
Soft Comput (2007) 11:1165–1172
DOI 10.1007/s00500-007-0159-x

FOCUS

Applying genetic programming technique in classification trees

Chan-Sheng Kuo · Tzung-Pei Hong ·
Chuen-Lung Chen

Published online: 29 March 2007
© Springer-Verlag 2007

Abstract Classification problems are often encountered
in many applications. In the past, classification trees were
often generated by decision-tree methods and commonly
used to solve classification problems. In this paper, we have
proposed an algorithm based on genetic programming to
search for an appropriate classification tree according to some
criteria. The classification tree obtained can be transferred
into a rule set, which can then be fed into a knowledge base to
support decision making and facilitate daily operations. Two
new genetic operators, elimination and merge, are designed
in the proposed approach to remove redundancy and sub-
sumption, thus producing more accurate and concise decision
rules than that without using them. Experimental results from
the credit card data also show the feasibility of the proposed
algorithm.

Keywords Genetic programming · Classification tree ·
Knowledge base · Genetic operator

1 Introduction

Classification is one of the important issues for knowledge
discovery and business decision-making. It has been used

C.-S. Kuo (B) · C.-L. Chen
Department of Management Information Systems,
National Chengchi University, 116, Taipei, Taiwan, ROC
e-mail: cskuo@nccu.edu.tw

C.-L. Chen
e-mail: chencl@mis.nccu.edu.tw

T.-P. Hong
Department of Electrical Engineering,
National University of Kaohsiung,
811, Kaohsiung, Taiwan, ROC
e-mail: tphong@nuk.edu.tw

in different applications including financial prediction. A
good example is the credit risk assessment (Chen et al. 2006;
Chen 2002; Kiang 2003), in which a bank decides whether to
approve proposals of customers by examining their feature
values. Classification problems can generally be divided into
two main tasks—finding classifiers and classifying unknown
data. Finding classifiers is usually done by adopting appro-
priate learning techniques on training data sets. Data sets and
their features are thus examined to derive one or several good
classifiers satisfying some criteria. The derived classifiers can
then classify data and predicts their classes.

Many different methods have been proposed to solve clas-
sification problems in the literature. They included decision
trees, logistic regression, discriminant analysis, neural net-
work, and genetic algorithms, among others (Chtioui et al.
1997; Cox 1970; Fisher 1936; Quinlan 1993; Wang et al.
1998a; Wang et al. 1998b). Decision-tree methods, such as
ID3, CART, C4.5 and C5.0 (Quinlan 1986; Quinlan 1993;
Quinlan 1997), can be used to generate classification trees
and classification rules. They are very popular for classifica-
tion due to its understandability.

In many enterprises, the unlimited growth of data
inevitably leads to a situation in which accessing desired
information from a database becomes difficult. Knowledge
management has thus become an important topic in some
practical applications. The intent of knowledge management
is to emphasize knowledge flows and the process of cre-
ation, sharing, and disseminating knowledge in an organi-
zation (Alavi and Leidner 2001). Developing a successful
knowledge management system usually needs the construc-
tion of a complete and consistent knowledge base. Only a few
workers will, however, contribute their knowledge into the
repositories since they usually consider it as an extra burden
(Kwan and Balasubramanian 2003). Designing an effective
method to automatically generate classification rules fed into

123

1166 Chan-Sheng Kuo et al.

knowledge bases thus plays a critical role in knowledge man-
agement. It can facilitate enterprises for decision making or
for daily operations.

Genetic programming is an evolutionary approach and
can be used to discover some useful classification rules in
financial areas (Chen 2002; Chen and Kuo 2002). In this pa-
per, we propose a learning algorithm based on genetic pro-
gramming to automatically find an appropriate classification
tree, which will be transferred into a rule set composed of
some classification rules. The rule set can then be used to
help the establishment of a knowledge base in a knowledge
management system for a practical application. Two new
genetic operators, elimination and merge, are also designed
in the proposed approach. Experimental results on a data set
about credit risk assessment also show the feasibility of the
proposed approach.

