
Information Sciences 176 (2006) 691–724

www.elsevier.com/locate/ins
A comparison of classification accuracy
of four genetic programming-evolved

intelligent structures

Athanasios Tsakonas *

Department of Informatics, Aristotle University of Thessaloniki,

Artificial Intelligence and Information Analysis Laboratory, 54006 Thessaloniki, Greece

Received 13 October 2003; received in revised form 27 January 2005; accepted 16 March 2005
Abstract

We investigate the effectiveness of GP-generated intelligent structures in classification

tasks. Specifically, we present and use four context-free grammars to describe (1) deci-

sion trees, (2) fuzzy rule-based systems, (3) feedforward neural networks and (4) fuzzy

Petri-nets with genetic programming. We apply cellular encoding in order to express

feedforward neural networks and fuzzy Petri-nets with arbitrary size and topology.

The models then are examined thoroughly in six well-known real world data sets.

Results are presented in detail and the competitive advantages and drawbacks of the

selected methodologies are discussed, in respect to the nature of each application

domain. Conclusions are drawn on the effectiveness and efficiency of the presented

approach.

� 2005 Elsevier Inc. All rights reserved.

Keywords: Genetic programming; Context-free grammars; Decision trees; Artificial neural net-

works; Fuzzy rule-based systems; Fuzzy Petri-nets
0020-0255/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.ins.2005.03.012

* Tel.: +30 693 789 1399.

E-mail address: tsakonas@stt.aegean.gr

mailto:tsakonas@stt.aegean.gr

692 A. Tsakonas / Information Sciences 176 (2006) 691–724
1. Introduction

Genetic Programming (GP) is a search methodology belonging to the family

of evolutionary computation (EC) [15,47]. These algorithms nowadays have

been applied in a wide range of real-world problems. Among successful EC

implementations, GP retains a significant position due to its valuable charac-
teristics, such as the flexible variable-length solution representation and the ab-

sence of population convergence tendency. Genetic programming in its

canonical form enables the automatic generation of mathematical expressions

or programs. Grammar-guided genetic programming (G3P) [46] for knowledge

discovery is an extension to the original GP concept and it makes possible the

efficient automatic discovery of empirical laws. It relates to the Machine Dis-

covery framework, originally described by Langley [17], which incorporated

inductive heuristics and suffered from limitations regarding ill-conditioned data
and large search spaces [27]. Genetic programming however can avoid these

problems due to its stochastic nature. The grammar guided genetic program-

ming provides a more systematic way to handle typing, and in this respect, it

has more theoretical basis than strongly typed GP [20]. More importantly,

the G3P can constrain search space so that only grammatically correct individ-

uals can be generated. The G3P framework has already been applied in a vari-

ety of domains, such as the software project effort estimation [48] and the

identification of macro-mechanical models [49]. Moreover, related techniques,
based on G3P, have been introduced, such as the grammar model-based evolu-

tion [50] and the tree-adjoining grammars [51].

In the present paper, the grammar-guided genetic programming paradigm is

applied in a series of classification problems mainly corresponding to medical

domains. Various computational intelligent approaches have been applied to

medical problems in the past, including artificial neural networks (NN) and

fuzzy systems [18] and evolutionary algorithms [23]. The problems addressed

in this work have been used extensively as benchmarking data in the machine
learning society. This data consists of six diagnosis and classification problems

from the Proben1 collection [25] of real-world data sets. We applied four meth-

ods for knowledge discovery using G3P. The first approach generates a general-

ized form of decision trees. The second method creates fuzzy rule-based

classifiers. The third approach generates a class of artificial neural networks.

The fourth model creates fuzzy Petri-nets (FPN). For the latter two methodol-

ogies, we describe the cellular encoding paradigm in the GP grammar, in order

to allow arbitrary network sizes and topologies. The models we selected to test
have different properties for the discovery of empirical laws, a fact that makes

useful the comparison of their effectiveness in dissimilar problems. Their differ-

ence is noteworthy both in terms of their structure (trees, competitive bases,

networks) and in terms of knowledge elements (crisp rules, fuzzy rules, syn-

apses). Specifically, the decision tree method creates a hierarchical crisp

A. Tsakonas / Information Sciences 176 (2006) 691–724 693
rule-based classification tree. The fuzzy model generates competitive fuzzy rule-

based classifiers. The neural network approach generates arbitrary massively

parallel networks. The fuzzy Petri-nets methodology creates cooperative fuzzy

rule networks.

The objective of this work is first to demonstrate the applicability of the G3P

for knowledge discovery in a range of different models and problems. Second,
to compare the effectiveness of each of the four approaches and try to point out

advantages and drawbacks of each approach in respect to the characteristics of

each application domain. Additionally, the selected problems make possible

for the reader to measure their relative success by further comparing the results

to those found in literature [4,25].

The paper is organized as follows. In Section 2 we introduce the theoretical

background of GP. We also present the G3P principles, context-free grammars

and current research in the field of cellular encoding. In Section 3 we give a
short description of the data used in our experiments. Section 4 presents the

experimental setup of our models. Our results regarding effectiveness and train-

ing time are presented in Section 5. The last section of this paper concludes

with comparison of results and with a short discussion on future perspectives

regarding this work.
2. Background

Evolutionary Computation has been an alternative methodology nowadays

for many real-world problems [37,38]. Being a part of the evolutionary compu-

tation algorithms, the genetic programming advance [39] has valuable features,

such as the variable length solution representation and population diversity

maintenance [15]. In general, evolutionary models were inspired by the Dar-

winian theory of evolution. According to the most common implementations,

a population of candidate solutions is maintained, and after a generation is
accomplished, the population is expected fitted better for a given problem.

Three genetic operators are mostly used in these algorithms:

• reproduction: copies an individual without affecting it,

• recombination (crossover): exchanges genetic material between two

individuals,

• mutation: exchanges a part of a randomly selected genetic material.

An evolutionary algorithm is summarized in the following steps [16]:

1. Initialize a population of individuals at random.

2. Evaluate randomly an individual and compare its fitness to other (this fit-

ness determines how closely is an individual to the desired goal).

694 A. Tsakonas / Information Sciences 176 (2006) 691–724
3. Modify an individual with a relatively high fitness using a genetic operator.

4. Repeat steps 2–3 until a termination criterion is met.

The described procedure is depicted in the flowchart of Fig. 1.

Usual termination criterions appear to be the accomplishment of a number

of generations, the achievement of a desired classification error, etc. Genetic
programming uses tree-like individuals that can represent mathematical expres-

sions, making valuable the application of GP in symbolic regression problems.

Such a GP individual is shown in Fig. 2.

2.1. Grammar-guided genetic programming

The prime advantage of genetic programming over genetic algorithms, is

the ability to construct functional trees of variable length. This property
Start

Initialize Population

Evaluate Individual

Select
Operator

Reproduction Crossover Mutation

Max # of
generations

End Process

True

False

Fig. 1. Overview of a genetic programming run.

+

*-

/a 8

a b

7

Fig. 2. Tree representation of the program (expression): (a�8) + 7 * (a/b).

A. Tsakonas / Information Sciences 176 (2006) 691–724 695
enables the search for very complex solutions that are usually in the form of

a mathematical formula––an approach that is commonly known as symbolic

regression. Later paradigms extended this concept to calculate any boolean

or programming expression. Consequently, complex intelligent structures,

such as fuzzy rule-based systems or decision trees have already been used as

the desirable intention in genetic programming approaches [1,15,31–33]. The
main qualification of this solving procedure is that the feature selection,

and the system configuration, derive in the searching process and do not

require any human involvement. Moreover, genetic programming, by inherit-

ing the genetic algorithms� stochastic search properties, does not use local

search––rather uses the hyperplane search––and so avoids driving the solu-

tion to any local minimum. The potential gain of an automated feature selec-

tion and system configuration is obvious; no prior knowledge is required

and, furthermore, not any human expertise is needed to construct an intelli-
gent system. Nevertheless, the task of implementing complex intelligent

structures into genetic programming functional sets in not rather straight-

forward. The function set that composes an intelligent system retains a specific

hierarchy that must be traced in the GP tree permissible structures. This

writing offers two advantages. First, the search process avoids candidate solu-

tions that are meaningless or, at least, obscure. Second, the search space is

reduced significantly among only valid solutions. Thus, a genotype––a point

in the search space––corresponds always to a phenotype––a point in the
solution space. This approach––known as legal searchspace handling method

[36]––is applied in this work using context-free grammars. As we will dis-

cuss in the next paragraph, the implementation of constraints using a

grammar can be the most natural way to express a family of allowable

architectures. While each intelligent system––such as a fuzzy system––

has a functional equivalent––by means of being composed by smaller,

elementary functions––what defines and distinguishes this system is its

grammar.

