node

networks, making it third out of the 6 strategies tested. On the

linear network, it failed completely with a latency of 117.0 and

a very large standard error of 11.0. This indicates that perhaps

the evolved rules were already overfitted to a particular type of

network, and that the simplicity of RUDF allows it to generalize

better to other networks. Note that the unnecessary complexity

of the evolved rules (called ‘‘bloat’’) is a well-known problem

in GP. We have not attempted to use bloat-prevention strategies

other than limiting the allowed depth of expressions (maximum

depth was set to 20) and always preferring, between two

solutions with identical performance, the one that has a smaller

number of nodes [27].

The performance of DISTANCE seems to be very dependent

on the network size; it scores second on large networks, but

worse than RANDOM on smaller ones.

4.3. Using metadata

So far, we have assumed that each node has information on

the request patterns of the documents stored in its cache. Now

we want to examine how performance could be improved by

maintaining metadata on the request patterns of all documents

seen by a router. In other words, when a document is deleted
from the cache, the information collected about it (size, last

time accessed, access frequency and so on), called metadata, is

kept in a small record so it is available for use in future caching

decisions.

Table 7 shows the results. As one might expect, GDSF

benefits from the more accurate information contained in the

metadata, and moves from the worst rank (5.96) to an average

rank of 3.0. For RUDF, which was evolved without extra

metadata memory, adding that information not only does not

help, but in fact significantly reduces performance (rank 1.33

without metadata, rank 4.27 with metadata). The reduced

performance of RUDF might be due to the loss of appropriate

balance between the distance and accessCount variables: with

too much back memory, access counts can grow to be orders of

magnitude larger than distance, thus becoming the single

dominant factor in the caching decision.

The rule denoted as GPMD was evolved using GP with all

metadata available during the simulations. It is the best

performing rule when metadata is provided. If metadata is not

available, it is still better than GDSF, but surpassed by RUDF,

which was evolved without metadata.

Note that GPMD has a comparably low standard error in

latency. Although it is often slightly worse than the other

methods if metadata is not available, it does not suffer from

occasional very bad outliers and therefore has a relatively good

average latency despite the relatively bad average rank.

Interestingly, RUDF without metadata performs better than

GPMD with metadata. This may be due to the uncertainty in the

fitness function and the randomness in GP, which may lead to

varying solution qualities from one run to another. Independent

of whether metadata is used or not, the corresponding evolved

solutions performed better than GDSF, demonstrating the

suitability of the GP approach.

5. Conclusions

A key inefficiency of the Internet is its tendency to

retransmit a single blob of data millions of times over identical

trunk routes. Web caches are an attempt to reduce this waste by

storing replicas of recently accessed documents at suitable

locations. Caching reduces network traffic as well as

experienced latency.

The challenge is to design caching strategies which, when

applied locally in every network router, exhibit a good
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performance from a global point of view. One of the appeals of

GP is that it can be used to explore a space of algorithms. Here,

we have used GP to search for caching strategies in networks

that resemble the Internet, with the aim to find strategies that

minimize latency. We have shown that GP is able to

successfully generate near-optimal caching strategies on simple

linear networks. For scale-free networks, a new rule called

RUDF was evolved, which is very simple yet outperformed all

other tested caching strategies on all the scenarios examined,

thus setting a new benchmark.

An additional advantage of the GP approach described here

is that caching strategies can be tailored to the general

characteristics of the network itself. We evolved efficient rules

specifically for linear networks, then scale-free networks with

power-law request frequency distributions, finally the same

networks but when the network nodes are allowed to hold on to

information or ‘‘metadata’’ about objects seen a long time ago.

An important obstacle we faced was measuring fitness,

because fitness could only be determined indirectly through

simulation, and different random seeds resulted in a high

variance in latency (the criterion we used as fitness).

Nevertheless, averaging and multiple-seed evaluation techni-

ques allowed us to evolve robust strategies that are efficient in a

wide variety of conditions.

Currently, we are extending the presented work in several

directions. First, we are testing the newly evolved caching

strategy on a larger variety of conditions, including hetero-

geneous networkswith linksand hostsofdifferent characteristics.

Then, the caching strategies could be made dependent on

node characteristics (e.g., location in network, number of

connections, and so on), moving away from the assumption that

all nodes should apply identical caching strategies.

Finally, an intriguing idea is to have independent GPs

running on every node, so that each node evolves its own

adaptive caching rule, creating an online system of coevolving

caching strategies.
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