The remaining parts of this paper are organized as follows.
Genetic programming is first briefly reviewed in Sect. 2. A
GP-based framework for classification is designed in Sect. 3.
An algorithm based on GP to learn appropriate classifica-
tion trees is proposed in Sect. 4. The details of the pro-
posed algorithm are described in Sect. 5. Experiments to
demonstrate the performance of the proposed algorithm are
stated in Sect. 6. Conclusions and future works are given in
Sect. 7.

2 Review of genetic programming

The method of genetic programming (GP) was firstly
proposed by Koza (1992). It initially used some genetic
operations as a basis for creating computer programs. Each
computer program could be thought of as a potential solu-
tion to a problem. GP is an extension to genetic algorithms
by using variable-length trees instead of fixed-sized chromo-
somes. An individual in GP is a tree structure consisting of
functions and terminals suitable to the problem domain.

There are five major preparatory steps before applying GP
to solving a problem (Koza 1992). They include the prepa-
ration of the following: (a) a set of terminals; (b) a set of
functions; (c) a fitness measure; (d) parameters for control-
ling the process; (e) a method for terminating the process. The
functions are selected from a possible pool of functions and
the terminals are selected from a possible pool of terminals.
There are several types of functions applied to GP, includ-
ing arithmetic operations, mathematical functions, Boolean
operations, conditional operations and any other user-specific
functions.

For example in Fig. 1, the terminal set consists of vari-
ables (e.g. X, K and Y) and constants (e.g. 8 and 2) and the
function set consists of some mathematic functions (e.g. +,
* and −). The fitness values of individuals are calculated
by an appropriate fitness function, with higher values rep-

+

* -

K+

X 8

Y 2

Fig. 1 A tree representation for the equation (X + 8) * K + (Y − 2)

resenting better individuals in the population. The fitness
function is usually designed corresponding to the problem
to be solved. Control parameters generally include the pop-
ulation size, the probability of crossover and the probability
of mutation. Termination criteria generally include a pre-
specified maximum number of generations and the total time
of execution.

There are three fundamental genetic operators, which are
reproduction, crossover and mutation (Koza 1999). The
reproduction operation selects a set of individuals from the
population according to a selection method based on their fit-
ness values. The individuals selected are reproduced into the
new population in the next generation. Many selection meth-
ods have been proposed, which include fitness-proportionate
reproduction, tournament selection and rank selection (Koza
1992). In this paper, the fitness-proportionate selection
method is adopted. The crossover operation selects two
individuals (parents) to operate and produces two new off-
spring. The mutation operation operates on single individuals
to avoid local optimum. It usually replaces a selected subtree
with another subtree.

The applications of GP to financial engineering cover var-
ious topics. Among them, financial forecasting and trading
strategies are two of the most commonly seen research areas.
For example, Nikolaev and Iba (2002) adopted the GP tech-
nique for learning polynomial autoregressive models, which
were used to find trends in financial data series. Neely and his
co-workers used GP as a search procedure to discover prof-
itable trading rules in foreign exchange markets (Neely and
Weller 1999, 2001; Neely et al. 1997). Other financial appli-
cation areas of GP include option pricing, volatility model-
ing, and arbitrage, among others (Chen 2002; Chen and Kuo
2002). In addition to financial applications, genetic program-
ming has also been applied to other application fields like
economic models, symbolic regression, hand written digit
recognition, and classification, etc (Chen 2002; Chen and
Kuo 2002; Chien et al. 2002; Koza 1992; Parkins and Nandi
2004). This paper proposes a new learning algorithm based
on genetic programming to automatically find an appropriate
set of classification rules from a set of training examples for
financial applications.

123

Applying genetic programming technique in classification trees 1167

3 The GP-based learning framework

In this section, we state the GP-based framework used in this
paper to generate a good final classification tree to be put in
the knowledge base. The proposed framework is shown in
Fig. 2.

In GP, each generation includes a population of individu-
als. The proposed framework in Fig. 2 thus maintains a popu-
lation of classification trees with each representing a possible
rule set. It then chooses suitable classification trees according
to their fitness values to crossover or mutate, gradually cre-
ating good offspring trees. The framework constructs new
classification trees by the proposed genetic operations and
evaluates the trees according to a set of testing instances.
The evolutionary process is repeated until the solutions con-
verge. Finally, the best classification tree is transferred into
a rule set, which can then be fed into a knowledge base
to facilitate decision making or daily operations in some
enterprises. Domain experts can thus reduce their efforts in
building knowledge bases.