696 A. Tsakonas / Information Sciences 176 (2006) 691–724
2.2. Context-free grammars

Although powerful in its definition, the genetic programming procedure

may be proved greedy in computational and time resources. Therefore, when

the syntax form of the desired solution is already known, it is useful to restrain

the genetic programming from searching solutions with different syntax forms
[10,20]. The most advantageous method to implement such restrictions among

other approaches [21], is to apply syntax constraints to genetic programming

trees, usually with the help of a context-free grammar declared in the

Backus-Naur-Form (BNF) [9,14,22,29]. The BNF-grammar consists of terminal

nodes and non-terminal nodes and is represented by the set {N,T,P,S} where N

is the set of non-terminals, T is the set of terminals, P is the set of production

rules and S is a member of N corresponding to the starting symbol. The use of

the terms terminal and non-terminal in a BNF-grammar, does not correspond
to what Koza defines as terminal and function. Rather, a function––a non-ter-

minal node in terms of the GP tree architecture––is expressed as terminal in a

BNF grammar. To avoid confusion, the use of the terms GPFunction and

GPTerminal––instead of the ambiguous terms function and terminal––has been

proposed [34] and is adapted throughout this paper. The construction of the

production rules can be the most critical point in the creation of a BNF gram-

mar, since these production rules express the permissible structures of an indi-

vidual. An example grammar expressing a class of individuals, which can
produce the program in Fig. 2, is composed by the following sets:

N ¼ fEXPR;OPg

T ¼ f�; �; =; a; b; 7; 8g

S ¼ hEXPRi
Then, P is expressed as shown in Table 1.

2.3. Cellular encoding

Although mapping decision trees or fuzzy rule-based systems to specific

grammars can be relatively easy to implement, the execution of massively
Table 1

Grammar used for a simple example tree

Symbol Rule

hEXPRi ::=hEXPRi hOPi hEXPRijhVARijhNUMBERi
hOPi ::=- j*j/
hVARi ::=ajb
hNUMBERi ::=7j8

A. Tsakonas / Information Sciences 176 (2006) 691–724 697
parallel processing intelligent systems––such as the neural networks––is not

forthright. In order to explore variable sized solutions, usually a kind of indi-

rect encoding is applied. The most common one is the cellular encoding [8], in

which a genotype can be realized as a descriptive phenotype for the desired

solution. More specifically, within such a function set, there are elementary

functions that modify the system architecture together with functions that cal-
culate tuning variables. Current implementations include encoding for feedfor-

ward and Kohonen neural networks [8,12] and fuzzy Petri-nets [35]. In his

original work, Gruau also used a context-free grammar––a BNF grammar––

to encode indirectly the neural networks. On the other hand, in [35] a logic

grammar––a context-sensitive one––is adapted to encode fuzzy Petri-nets. In

our work, we show that as long as the depth-first execution of the program

nodes of a GP tree is ensured––which is the default––a context-free grammar

such as a BNF grammar is adequate for expressing neural networks. Gruau�s
original work has been facing some skepticism [11] on the ability to express

arbitrarily connected networks. Later developments [10] seem to offer less

restrictive grammar, though the cut function1 still maintained bounded effect.

In our approach, we inherit present grammar advances proposed in [35] in

his logic grammar for fuzzy Petri-nets and we suggest a BNF grammar for neu-

ral networks that is more descriptive than previous works.
3. The data sets

The models are tested in three different setups of six data sets from the med-

ical and biomedical domain. These data sets have been taken unmodified by a

collection of real-world benchmark problems, the Proben1 [25] that has been

established for neural networks. The original data are derived by the UCI Ma-

chine Learning Repository [2]. In the Proben1 data set, modifications were ap-

plied for processing with NN and better comparability results. Specifically, first
the values of every data attribute were standardized in the range [�1,1]. Then,

nominal values were substituted using binary encoding, incrementing this way

the number of inputs or outputs (see Table 2). Missing values were substituted

by standard––zero––values. Three different sequences of the examples were cre-

ated. The outputs were represented using 1-of-n encoding where n outputs were

used to express n classes. This encoding facilitated the winner-takes-all ap-

proach that is also followed in our experiments. Table 2 shows the problem

complexity of these data sets. The first problem to be addressed is the Wiscon-
sin Breast Cancer data.
1 An analytical explanation of the cut function is given in Section 4.

Table 2

Problem description

Problem Attributes Inputs Classes Records used

Continuous Discrete

Cancer 9 9 0 2 696

Diabetes 8 8 0 2 764

Gene 60 0 120 3 3172

Heart 13 6 29 2 916

Horse 20 14 44 3 360

Thyroid 21 6 15 3 7196

698 A. Tsakonas / Information Sciences 176 (2006) 691–724
The goal is to diagnose between benign and malignant breast tumor. The

second problem is the Pima Indians Diabetes data, where we diagnose between

positive or negative diabetes. The next problem comes from the bioscience field

and is the classification of DNA sequences in genes between three classes:

intron–exon, exon–intron or no boundary. The problem of the Heart disease

follows, where the goal is to diagnose if the diameter of a heart vessel is reduced

by more than 50% or not. The next problem is a veterinarian one. The aim is to

diagnose if a horse with colic will die, survive or must undergo euthanasia. The
last problem is to diagnose between thyroid hyperfunction, hypofunction or

normal function. The overview of our testing approach is shown in Fig. 3.
For each model i = 1,..,4

For each problem j = 1,..,6

For each dataset k = 1,..,3

Perform 10 runs, extract the best and the
average classification scores, the standard
deviation of classification scores, and the
average solution size and training time.

Fig. 3. Overview of the main procedure loop, which was followed for the execution of the

experiments.

A. Tsakonas / Information Sciences 176 (2006) 691–724 699
4. Design and implementation

Each data set was separated into a training set, a validation set and a test

set. The training set consists of 50% of the data and the rest 50% is divided

equally between the validation set and the test set. The separation of the exam-

ples into training, validation and test sets was performed in a loop manner.
Specifically, the first two examples were assigned to the training set, then the

next to the validation set and the fourth to the test set. This process was re-

peated until all the examples were assigned a set.

During the training phase, the validation set is typically used to avoid over-

fitting. A solution that has better classification score in the training set, is

adapted as new best solution if and only if the sum of classification scores of

both training and validation sets is the same or better than the best solution�s
respective score. We performed 20 runs for each data set. In all experiments, we
used the same GP parameters.

It is accepted that the G3P procedure may suffer size problems during initial-

ization [27]. Although the fine-tuning of our algorithm was not the main con-

cern of this paper, we investigated various initialization approaches. Without

claiming optimality, the GP parameters are presented in Table 3.

This setup, together with function selection probability optimization, offered

for the presented grammars stable and effective runs throughout experiments.

As it can be observed, this setup denotes our preference for significantly high
mutation rates, especially shrink mutation [30] that slows down the code bloat

caused by crossover operations. The optimization of function selection proba-

bilities is consisted of giving more selection probability to GPTerminals rather

than GPFunctions. Although the initialization of the population is random,

using this probability bias the algorithm is �forced� to generate individuals of

acceptable size. This optimization was decided after experimentation for each
Table 3

GP parameters for G3P

Parameter Value

Population 2000 individuals

GP implementation Steady-state G3P

Selection Tournament with elitist strategy

Tournament size 6

Crossover rate 0.35

Overall mutation rate 0.65

Node mutation rate 0.4

Shrink mutation rate 0.6

Killing anti-tournament size 2

Maximum allowed individualsize 650 nodes

Maximum number of generations 100

700 A. Tsakonas / Information Sciences 176 (2006) 691–724
of the four implementations, since it was not possible to obtain a general prin-

ciple regarding the most proper probability values.

4.1. G3P for decision trees

The classification procedures can be divided in two types, concerning the
number of categories that are classified. The first classification type separates

the data between only two classes (known as binary classification or two-class

task), and the second type classifies the data among more than two classes

(multi-class task). Multi-class tasks can be divided to more than one single-

class tasks. One such approach is to build independent classification rules for

each of the classes and then run these––competitive––rules simultaneously

[3]. Another approach is addressed in [5], where the construction of two-class

(or two class-sets) rules is performed in a hierarchical way, creating a cooper-
ative crisp rule-base––rather a competitive one––which always results in one

class.

The other way of handling multi-class tasks, in order to build a rule-base, is

by using directly a multi-class approach, often with the incorporation of a nich-

ing scheme [7]. Here a multi-class approach is presented, which constructs crisp

cooperative and hierarchical classification rule-trees, similar to Quinlan�s
inductive decision trees [26]. The popularity of these decision trees may be ex-

plained by the natural decision method that humans often follow. The latter
conclusion is demonstrated for example, in the medical field, where physicians

usually follow a form of a complex decision/classification tree [6], showing that,

medical decision making often is similar to Quinlan�s approach. Although fast

and robust, Quinlan�s model is however restricted in terms of each rule�s (tree
branch) premise set, where the expression evaluated is an inequality between an

attribute (input variable) and a value (number). Apparently, a more generic

methodology could involve, in the rules� premise sets, the incorporation of

more complex comparisons, such as combinations of expressions including
more than one attributes and values. In Table 4, we present the production

rules for the implementation of such enhanced decision trees into the genetic

programming architecture.

As seen by the grammar definition, a hclausei node may be either a hclassi
node or a hifi (hif_lessi, hif_equali etc.) node. If we examine more carefully this

rule of the grammar, we may notice that this design enables the existence of

one-node solutions, for example CLASS3. Although this case is normal

(according to the grammar definition), it was proved in our experiments that
it could delay the solution search. The reason is that this grammar may create

many single-class individuals (as one such individual may have good fitness in

the beginning of the run) and thus reduce the population diversity very early,

leading to local optima. To smooth this phenomenon, we selected to apply two

measures. First, we tuned the selection probability for operations, between the

Table 4

Production rules for decision trees

Symbol Rule

hCLAUSEi ::=hCLASSijhIF_LESSij hIF_EQUALijhIF_GREATERi
hIF_LESSi ::=IF_LESShEXPRihEXPRihCLAUSEi hCLAUSEi
hIF_EQUALi ::=IF_EQUALhEXPRihEXPRihCLAUSEi hCLAUSEi
hIF_GREATERi ::=IF_GREATERhEXPRihEXPRihCLAUSE ihCLAUSEi
hEXPRi ::=hNUMBij hOPERi
hOPERi ::=hPLUSij hMINUSij. . .
hPLUSi ::=+hEXPRihEXPRi
hNUMBi ::=float in [�1,1]

hCLASSi ::=CLASS1jCLASS2jCLASS3 j. . .

A. Tsakonas / Information Sciences 176 (2006) 691–724 701
hclausei representatives (i.e. we gave more selection probability to hifi rather

than to hclassi nodes). Second, we modified the fitness measure as shown in

the following equations, in order not to promote very small-sized solutions.

This modified fitness measure performs a penalty to small-sized solutions

adapting the size of the solution examined. Although these measures do not

guarantee that the run will not lose its diversity early, it was shown in our

experiments that the algorithm performed statistically better (i.e. we did not

encounter early convergence to local optima). This fitness measure is given
by the equations:

F ¼ a/ ð1Þ

/ ¼
Xn�1

t¼0

ð1 : ft ¼ Y tj0 : ft 6¼ Y tÞ ð2Þ

where F is the program fitness, t is a record in the training set, n is the number

of training records, ft is the program output for the record t, and Yt is the value

of the record t. The a factor, is given by the following equation:

a ¼ 1 : S < 0:95j1� 2ðS � 0:5Þ � 0:94

0:05
: S P 0:95

� �
ð3Þ

where S is the simplicity factor. This factor is presented in [3] and its value is:

S ¼ �M � 0:5N � 0:5

M � 1
ð4Þ

where M stands for the maximum size of trees allowed in our application (in

nodes), N stands for the examined solution�s size (in nodes). This value ranges

from 0.5 to 1, producing 0.5 when the expression has the maximum size and 1

when the expression has only one node (the simpler case). This fitness measure

will reduce the actual fitness value, when the simplicity�s value of the solution is

702 A. Tsakonas / Information Sciences 176 (2006) 691–724
greater than 0.95, in a linear manner, finally producing zero fitness value when

the simplicity�s value is one.
4.2. G3P for fuzzy rule-based systems

A fuzzy if-then rule [13], can be in the form:

if x is A then y is B with C; C 2 ½0; 1�
where the ‘‘x is A’’ is the antecedent (or premise) set, ‘‘y is B’’ is the consequent

(or conclusion) set, and C is the certainty factor. In fuzzy reasoning, the tradi-

tional two-valued logic, the modus ponens, is used in a generalized form.

Namely, a fact may be more or less true, based on the truth of another fact.

A fuzzy set is defined as:

A ¼ fðx; lAðxÞÞjx 2 Xg
where, the lA(x) is a membership function for the fuzzy set. Fuzzy sets are

seen an extension to the classic sets that have a crisp boundary, where the

transition for a value from belonging to a set and not belonging to the set is

gradual and characterized be the membership function. The membership

functions are described as a mathematical formula. The X is called the universe
of discourse, and it may be comprised by discrete or continuous values. When

the universe of discourse X is a continuous space, several fuzzy sets are

used, most times covering the X uniformly. These fuzzy sets often make use

of linguistic terms such as ‘‘Small’’ or ‘‘Medium’’. Commonly, they are

used in fuzzy rules, which may also be interpreted as fuzzy relations using

fuzzy reasoning. Fuzzy reasoning contains inference rules that derive conclu-

sions from a set of fuzzy rules and input data. In the Mamdani classifier model

using the max–min composition, several steps are followed to perform fuzzy
reasoning. Firstly, we compare the input data with the antecedent sets of the

fuzzy rules and we get the degrees of compatibility (called weights) with respect

to these antecedent sets. Then, we combine these degrees using fuzzy AND or

OR to obtain a firing strength, which shows the degree that a rule is satisfied.

The firing strength corresponds to the certainty factor presented above. The

max–min criterion, when only AND operators are used, will assign as firing

strength the smaller of the antecedent degrees of compatibility. Finally, we

obtain the overall output between the consequent sets of the rules. When the
max–min composition is used, the rule with the larger firing strength will

be the system�s output. The definition of the grammar we used is shown in

Table 5 [1].

This grammar describes a fuzzy system model with four inputs and one out-

put. The GPFunctions used to describe the fuzzy mechanism, correspond to

the words with bold in Table 5. We suggested the working shown in Table

6, in order to simulate a Mamdani classifier.

Table 5

Production rules for fuzzy rule-based systems

Symbol Rule

hTREEi ::=hRLij hRULEi
hRLi ::=RL hTREEihTREEi
hRULEi ::=RULE hCONDihCLASSi
hCONDi ::=hIFij hANDi
hIFi ::=IF hINPihFSi
hANDi ::=AND hCONDihCONDi
hCLASSi ::=THEN hOUTihCLASS_VALUEi
hFSi ::=SMALLjMEDIUMjLARGE

hINPi ::=X1jX2jX3jX4
hCLASS_VALUEi ::=CLASS1jCLASS2j CLASS3j. . .
hOUTi ::=Y

Table 6

Functions for the simulation of a Mamdani-model classifier

Function Pseudo-code

RL(arg1, arg2) If absolute(arg1) > absolute(arg2) then return arg1;

else return arg2

RULE(arg1, arg2) Return arg1 * arg2

IF(arg1, arg2) Fuzzify (arg1), based on the (arg2) value, return weight

AND(arg1, arg2) Return minimum(arg1, arg2)

THEN(arg1, arg2) If arg1 = arg2 then return 1; else return �1

SMALL, MEDIUM,

LARGE, etc.

Return a constant value (e.g. �1 for SMALL, 0 for

MEDIUM, 1 for LARGE, etc.).

CLASS1, CLASS2, etc. Return a constant value (e.g. 1 for CLASS1, 2 for CLASS2, etc.)

X1, X2, etc. System inputs (assuming a numerical value)

Y System output (assuming a numerical value)

A. Tsakonas / Information Sciences 176 (2006) 691–724 703
The fuzzification is applied in IF nodes. The implementation uses Gaussian

membership functions, and for a given Gaussian range a (standard for the IF

nodes), a center c = arg2 and a value x = arg1, the function output will be the

following:

n ¼ e�
1
2

x�c
að Þ2 ð5Þ

In order to offer more degrees of freedom, we selected to use nine (9) member-

ship functions, which are presented in Fig. 4. The THEN node returns 1 if for

the examining example the output (arg1), belongs to the class described by arg2
and �1 otherwise. The reason to use this mechanism, together with the RL

working, is to be able to know (when the tree evaluation is complete) whether

the rule that fired was true or false. If the fired rule describes a false consequent

set, the program value will be negative. While an individual represents a

Fig. 4. Membership functions of the fuzzy rule-based system.

704 A. Tsakonas / Information Sciences 176 (2006) 691–724
complete rule base, when examining an example during the training phase, this

procedure will produce either positive or negative values indicating correct or

wrong classification.

4.3. G3P for artificial neural networks

In order to incorporate the architecture of feedforward neural networks into

genetic programming, one has to decide whether he will use direct or indirect

encoding. Direct encoding, although it describes fixed sized neural networks

effectively, in most problem cases is inefficient, since the a priori knowledge

of the neural network�s best architecture is not available. Thus, it seems normal

to prefer a learning process that uses variable sized neural networks such as cel-
lular encoding, a variation of indirect encoding. The idea behind cellular

encoding is that each individual program in the population is a specification

for developing a neural network. As it can be seen from Fig. 5, to implement

neural networks, we consider three types of places. First, input places, such as

N1 and N2, associated with the system input values during run. Second, inter-

mediate places, such as N3 and N4, and third, output places, such as N5, that

represents the system outputs.