4 The proposed GP algorithm for classification

The proposed algorithm is stated in this section to show how
a good classification tree can be found. Its flowchart is shown
in Fig. 3.

It is an iterative method including several evolving steps. It
chooses suitable trees for genetic operations, thus gradually
creating good offspring. Two new genetic operators, elimina-
tion and merge, are also designed in the proposed algorithm
to remove redundancy and subsumption. The offspring then
undergoes repetitive evolution until the termination criterion
is met. The algorithm is described as follows.

The proposed algorithm:
Input: a set of instances to be classified.
Output: an appropriate classification tree.

Step 1: Create an initial population of n randomly gener-
ated classification trees.

Step 2: Evaluate the fitness value of each classification tree
by an evaluation function and the set of instances.

Step 3: Select suitable classification trees according to the
evaluation results to perform the following genetic
operations:
Step 3.1: Perform crossover operations on parent

trees to generate offspring trees;
Step 3.2: Perform mutation operations on parent

trees to generate offspring trees;
Step 3.3: Perform elimination operations on off-

spring trees to remove redundancy;
Step 3.4: Perform merge operations on offspring

trees to remove subsumption.

GP-based Classification Tree
Generation

Classification Tree
Evaluation

The Best Final
Classification Tree

Knowledge Base

Testing
Instances

PC

Fig. 2 GP-based framework for learning a good classification tree

Initializing Population

Initializing Classification
Tree Evaluation

Termination Criterion
Satisfied? End

Genetic Operations

Mutation Elimination Merge Crossover

Classification Tree
Evaluation

Yes

No

Select

Fig. 3 Flowchart of the proposed GP algorithm

Step 4: Evaluate the fitness value of each resulting offspring
tree by the evaluation function and the set of
instances.

123

1168 Chan-Sheng Kuo et al.

Step 5: If the termination criterion is not satisfied, then go
to Step 3; otherwise, do the next step.

Step 6: Select the best classification tree with the highest
fitness value from the population as the final clas-
sification tree.

After Step 6, the final classification tree will then be trans-
ferred into a rule set, which can then be stored into a knowl-
edge base. The two new genetic operators, elimination and
merge, can reduce the tree complexity, but will take more
execution time than using only the original operators. Trade-
off thus exits between the tree concision and the time com-
plexity. Some details about the execution of the algorithm
are stated below.

5 Details of the algorithm

5.1 Initial population

Genetic programming requires a population of feasible
solutions to be initialized and updated during the evolving
process. Each individual within the population is a hierarchi-
cally structured tree consisting of functions and terminals.
The functions used in this paper are as follows:

(a) Boolean operations: {And, Or, Not, >,<,�,�}, and
(b) Conditional operators: If-Then, If-Then-Else.

The initial population is randomly generated with some
constraints for forming feasible classification trees. Below, a
simple example is given to illustrate the concept.

Example 1 Assume in the application of applying for credit
cards, two classes {disapproving, approving} represented as
{R0, R1}, are to be distinguished by the three features {Job
type, Education, Salary}. Also assume the feature of Job
type has four possible values {laborer, low-level manager,
middle-level manager, high-level manager} denoted {J0, J1,
J2, J3}, the feature of Education has four possible values
{High school, College, Master, Ph.D} denoted {E0, E1, E2,
E3}, and the feature of Salary has four possible values
{< 200 thousand (NT dollars), 200−490 thousand, 500−800
thousand, >800 thousand} denoted {S0, S1, S2, S3}. To
illustrate the tree representation more clearly, assume that
a rule set RSi only has the following two rules:

Rule1: If (Job type = middle-level manager) and (Education
= Master) and (Salary = 500 − 800 thousand) then
Class is approving;

Rule2: If (Job type = laborer) and (Education = College)
and (Salary = <200 thousand) then Class is disap-
proving.