The structure of a neural network for a particular problem must be re-
stricted, in terms that if the problem requires a binary classification, then

the network will have only two output places. The final output can follow
N1

N2

N3

N4

N5

Fig. 5. A simple feedforward neural network.

Table 7

NN manipulating functions

Name Description Number of

arguments

Input place sp1 Sequential division 3

pp1 Parallel division 2

in Initialize the value 1

Intermediate place sp2 Sequential division 3

pp2 Parallel division 3

stop Terminate the modification 1

lnk Modify synapse (link) 4

act Activate 0

A. Tsakonas / Information Sciences 176 (2006) 691–724 705
the winner-takes-all concept––the output with the larger value is assumed as the

system�s output. Table 7 presents the manipulating functions. Manipulating

functions initialize the inputs and/or insert additional places into the develop-

ing network. These functions are classified into two types, since there are two

types of modifiable places, the input places and the intermediate places. The
implementation of a parallel processing system––such as neural networks––in

a tree like the GP-tree that is executed depth-first, requires special handling

of variables in order to emulate a breadth-first execution and simulate the par-

allel processing. Thus we selected to apply to all functions a parameter passing

by reference for two variables: a parameter array Q and a parameter value V.

The array Q keeps synapse values and the value V handles activation results.

In our implementation the parallel execution of each individual is ensured, by

the proper handling of these variables. In order to avoid confusion, we should
define explicitly the meaning of the arguments shown in Table 7. These argu-

ments correspond to the permissible sub-nodes a parent GP node may have

in a GP tree. On the other hand, the array Q and the variable V, correspond

to the internal implementation of the neural network�s elementary functions into

the GP tree and they enable variable sharing throughout an individual�s execu-
tion, that is needed to simulate the parallel processing. In the following para-

graphs, a short presentation is given for each of the functions together with an

explanation of the implementation. Emphasis is given mostly to implementa-
tion issues since the definition of modifying functions has been thoroughly

described in existing literature [8,35].

Each function calls its arguments, passing the array Q and the variable V by

reference, unless otherwise stated. For example, function pp2 creates copies of

the (input) array Q before passing them to its arguments.

The sp1 function takes three arguments. The first and the third argument

can be pp1 or sp1 (or in) functions. The second argument is a weight value.

It calls sequentially the three arguments. Its application to the developing neu-
ral network is to add sequentially a node next to the node that is applied.

706 A. Tsakonas / Information Sciences 176 (2006) 691–724
The pp1 function has two arguments. They can be pp1 or sp1 (or in) func-

tions. It feeds the arguments with copies of the array Q. It then saves the con-

catenation of them to array Q. It does not affect explicitly the variable V. Its

modification to the developing neural network is to create a node in parallel

to the node that is applied.

The in function has one argument. This argument is one of the network
inputs. It initializes the array Q and the variable V to this value.

The sp2 function has three arguments. The first and the third argument can

be pp2 or sp2 (or stop) functions. The second argument is a weight number. It

calls sequentially the three arguments. Its application to the developing neural

network is to add sequentially a node next to the node that is applied similar to

sp1.

The pp2 function takes three arguments. The first and the third argument can

be pp2 or sp2 (or stop) functions. The second argument can be a lnk or an act

function. It feeds the three arguments with copies of the array Q. It then saves

the concatenation of the first and the third argument to array Q. It does not af-

fect explicitly the variable V. Its modification to the developing neural network

is to create a node in parallel to the node that is applied, similar to pp1.

The stop function takes one argument. This argument is a bias number. It

adds the bias number to the value V and performs hyperbolic tangent activa-

tion. The result is saved to variable V. The array Q is also initialized with the

value V.
The lnk function takes four arguments. The first argument is a number that

calculates the number of the synapse to be processed. The number derives by

the application of the formula Z mod N, where Z is the number of existing syn-

apses (kept in array Q) and N is the value of the argument. The second argu-

ment is a weight number and updates the weight of the selected synapse. The

third argument is a cut number and cuts the selected synapse if and only if

the cut value is 1 and the number of inputs to this place is greater than 1.

The fourth argument can be again a lnk function or an act function.
The act function summarizes the elements (synapse inputs) in the array Q

and returns the result to V. It takes no arguments.

As seen from the previous, there are additional functions that assist the

selection of a number into a given range and a given precision. These functions

are presented below.

The weight number function returns a float in the range [�1,1] with a preci-

sion of 0.00390625. The bias number function returns a float in the range [�1,1]

with a precision of 0.000244140625. The cut number function returns an integer
from the set {0,1}. The number function returns an integer in the range [1,256].

The selection of the precision for the weight number and the bias number is sim-

ilar to the existing literature [10]. The BNF grammar production rules used for

implementing the neural network are summarized in Table 8. This example

grammar corresponds to a binary decision neural network––with two indepen-

Table 8

Production rules for artificial neural networks

Symbol Rule

hCLAUSEi ::=hANNi
hANNi ::=hPROGih PROGi
hPROGi ::=hPLACE1ihWTi
hPLACE1i ::=SP1hPLACE1ihWTihPLACE2i

jPP1hPLACE1ihPLACE1i
jhINi

hINi ::=hATTRi
hWTi ::=float in [�1,1]

hPLACE2i ::=SP2hPLACE2ihWTihPLACE2i
jPP2hPLACE2ihSYNAPSEihPLACE2i
jhSTOPi

hSTOPi ::=hBIASi
hSYNAPSEi ::=hLNKijhACTi
hBIASi ::=float in [�1,1]

hLNKi ::=LNKhNUMihWTihCUTihSYN APSEi
hACTi ::=ACT

hNUMi ::=integer in [1,256]

hCUTi ::=integer in [0,1]

hATTRi ::=data attribute (system input)

A. Tsakonas / Information Sciences 176 (2006) 691–724 707
dent outputs. A tree starts with the hCLAUSEi symbol. As it can be seen from

the design of this grammar, there is no limit on how many cut functions could
be applied in a node. This is an upgrade from previous implementations––

where the number of effective cut functions was limited––and enables to a lar-

ger set of neural networks to be expressed within the search process.

4.4. G3P for fuzzy Petri-nets

A fuzzy Petri-net [19] can be seen as a network that is constructed by input

places, transitions and output places. The topology of a simple fuzzy Petri-net
is depicted in Fig. 6. The framework of a fuzzy Petri-net is finely correlated

with the classification process of any pattern recognition task [24]. The input

places are associated with the values of the features. These values are processed

by the transitions of the network.

The levels of firing of the network, depend on the parameters that are asso-

ciated with each transition. Consequently, an output place corresponds to a

class. As with the case of NN in the previous paragraph, in order to handle

a number of classes larger than two, this system adopts the winner-takes-all

approach. Formally, a fuzzy Petri-net is described by the following 8-tuple:

FPN ¼ ðP;T;D; I ;O; cf ; a; bÞ
where P = {P1,P2, . . . ,Pn} is a finite set of places,

Fig. 6. A fuzzy Petri-net.

708 A. Tsakonas / Information Sciences 176 (2006) 691–724
T = {T1,T2, . . .,Tn} is a finite set of transitions,

D = {D1,D2, . . .,Dn} is a finite set of propositions,

P \ T \ D = ;,
I : T ! P1 is the input function, a mapping from transitions to bags of
places,

O : T ! P1 is the output function, a mapping from transitions to bags of

places,

cf : T ! [0, 1] is an association function, a mapping from transitions to real

values in the range [0,1],

a : P ! [0,1] is an association function, a mapping from places to real values

in the range [0,1],

b : P ! D is an association function, a mapping from places to propositions.

The incorporation of fuzzy Petri-nets into G3P was originally presented by

[35]. That implementation made possible the description of fuzzy Petri-nets of

arbitrary size and topology. Unlike in [35], where a context-sensitive grammar

is used to guide the genetic process, we present a context-free version of that

grammar. The context-free equivalent, which applied in this work, satisfies

the same descriptive rules. According to the methodology described in [35],

manipulating functions are used to insert additional places and transitions.
Since there are two types of modifiable places, the input and intermediate ones,

we classify the place-manipulating functions into two types. These functions

are presented in Table 9. Moreover, we have manipulating functions that are

used on transitions. These transition-manipulating functions are shown in

Table 10.

Two variables were used to assist the simulation of the breadth-first execu-

tion, as with the model of the previous paragraph: a parameter array Q and

a parameter value V. The working of these functions can be summarized as
follows:

Table 9

FPN place-manipulating functions

Name Description Number of arguments

Input place sp1 Sequential division 3

pp1 Parallel division 2

in Initialize the value 2

Intermediate place sp2 Sequential division 3

pp2 Parallel division 3

stop Terminate the modification 0

Table 10

FPN transition-manipulating functions

Name Description Number of

arguments

st Sequential division 3

pt Parallel division 2

cut Remove one of the incoming edges 2

setcf Set the certainty factor 1

A. Tsakonas / Information Sciences 176 (2006) 691–724 709
The sp1 function takes three arguments. The first and the third argument

can be pp1 or sp1 (or in) functions. The second argument is a transition manip-

ulating function such as pt, st or cut. It calls sequentially the three arguments.

Its application to the developing fuzzy Petri-net is to add sequentially a new

input place next to the place that is applied.

The pp1 function has two arguments. They can be pp1 or sp1 (or in) func-

tions. It feeds the arguments with copies of the array Q. It then saves the con-

catenation of them to array Q. It does not affect explicitly the variable V. Its
modification to the developing fuzzy Petri-net is to create an input place in par-

allel to the place that is applied.

The in function has one argument. This argument is one of the FPN

inputs. It fuzzifies the input and initializes the array Q and the variable V to

this value. We used five (5) Gaussian membership functions, which are shown

in Fig. 7.

The sp2 function has three arguments. The first and the third argument can

be pp2 or sp2 (or stop) functions. The second argument is a transition manip-
ulating function (pt, st, etc.). It calls sequentially the three arguments. Its appli-

cation to the developing FPN is to add sequentially a place next to the place

that is applied (in a similar fashion of the sp1).

The pp2 function takes three arguments. The first and the third argument

can be pp2 or sp2 (or stop) functions. The second argument is a transition

manipulating function. Initially, it feeds the three arguments with copies of

the array Q.

Fig. 7. Membership functions of the fuzzy Petri-net.

Table 11

Production rules for fuzzy Petri-nets

Symbol Rule

hCLAUSEi ::=hFPNi
hFPNi ::=hPROGihPROGi
hPROGi ::=hPLACE1ihTRANi
hPLACE1i ::=SP1hPLACE1ihTRANihPLACE2i

jPP1hPLACE1ihPLACE1i
jhINITi

hINITi ::=hATTRi
hPLACE2i ::=SP2hPLACE2ihTRANihPLACE2i

jPP2hPLACE2ihTRANihPLACE2i
hTRANi ::=PThTRANihTRANi

jSThTRANihPLACE2ihTRANi
jCUThNUMBERihTRANi
jSETCFhCFi

hNUMBERi ::=integer in [1,256]

hCFi ::=real in [0,1]

hATTRi ::=data attribute (system input)

710 A. Tsakonas / Information Sciences 176 (2006) 691–724
Then, it saves the concatenation of the first and the third argument to the

array Q. Its modification to the developing FPN is to create a place in parallel

to the place that is applied, similar to pp1. It does not affect explicitly the var-

iable V.

The stop function has no arguments. It signals the end of further modifica-

tion. The array Q is initialized with the value V.

The st function has three arguments. The first and the third argument are

transition manipulating functions. The second argument is a place manipulat-
ing function. It calls sequentially the three arguments. Its application to the

developing neural network is to add sequentially a transition next to the tran-

sition that is applied.

The pt function has two arguments. They can be transition manipulating

functions. It feeds the arguments with copies of the array Q. Its modification

A. Tsakonas / Information Sciences 176 (2006) 691–724 711
to the developing fuzzy Petri-net is to create an transition in parallel to the

place that is applied.

The cut function has two arguments. The first argument is an integer. The

second one is a transition manipulating function. It cuts the connection that

corresponds to the (I mod N) value––where I is the number of inputs to this

place and N is the integer––iff the number of inputs to this place is greater than
1. It passes down to the second argument the parameters Q and V.

The setcf function takes one argument. This argument is a certainty factor

value. It performs the transition of the input value. The result is saved to var-

iable V. The array Q is also initialized with the value V.

The BNF grammar is shown in Table 11. The starting symbol is the

hCLAUSEi symbol. This grammar corresponds to a binary decision fuzzy

Petri-net.
5. Results and comparison

5.1. Generalization performance

In Table 12 we present the training classification error (CE) for each model

and data set. The presentation of these results is useful since, as stated previ-

ously, during the training phase the best solution is the one that has the lower
sum of the classification errors in both training and validation set. The valida-

tion and test CEs are shown in Tables 13 and 14. As we may observe, the lower

CE belongs on average to the G3P for Decision Trees (DT) approach, whereas

the higher to the Neural Networks model. However, we consider that this out-

come should not lead to generalization on the general G3P for NN model capa-

bilities, since our results concern a given GP parameter setup.

This setup seems to be restrictive for the G3P for NN model. More specif-

ically, as it was expected, a high correlation between the size of the produced
NN and the training classification result was noticed. For example, this value

for the diabetes2 data set was 0.8483. Moreover, in order to ensure that these

results are not related to the population size or the effective training time, we

examined a larger model in Section 5.3 that follows. The fuzzy Petri-nets ap-

proach is the next to the NN model that suffers from relatively high CE. We

consider that a model with a larger population size should be examined here

too.

As it can be seen from Table 15, the average best solution size for fuzzy Pet-
ri-nets, in our configuration, varies in the middle between the size of NNs and

the FRBSs. The G3P for FRBS is the only methodology that competes in this

configuration the G3P for DT. Its success over the DT comes in the diabetes

and the cancer data. This result seems to be very interesting since these data

sets are the only sets that do not have discrete attributes (see Table 2). In

Table 12

Training classification error rates of G3P in Proben1 data sets

Problem G3P for decision trees G3P for fuzzy rule-based

systems

G3P for artificial neural

networks

G3P for fuzzy Petri-nets

Best Avg. Stddev Best Avg. Stddev Best Avg. Stddev Best Avg. Stddev

Cancer1 0.57 2.14 0.83 1.14 2.08 0.55 2.29 6.96 2.37 3.16 3.44 0.25

Cancer2 0.86 2.87 1.72 0.57 1.59 0.48 1.72 6.14 1.82 1.43 3.16 1.54

Cancer3 0.28 1.22 0.46 0.28 1.01 0.46 1.43 5.54 2.51 1.14 2.61 1.62

Diabetes1 15.70 20.98 2.97 15.70 17.25 1.11 24.08 24.74 0.41 20.41 23.62 1.96

Diabetes2 18.84 21.74 1.48 17.01 19.89 2.08 23.29 24.76 0.59 21.46 23.82 1.84

Diabetes3 18.06 22.82 3.17 16.49 19.80 2.23 22.51 23.32 0.49 21.72 23.76 2.03

Gene1 20.87 31.68 6.99 10.21 36.03 15.18 29.76 32.75 4.23 12.23 30.84 14.78

Gene2 25.59 34.16 6.13 13.80 35.42 12.17 28.49 34.16 5.20 12.35 24.05 16.54

Gene3 25.09 30.83 6.11 13.80 32.53 12.15 28.56 39.86 4.79 12.23 29.63 14.39

Heart1 14.41 16.26 1.13 14.62 16.24 1.52 21.83 21.83 0.00 19.43 20.18 0.99

Heart2 13.75 15.91 1.38 15.28 17.14 2.04 24.89 25.87 0.33 20.74 20.89 0.13

Heart3 11.79 13.70 1.36 15.06 15.65 0.77 23.58 23.94 0.25 21.17 21.25 0.16

Horse1 21.11 25.50 3.65 18.33 20.92 2.24 24.44 34.86 3.17 16.67 22.03 5.28

Horse2 16.11 22.41 4.58 15.55 20.13 3.96 16.66 26.11 3.02 19.44 22.96 3.94

Horse3 26.67 31.25 3.55 16.67 22.77 4.67 26.11 32.30 2.07 17.77 22.40 4.72

Thyroid1 2.83 5.77 0.85 5.33 6.66 1.09 5.78 5.98 0.29 6.19 7.19 0.86

Thyroid2 2.30 5.57 1.37 5.58 6.37 1.03 5.75 6.46 0.85 5.78 6.71 0.91

Thyroid3 1.25 2.22 5.35 5.80 6.75 1.33 5.78 6.27 0.81 5.78 6.41 0.74

7
1
2

A
.
T
sa
k
o
n
a
s
/
In
fo
rm

a
tio

n
S
cien

ces
1
7
6
(
2
0
0
6
)
6
9
1
–
7
2
4

Table 13

Validation and test classification error rates of G3P for decision trees and fuzzy rule-based systems in Proben1 data sets

Problem G3P for decision trees G3P for fuzzy rule-based systems

Validation CE (%) Test CE (%) Validation CE (%) Test CE (%)