Fig. 4 A classification tree representation for the example

The two rules are equivalent to the following representation:

Rule′
1: If J2 and E2 and S2 then R1;

Rule′
2: If J0 and E1 and S0 then R0.

The two rules can be represented as a classification tree
shown in Fig. 4. The internal nodes of the classification tree
are labeled with operations or functions (e.g. And and IF);
the leaf nodes are labeled with the feature values (e.g. J2,
E2, S2, J0, E1, and S0) and the classes (e.g. R1 and R0). E
represents the end of the rule set.

5.2 The fitness function

It is important to define a suitable fitness function for GP
to work. It is used to reward good individuals or punish bad
ones. In order to develop a good classification tree (CT) from
an initial population, parent classification trees with high fit-
ness values are selected for mating. An evaluation function
is defined and a set of training instances are used to qualify
the classification trees. The training instances are the cases
actually occurring in the application and can be gathered from
real environments. Two important factors are used in evalu-
ating a classification tree. They are accuracy and complexity
of the resulting knowledge structure (Wang et al. 1998b). In
our approach, the accuracy for a classification tree (CT) is
evaluated by the training instances and is defined as follows:

Accuracy (CT)

= the total number of training instances correctly matched by CT

the total number of training instances
,

(1)

The complexity of a classification tree is the ratio of nodes
used, which is defined as follows:

Complexity (CT)

= number of nodes within CT[∑ j
i=1 (number of nodes within initial CTi)

]/
j

, (2)

123

Applying genetic programming technique in classification trees 1169

where j is the number of individuals in a population.
Accuracy and complexity are combined to represent the fit-
ness value of a classification tree. The evaluation function is
thus defined as follows:

Fitness (CT) =
[
Accuracy(CT)

]
[
Complexity(CT)

]α , (3)

where α is a control parameter representing a tradeoff
between accuracy and complexity. The fitness function can
also reduce the impact of noisy information that causes
classification-tree overfitting (excessive complexity).

5.3 Genetic operators

Genetic operators are very important to the success of ge-
netic programming applications. In this paper, two funda-
mental genetic operators, crossover and mutation, and two
new operators, elimination and merge, are used in the pro-
posed algorithm. The elimination and merge operators are
designed to solve the problems such as redundancy and sub-
sumption (Giarratano and Riley 1993).

5.3.1 Crossover

In the crossover operation, two parent trees are partially
exchanged to form two new offspring trees. The crossover
point may occur within a rule or on rule boundaries. The
crossover point must match up semantically. The detailed
procedure is shown below.

(1) Select a crossover point in one of the parents at random.
(2) If the chosen point occurs at a rule boundary (“IF”

node), the crossover point in the other parent tree must
also be at a rule boundary. Otherwise, the point may be
within a rule. The crossover point for the other parent
must also be within a rule.

(3) Exchange the two chosen parent subtrees, which consist
of the entire set of nodes below the crossover point, to
generate two new offspring trees.

Example 2 Continuing from Example 1, assume that the two
parent trees for crossover are Parent 1 and Parent 2 shown in
Fig. 5. If a crossover operation with crossover points at CP1
and CP2 is executed, the two new offspring trees (Offspring1
and Offspring2) are shown in the lower part of Fig. 5.

5.3.2 Mutation

The mutation operation is desired to help the evolving process
escape from local optimum. It begins by selecting a parent
tree at random from the population. A node within the tree is
randomly selected. The mutation operation then replaces the
selected node (including its child nodes) with a randomly
generated subtree. An example of the mutation operation
using the mentioned procedure is given in Fig. 6.

5.3.3 Elimination

The elimination operation is used to solve the redundancy
problem, in which two or more rules with the same feature

Fig. 5 An example of
crossover

123

1170 Chan-Sheng Kuo et al.

Fig. 6 An example of mutation

values and class appear in a classification tree. The elimi-
nation operation will remove redundant rules and can thus
reduce the tree complexity. Let the classification tree to be
processed be CTr with k rules. The steps for the elimination
operation are shown as follows.

(1) Set i = 1 and j = i + 1, where i and j are used to
represent the numbers of the current two selected rules
for checking.