Best Avg. Stddev Best Avg. Stddev Best Avg. Stddev Best Avg. Stddev

Cancer1 2.29 3.76 1.29 2.29 3.79 1.01 1.72 2.87 0.83 2.29 4.39 1.42

Cancer2 2.87 5.05 1.58 1.72 4.68 2.18 2.87 4.48 0.84 1.72 4.45 1.23

Cancer3 3.44 6.23 1.88 2.29 4.39 1.36 4.02 5.08 0.61 3.44 4.90 0.83

Diabetes1 25.65 28.79 2.25 26.70 31.70 3.24 26.17 28.75 1.44 21.98 26. 47 3.40

Diabetes2 21.46 28.63 4.32 25.65 31.30 3.48 24.08 25.47 0.97 23.56 24. 78 1.22

Diabetes3 24.08 30.23 4.06 19.89 28.79 5.11 23.56 24.95 1.02 21.99 24.25 1.64

Gene1 22.32 32.53 5.93 22.32 33.03 6.70 11.85 36.83 14.99 11.97 37.12 14.99

Gene2 28.87 36.69 4.89 29.63 37.03 4.71 18.15 37.92 11.41 14.37 37.27 11.44

Gene3 26.16 31.49 5.80 26.48 32.21 5.06 12.35 36.60 11.46 11.97 37.04 11.81

Heart1 20.08 23.97 1.38 17.90 21.87 2.12 23.14 25.29 1.25 18.34 22.12 1.93

Heart2 15.72 18.27 1.35 17.90 21.68 1.81 16.59 18.55 1.44 20.96 23.68 1.89

Heart3 16.59 19.67 1.68 22.70 25.76 1.46 17.90 25.76 3.08 25.32 25.76 0.61

Horse1 31.11 36.05 2.84 28.88 33.55 2.78 34.44 40.37 6.78 38.88 41.48 4.49

Horse2 40.00 45.38 2.50 36.67 42.27 3.48 38.88 44.44 3.95 37.77 40.27 4.29

Horse3 35.55 40.67 2.56 28.89 35.94 3.04 33.33 37.22 4.11 27.77 35.28 5.00

Thyroid1 4.00 6.01 0.58 2.89 4.96 0.81 5.55 6.77 0.90 5.28 6.08 0.57

Thyroid2 2.39 4.84 1.00 2.66 5.73 1.25 5.94 6.54 0.82 5.44 5.95 0.52

Thyroid3 2.55 5.10 0.90 1.94 5.45 1.37 6.00 6.80 1.13 5.44 6.03 0.82

A
.
T
sa
k
o
n
a
s
/
In
fo
rm

a
tio

n
S
cien

ces
1
7
6
(
2
0
0
6
)
6
9
1
–
7
2
4

7
1
3

Table 14

Validation and test classification error rates of G3P for ANN and fuzzy Petri-nets in Proben1 data

sets

Problem G3P for artificial neural networks G3P for fuzzy Petri-nets

Validation CE (%) Test CE (%) Validation CE (%) Test CE (%)

Best Avg. Stddev Best Avg. Stddev Best Avg. Stddev Best Avg. Stddev

Cancer1 2.29 5.48 1.37 2.87 5.66 1.24 2.29 3.06 0.69 2.87 4.31 0.94

Cancer2 2.87 6.83 1.55 2.87 8.30 2.16 2.29 5.17 2.20 2.29 4.83 1.19

Cancer3 4.02 7.50 1.69 1.14 5.28 1.70 4.02 6.26 1.49 2.29 4.42 1.43

Diabetes1 24.60 26.11 0.71 22.51 24.54 1.26 24.08 27.53 2.26 23.03 26.82 2.56

Diabetes2 23.56 24.45 0.61 23.03 25.41 1.15 24.60 27.78 2.22 23.03 27.08 2.65

Diabetes3 27.22 29.13 0.94 24.08 28.76 1.84 26.17 28.63 2.19 24.08 28.21 2.16

Gene1 33.41 35.12 2.40 31.77 34.74 4.19 13.36 31.96 15.03 12.73 32.50 14.93

Gene2 30.64 41.26 3.50 31.27 41.48 4.08 18.03 27.42 13.28 20.55 29.12 12.12

Gene3 33.03 38.14 7.54 32.53 37.83 7.37 13.36 32.25 12.73 12.98 31.39 14.44

Heart1 26.20 26.20 0.00 23.14 23.14 0.00 24.89 25.76 0.79 23.14 25.63 1.44

Heart2 21.39 22.22 2.55 19.65 20.34 2.15 21.83 22.12 0.25 21.83 25.32 3.73

Heart3 19.65 22.37 1.69 25.32 28.60 1.59 21.39 22.85 2.15 24.89 25.90 1.76

Horse1 31.11 35.22 2.04 28.88 30.61 2.05 40.00 43.70 3.21 36.67 40.37 3.90

Horse2 43.33 47.22 3.39 38.88 43.50 2.55 37.77 42.96 4.49 35.55 38.88 4.84

Horse3 31.11 41.55 3.61 31.11 36.27 2.53 38.89 43.33 3.84 36.67 41.11 4.44

Thyroid1 6.00 6.14 0.19 5.44 5.50 0.80 6.28 7.17 0.77 5.55 6.26 0.69

Thyroid2 5.94 6.51 0.74 5.56 6.08 0.60 6.03 6.75 0.79 5.44 5.95 0.60

Thyroid3 5.89 6.39 0.69 5.39 5.72 0.50 6.17 6.51 0.61 4.22 5.49 0.84

714 A. Tsakonas / Information Sciences 176 (2006) 691–724
general, classification competence of fuzzy systems over crisp systems is ex-

pected in data sets having continuous features, a principle that is verified in

our experiments. On the other hand, data sets with discrete features seem to

be better handled by our G3P for DT approach.
5.2. Comparison on solution size and effective training time

In Table 16, we show the average effective generations for the models and
the data sets. These results show that in more difficult problems––such as ill-

conditioned (e.g. horse data) or large sized (e.g. gene data) problems––the algo-

rithm needed slightly more training time to find the best solution. This is the

same result found in [4] concerning the effective time of linearGP.
5.3. Comparison with larger models

In Section 5.1, we observed that the models for artificial neural networks
and fuzzy Petri-nets succeeded generally in lower classification rates, than those

of the fuzzy rule-based systems or the decision trees. This result, together with

the fact that the cellular encoding scheme is used for the two models, led us to

Table 15

Average best solution size of G3P in Proben1 data sets

Problem G3P for decision

trees

G3P for fuzzy

rule-based

systems

G3P for artificial

neural networks

G3P for fuzzy

Petri-nets

Avg. Stddev Avg. Stddev Avg. Stddev Avg. Stddev

Cancer1 192 147 214 116 47 45 83 80

Cancer2 179 114 193 135 39 54 92 76

Cancer3 198 143 160 118 47 56 92 75

Diabetes1 325 176 274 125 44 44 45 26

Diabetes2 264 131 172 150 30 25 44 25

Diabetes3 217 153 207 208 17 10 51 17

Gene1 18 21 146 202 21 16 37 42

Gene2 13 22 130 197 25 10 44 36

Gene3 20 25 167 226 26 14 42 39

Heart1 233 120 378 139 8 3 45 11

Heart2 271 130 372 168 9 6 89 53

Heart3 315 118 315 119 10 4 64 31

Horse1 158 119 347 74 29 46 81 34

Horse2 91 84 311 74 28 27 84 43

Horse3 102 161 390 77 28 22 77 24

Thyroid1 14 20 165 212 36 27 39 20

Thyroid2 31 45 188 208 44 21 32 17

Thyroid3 37 59 193 178 39 30 34 22

A. Tsakonas / Information Sciences 176 (2006) 691–724 715
further research on the model size. Thus, we experimented further using larger

models for two cases. Specifically, we examined the problems of cancer1 and

diabetes1 using a model with double population and running the algorithm

for double number of generations. We performed five runs with models for

ANN and FPN using the population of 4000 individuals for 200 generations.

The results are shown in Table 17.

By comparing the results shown in Table 17, to those of Tables 12 and 14,

we remark the following:
Increasing the model size resulted to apparent improvement of classification

rate only for the test set of the ANNmodel in the cancer1 domain, and thus, we

conclude that the larger model did not necessarily offered higher classification

rates. On the other hand, it was observed, that using a larger model ensured

higher average classification rates and lower error standard deviation values.

The latter conclusion is depicted in all examples of Table 17, where the average

error rates and the standard deviations have lower values than those of Tables

12 and 14. This remark implies that by using a larger model for the abovemen-
tioned approaches, we may expect better classification rates on average, and a

sufficient number of runs is still required for the system to be given the oppor-

tunity to explore the search space.