(2) Compare Ruleri with Ruler j for their feature values
and classes.

(3) If the two rules have the same values, they are redundant.
Remove the deeper redundant rule from the classifica-
tion tree CTr .

(4) Set j = j + 1.
(5) If j > k, then do the next step; otherwise, go to step

(2).
(6) Set j = i + 2 and i = i + 1.
(7) If i = k, then exit the searching process; otherwise, go

to step (2).

Below, an example is given to illustrate how the elimination
operation deals with redundancy.

Example 3 Assume the classification tree CTr in Fig. 7
includes two redundant rules Ruleri and Ruler j . To solve
the redundancy problem, the elimination operation is used
on the tree CTr , with the deeper redundant rule Ruler j re-
moved. The resulting classification tree CT ′

r is shown in the
right part of Fig. 7.

5.3.4 Merge

Rule subsumption means one rule subsumes the other in a
classification tree. The subsumed rule may be removed from
the tree to reduce the tree complexity. The merge operation
is thus designed to solve the subsumption problem in a clas-
sification tree. It is a little like the elimination operation. Let
the classification tree to be processed be CTs with q rules.
The steps for the merge operation are shown as follows.

Fig. 7 An example of
elimination

123

Applying genetic programming technique in classification trees 1171

Fig. 8 An example of merge

(1) Set i = 1 and j = i + 1, where i and j are used to
represent the numbers of the current two selected rules
for checking.

(2) Compare Rulesi with Rules j for their feature values
and classes.

(3) If the two rules have the same classes and the feature
values of a rule is a subset of those in the other one,
remove the rule with more features from the classifica-
tion tree CTs .

(4) Set j = j + 1.
(5) If j > q, then do the next step; otherwise, go to step

(2).
(6) Set j = i + 2 and i = i + 1.
(7) If i = q, then exit the searching process; otherwise, go

to step (2).

Below, an example is given to illustrate how the merge oper-
ation deals with subsumption.

Example 4 Assume in Fig. 8, Rulesi and Rules j are included
in the classification tree CTs . There is a subsumption rela-
tion between Rulesi and Rules j . To solve the subsumption
problem, the merge operator is used on the tree CTs . Rules j

is thus removed from the tree since it has more feature values
than Rulesi . The resulting classification tree CT ′

s is shown
in the right part of Fig. 8.

6 Experimental results

In this section, a set of data for credit-card application was
used to test the performance of the proposed approach. There
were 687 cases obtained from a bank in Taipei, Taiwan. The
cases consisted of fourteen features and two classes (disap-
proving and approving). The goal was to find a good classifi-
cation tree which could be converted into a set of rules to help
identify one of the two classes for a credit-card applicant.

Table 1 The accuracy of the proposed method, traditional GP and C5.0

Method Accuracy (%)

Our approach 78.63

Traditional GP 76.21

C5.0 75.39

The 687 cases were first divided into two groups, a training
set and a test set. The training set was used to evaluate the fit-
ness values of classification trees during the evolving process
and the test set acted as input events to test the resulting rule
set. In each run, 70% of the credit card cases were selected
at random for training, and the remaining 30% of the cases
were used for testing. The percentage of correct predictions
was recorded.

In the experiments, the rates for crossover, mutation, elim-
ination and merge operations were set at 0.9, 0.02, 0.8, and
0.8, respectively. The parameter α in the fitness function was
set at 0.125. Table 1 compares the accuracy of the proposed
approach with those by traditional GP (without elimination
and merge operations) (Koza 1999) and by C5.0 (Quinlan
1997). The proposed approach obtained an accuracy rate of
78.63% after 500 generations. It can easily be seen that the
proposed approach had a higher accuracy than traditional GP
and C5.0.

7 Conclusions and future works

In this paper, we have proposed a learning algorithm based on
genetic programming to search for an appropriate classifica-
tion tree according to the criteria of accuracy and complexity.
The proposed approach tries to find a good classification tree
by genetic operators and improves its accuracy via the fit-

123

1172 Chan-Sheng Kuo et al.

ness function. Experimental results have also showed that
the proposed approach could find a classification tree for
credit-card application with a higher accuracy than those by
traditional GP and C5.0. The final classification tree obtained
can be transferred into a rule set, which can be further fed
into a knowledge base to support decision-making processes
and to facilitate daily operations.

The proposed approach has also designed two new genetic
operators, elimination and merge, to take rule relationship
into consideration, thus reducing the tree complexity and
making the results closer to those desired. This, however,
takes more execution time than using only the original opera-
tors. In the future, we will study the choice of fitness functions
in order to further raise the accuracy. Some fuzzy concepts
may also be adopted to deal with fuzzy knowledge.

References

Alavi M, Leidner DE (2001) Review: knowledge management
and knowledge management systems: conceptual foundations and
research issues. MIS Q 25(1):107–136

Chen G, Liu H, Yu L, Wei Q, Zhang X (2006) A new approach to
classification based on association rule mining. Decis Support Syst
42:674–689

Chen SH (2002) Genetic algorithms and genetic programming in com-
putational finance. Kluwer, Dordrecht

Chen SH, Kuo TW (2002) Evolutionary computation in economics and
finance: a bibliography. Evolutionary computation in economics and
finance. Physica-Verlag, Heidelberg, New York, pp 419–455

Chien BC, Lin JY, Hong TP (2002) Learning discriminant functions
with fuzzy attributes for classification using genetic programming.
Expert Syst Appl 23:31–31

Chtioui Y, Bertrand D, Devaux M, Barba D (1997) Comparison of multi-
layer perceptron and probabilistic neural networks in artificial vision
application to the discrimination of seeds. J Chemom 11:111–129

Cox DR (1970) The analysis of binary data. Chapman & Hall, London
Fisher RA (1936) The use of multiple measurements in taxonomic prob-

lems. Ann Eugen 7:179–188
Giarratano J, Riley G (1993) Expert system principles and program-

ming. PWS, Boston
Kiang MY (2003) A comparative assessment of classification methods.

Decis Support Syst 35:441–454
Koza JR (1992) Genetic programming: on the programming of com-

puters by means of natural selection. MIT Press, Cambridge
Koza JR (1999) Genetic programming III: Darwinian invention and

problem solving, Morgan Kaufmann Publishers, San Mateo
Kwan MM, Balasubramanian P (2003) KnowledgeScope: managing

knowledge in context. Decis Support Syst 35:467–486
Neely CJ, Weller PA (1999) Technical trading rules in the European

monetary system. J Int Money Finance 18:429–458
Neely CJ, Weller PA (2001) Technical analysis and Central Bank inter-

vention. J Int Money Finance 20:949–970
Neely CJ, Weller PA, Dittmar, R (1997) Is technical analysis in for-

eign exchange market profitable? A genetic programming approach.
J Financ Quant Anal 32(4):405–426

Nikolaev N, Iba H (2002) Genetic programming of polynomial models
for financial forecasting. Genetic algorithms and genetic program-
ming in computational finance. Kluwer, Dordrecht, pp 103–123

Parkins AD, Nandi AK (2004) Genetic programming techniques for
hand written digit recognition. Signal Processing 84:2345–2365

Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106
Quinlan JR (1993) C4.5: Programs for machine learning. Morgan Kauf-

mann Publishers, San Mateo
Quinlan JR (1997) C5.0 and see 5: illustrative examples. RuleQuest

Res. http://www.rulequest.com
Wang CH, Hong TP, Tseng SS (1998a) Integrating fuzzy knowledge by

genetic algorithms. IEEE Trans Evol Comput 2(4):138–149
Wang CH, Hong TP, Tseng SS, Liao CM (1998b) Automatically inte-

grating multiple rule sets in a distributed-knowledge environment.
IEEE Trans Syst Man Cybern 28(3):471–476

123

http://www.rulequest.com

	Applying genetic programming technique in classification trees
	Abstract
	Introduction
	Review of genetic programming
	The GP-based learning framework
	The proposed GP algorithm for classification
	Details of the algorithm
	Initial population
	The fitness function
	Genetic operators
	Crossover
	Mutation
	Elimination
	Merge
	Experimental results
	Conclusions and future works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