Table 16

Effective training time of G3P in Proben1 data sets (in generations)

Problem G3P for

decision trees

G3P for fuzzy

rule-based

systems

G3P for

artificial neural

networks

G3P for fuzzy Petri-

nets

Avg. Stddev Avg. Stddev Avg. Stddev Avg. Stddev

Cancer1 64 34 48 32 55 34 47 15

Cancer2 70 26 43 29 48 25 54 30

Cancer3 58 30 48 27 49 30 50 37

Diabetes1 87 14 71 25 41 33 45 27

Diabetes2 79 21 42 12 52 42 46 29

Diabetes3 72 21 40 31 75 26 52 30

Gene1 87 21 85 28 74 25 63 32

Gene2 86 32 85 23 80 26 55 40

Gene3 80 32 77 29 76 31 58 42

Heart1 74 19 77 24 94 34 30 26

Heart2 88 9 56 40 87 31 24 7

Heart3 82 22 40 23 67 46 30 11

Horse1 78 20 62 20 69 38 64 42

Horse2 74 29 74 23 66 40 60 51

Horse3 49 39 85 11 69 34 55 47

Thyroid1 52 46 84 30 49 41 52 46

Thyroid2 84 29 75 37 55 33 41 31

Thyroid3 84 25 85 21 59 34 34 43

Table 17

Error rates of G3P for ANN and fuzzy Petri-nets using larger model

Problem Training CE (%) Validation CE (%) Test CE (%)

Best Avg. Stddev Best Avg. Stddev Best Avg. Stddev

G3P for artificial neural networks

Cancer1 2.87 6.32 2.77 3.45 5.48 1.37 2.87 5.66 1.24

Diabetes1 23.82 24.19 0.30 25.13 25.86 0.60 23.56 23.66 0.23

G3P for fuzzy Petri-nets

Cancer1 3.16 3.74 0.41 2.30 3.45 0.81 3.45 4.89 1.00

Diabetes1 24.35 25.13 0.91 22.51 23.95 0.99 23.04 23.30 0.30

716 A. Tsakonas / Information Sciences 176 (2006) 691–724
5.4. Comparison with other methodologies

The following tables include our results, in a comparative way to those in-

cluded in literature. Although straightforward comparisons are not always effi-

cient, these tables provide a useful way to extract valuable conclusions on the

capabilities of the analyzed system.

Table 18

Comparative results for the breast cancer domain

Methodology Error rate Methodology Error rate

Training Test Training Test

G3P-DT 0.0057 0.0210 2-pairs [45] N/A 0.0650

G3P-FRBS 0.0066 0.0248 3-pairs [45] N/A 0.0410

G3P-ANN 0.0181 0.0229 1-nearest neighbor [44] N/A 0.0630

G3P-FPN 0.0191 0.0248 Typical instances [44] N/A 0.0780

C4.5 [52] N/A 0.0494 Randomized C4.5 [52] N/A 0.0353

Bagged C4.5 [52] N/A 0.0367 Adaboosted C4.5 [52] N/A 0.0310

Naı̈ve Bayes [53] N/A 0.0270 ID3 [53] N/A 0.0480

A. Tsakonas / Information Sciences 176 (2006) 691–724 717
5.4.1. Breast Cancer problem

For the breast cancer domain [40,41], we present our results together with

those found in literature [44,45,52,53]. As it can be seen in Table 18, the meth-

odology of this paper outperforms the approaches in [52,53]. Although the re-

sults in [44,45] are referred to a part of the data set encountered here, and thus

a direct comparison is not practicable, they are provided in the table for clarity.

The G3P results in this table are comprised of the low classification rate for

each approach averaged for the three data sets encountered (e.g. cancer1, can-
cer2 and cancer3 data sets).
5.4.2. Diabetes problem

For the diabetes domain [43], we compared our results to those given by

StatLog [42] for a wide range of applications. For this, we considered the ob-

tained lowest classification error averaged from the three datasets (diabetes1,

diabetes2 and diabetes3). As it may be noticed in Table 19, the models of

G3P for decisions trees and fuzzy rule-based systems have the highest classifi-
cation score among these methodologies. Moreover, only four approaches

have better test classification score than those of the G3P models of ANN

and FPN.
5.4.3. Gene problem

For the gene domain [43], we present our results, together with results found

in literature, concerning specific tasks performed using the same data set. More

specifically, this data set has been commonly used in three separate tasks, each
one being the binary distinction of one class from the other two. Although han-

dling a multi-class classification problem into a single run is considered a sig-

nificantly harder task, and often a N-class classification problem is decomposed

into N two-class classification problems [54], and thus a direct comparison is

not applicable, we provide in Table 20 the results from those two-class decom-

position problems for clarity. As in previous paragraphs, the value referred for

Table 19

Comparative results for the diabetes domain

Methodology Error rate Methodology Error rate

Training Test Training Test

G3P-DT 0.133 0.195 QuaDisc 0.237 0.262

G3P-FRBS 0.150 0.215 Bayes 0.239 0.262

G3P-ANN 0.234 0.227 C4.5 0.131 0.27

G3P-FPN 0.204 0.233 IndCart 0.079 0.271

LogDisc 0.219 0.223 BayTree 0.008 0.271

Dipol92 0.22 0.224 LVQ 0.101 0.272

Discrim 0.22 0.225 Kohonen 0.134 0.273

Smart 0.177 0.232 Ac2 0 0.276

Radial 0.218 0.243 NewId 0 0.289

Itrule 0.223 0.245 Cn2 0.01 0.289

BackProp 0.198 0.248 Alloc80 0.288 0.301

Cal5 0.232 0.25 KNN 0 0.324

Cart 0.227 0.255 Default 0.35 0.35

Castle 0.26 0.258

718 A. Tsakonas / Information Sciences 176 (2006) 691–724
the G3P generated systems, is the low classification error averaged for the three

data sets tested (e.g. gene1, gene2 and gene3).

5.4.4. Heart problem

We present in Table 21, the results of the paper, together with those found in

literature [55–57]. For this, we considered the obtained lowest classification

error averaged from the three datasets (heart1, heart2 and heart3). As it can

be seen, the proposed system maintains highly competitive classification scores.
Table 20

Comparative results for the gene domain

Methodology 3-Class

classification

Classification

of neither

Classification

of exon–intron

Classification

of intron–exon

Training Test 10-Fold cross

validation

10-Fold cross

validation

10-Fold cross

validation

G3P-DT 0.2385 0.2614 – – –

G3P-FRBS 0.1260 0.1277 – – –

G3P-ANN 0.2893 0.3185 – – –

G3P-FPN 0.1227 0.1542 – – –

KBANN – – 0.0462 0.0756 0.0847

BACKPROP – – 0.0529 0.0574 0.1075

PEBLS – – 0.0686 0.0818 0.0755

PERCEPTRON – – 0.0399 0.1632 0.1741

ID3 – – 0.0884 0.1058 0.1399

COBWEB – – 0.1180 0.1504 0.0946

Near. neighbor – – 0.3111 0.1165 0.0909

Table 21

Comparative results for the heart disease domain

Methodology Error rate Methodology Error rate

Training Test Training Test

G3P-DT 0.1753 0.2741 Logistic regression [55] N/A 0.230

G3P-FRBS 0.1846 0.2251 NTgrowth [57] N/A 0.230

G3P-ANN 0.2329 0.2320 C4 [57] N/A 0.252

G3P-FPN 0.2120 0.2338 CLASSIT [56] N/A 0.211

CDF [55] N/A 0.210 CADENZA [55] N/A 0.226

A. Tsakonas / Information Sciences 176 (2006) 691–724 719
5.4.5. Horse problem

The horse-colic domain results, together with those found in literature

[52,53], are shown in Table 22. As in previous paragraphs, the value referred

for the G3P generated systems, is the low classification error averaged for the

three data sets tested (e.g. horse1, horse2 and horse3). In this domain, the
Table 22

Comparative results for the horse colic domain

Methodology Error rate Methodology Error rate

Training Test Training Test

G3P-DT 0.2130 0.3148 C4.5 [52] N/A 0.1561

G3P-FRBS 0.1685 0.3480 Bagged C4.5 [52] N/A 0.1481

G3P-ANN 0.2240 0.3295 Randomized C4.5 [52] N/A 0.1561

G3P-FPN 0.1796 0.3230 Adaboosted C4.5 [52] N/A 0.1825

Naı̈ve Bayes [53] N/A 0.1900 ID3 [53] N/A 0.2170

Table 23

Comparative results for the thyroid domain

Methodology Error rate Methodology Error rate

Training Test Training Test

G3P-DT 0.021 0.024 Conj.gradient + line search 0.055 0.072

G3P-FRBS 0.056 0.054 Silva and Almeida 0.004 0.015

G3P-ANN 0.057 0.055 SuperSAB 0.005 0.015

G3P-FPN 0.059 0.051 Delta-Bar-Delta 0.008 0.017

Backprop 0.001 0.025 RPROP 0.004 0.019

BP (batch mode) 0.074 0.082 Quickprop 0.004 0.018

BP (batch mode)

+ Eaton + Oliver

0.076 0.083 Cascade colleration 10 units 0.002 0.016

BP + Darken

and Moody

0.001 0.031 Cascade colleration 20 units 0.000 0.015

Salomon 0.054 0.068 Polak-Ribiere + line search 0.053 0.068

Chan and Fallside 0.053 0.068 Schmidhuber 0.017 0.028

720 A. Tsakonas / Information Sciences 176 (2006) 691–724
results obtained by our system configuration, maintain lower classification

scores than those found in literature.
5.4.6. Thyroid problem

For the diabetes domain, we compare our results with a number of neural

network algorithms [58]. The methodology of this paper is antagonistic in
terms of classification accuracy with many of the neural network models tested

in [58]. Again here, we include as classification score for the G3P generated sys-

tems, the average of the low error rates for the three sub-problems addressed

(e.g. thyroid1, thyroid2 and thyroid3) (see Table 23).
6. Discussion

Considering the comparison within the G3P models, the model for decision

trees outperformed the other models in the thyroid problem. Also it has offered

the highest classification scores in the cancer domain, followed by the model

for fuzzy-rule based systems. The latter model, succeeded in high classification

score in the gene domain, followed by the fuzzy Petri-nets model. In the do-

mains of horse and diabetes there was not clear winner. On the other hand,

the model for the artificial neural networks maintained a lower classification

score in most of the problems. This led us to further research with larger pop-
ulation size and number of generations. The results showed that by using larger

models, we might expect better classification scores only on average; the

enhancement of the G3P-ANN performance rather relies to the adoption of

a larger solution size (e.g. size of the individual). The latter conclusion derives

by the observation of high positive correlations between the solution size and

the achieved classification score.

The comparison with the paper�s work to the experimentation found in lit-

erature is not always a straightforward task. Although the data sets used here
have been extensively applied in a wide range of techniques, the specific data

setup and split into training and test sets, and the optional inclusion of a val-

idation set, has not always been a well-recorded element. However, for an ade-

quate number of experiments, the results obtained can still be compared, since

cross-validation techniques have been used, and the data setup bias is expected

to be low. From this point of view, the analyzed system of this paper has suc-

ceeded in achieving high classification scores in most of the domains tested.

More importantly, the inherited features of the analyzed system (e.g. a genetic
programming system) minimize the human involvement when a decision has to

be taken on the solution architecture and tuning. These features, together with

the highly competitive results presented here, can be used as a guide for the

research in further application areas.

A. Tsakonas / Information Sciences 176 (2006) 691–724 721
7. Conclusions and future work

This work presented a comparison of four grammar-guided genetic pro-

gramming approaches in data classification. Namely, decision trees, fuzzy

rule-based systems, feedforward neural networks and fuzzy Petri-nets were

implemented using context-free grammars. Cellular encoding was adopted in
order to describe arbitrary network topology for the neural networks and

the fuzzy Petri-nets. Six data sets were used mainly from the medical domain.

We performed 20 runs in three variations of these data for each of the four ap-

proaches. The results allow driving conclusions on the effectiveness of this

approach.

For this work, we encountered data sets each with two or three classes. The

other two approaches, G3P for decision trees and G3P for fuzzy rule-based sys-

tems worked competitively between each other, offering valuable results. Spe-
cifically, we observed that the DT approach performed better in data sets that

had discrete features while the FRBS approach was more effective in data sets

consisted of only continuous attributes. Furthermore, we consider that exper-

iments with data sets having larger number of classes (such as the mushroom

data from theUCI Machine Learning repository) would offer interesting obser-

vations on the relative performance of the models.

Research will follow this work regarding larger models that would enable to

all methodologies to perform competitively. In the absence of a standard GP
benchmarking data set, other real-world domains will be used in order to

obtain transparent results on the classification success of this approach. More

intelligent models––such as Kohonen networks––will be implemented in con-

text-free grammars to offer more generalized knowledge discovery attempt. Fi-

nally, tuning properly the initialization procedure of a grammar-guided genetic

programming will enable better exploration of the search space for a given size

of the GP model.
References

[1] E. Alba, C. Cotta, J.M. Troya, Evolutionary design of fuzzy logic controllers using strongly-

typed GP, in: Proceedings of the 1996 IEEE International Symposium on Intelligent Control,

New York, NY, 1996, pp. 127–132.

[2] C. Blake, E. Keogh, C.J. Merz, UCI Repository of Machine Learning Databases. Department

of Information and Computer Science, University of California, Irvine, CA. Available from:

<http://www.ics.uci.edu/~mlearn/ML-Repository.html>.

[3] C.C. Bojarczuk, H.S. Lopes, A.A. Freitas, Genetic programming for knowledge discovery in

chest-pain diagnosis, IEEE Eng. Med. Biol. July (2000) 38–44.

[4] M. Brameier, W. Banzhaf, A comparison of linear genetic programming and neural networks

in medical data mining, IEEE Trans. Evol. Comp. 5 (1) (2001) 17–26.

[5] G. Dounias, A. Tsakonas, J. Jantzen, H. Axer, B. Bjerregaard, D.G. v.Keyserlingk, Genetic

programming for the generation of crisp and fuzzy rule bases in classification and diagnosis of

http://www.ics.uci.edu/~mlearn/ML-Repository.html

722 A. Tsakonas / Information Sciences 176 (2006) 691–724
medical data, in: Proceedings of the First International NAISO Congress on Neuro Fuzzy

Technologies, NF-2002, Habana, Cuba, January 16, 2002.

[6] A.S. Elstein, S. Shulman Lee, S.A. Sprafta, Medical Problem Solving: an Analysis of Clinical

Reasoning, Harvard University Press, Cambridge, 1978.

[7] A.A. Freitas, Genetic programming framework for two data mining tasks: classification and

generalized rule induction, in: Genetic Programming 1997: Proceedings of the 2nd Annual

Conference (Stanford University, July 1997), Morgan Kaufmann, 1997, pp. 96–101.

[8] F. Gruau, Neural Network Synthesis using Cellular Encoding and the Genetic Algorithm,

Ph.D. Thesis, Ecole Normale Superieure de Lyon, anonymous ftp:lip.ens-lyon.fr (140.77.1.11)

pub/Rapports/PhD PhD94-01-E.ps.Z.

[9] F. Gruau, On using syntactic constraints with genetic programming, in: P.J. Angeline, K.E.

Jinnear (Eds.), Advances in Genetic Programming, MIT, 1996.

[10] F. Gruau, D. Whitley, L. Pyeatt, A comparison between cellular encoding and direct encoding

for genetic neural networks, in: J.R. Koza, D.E. Goldberg, D.B. Fogel, R.L. Riolo (Eds.),

Genetic Programming 1996: Proceedings of the First Annual Conference, MIT Press,

Cambridge, MA, 1996, pp. 81–89.

[11] T. Hussain, Cellular Encoding: Review and Critique, Technical Report, Queen�s Univer-

sity, 1997. Available from: <http://www.qucis.queensu.ca/home/hussain/web/1997_cellular_

encoding_review.ps.gz>.

[12] T. Hussain, R. Browse, Attribute grammars for genetic representations of neural networks and

syntactic constraints of genetic programming, in: AIVIGI�98: Workshop on Evol. Comp.,

Vancouver BC, 1998.

[13] J.-S.R. Jang, C.-T. Sun, E. Mizutani, Neuro-fuzzy and Soft Computing, Prentice-Hall, Upper

Saddle River, NJ, 1997.

[14] C.Z. Janikow, A methodology for processing problem constraints in genetic programming,

Comput. Math. Appl. 32 (8) (1996) 97–113.

[15] J.R. Koza, Genetic Programming: on the Programming of Computers by Means of Natural

Selection, MIT Press, Cambridge, MA, 1992.

[16] J.R. Koza, F.H. Bennett III, D. Andre, M.A. Keane, Genetic Programming III, Morgan

Kaufmann Publ. Inc., 1999.

[17] P. Langley, H.A. Simon, G.L. Bradshaw, Rediscovering chemistry with the Bacon system,

Machine Learning: an Artificial Intelligence Approach, vol. 1, Morgan Kaufmann, 1983.

[18] M.F. Abbod, D.G. von Keyserlingk, D.A. Linkens, M. Mahfouf, Survey of utilization

of fuzzy technology in medicine and health care, Fuzzy Sets Syst. 120 (2:1) (2001) 331–

349.

[19] C.G. Looney, Fuzzy Petri nets for rule-based decision-making, IEEE Trans. Systems Man

Cybernet 18 (1988) 178–183.

[20] D.J. Montana, Strongly typed genetic programming, Evol. Comput. 3 (2) (1995).

[21] N. Paterson, M. Livesey, Evolving caching algorithms in C by GP, in: Genetic Programming

1997, MIT Press, 1997, pp. 262–267.

[22] P. Naur, Revised report on the algorithmic language ALGOL 60, Commun. ACM 6 (1) (1963)

1–17.

[23] P.S. Ngan, M.L. Wong, W. Lam, K.S. Leung, J.C.Y. Cheng, Medical data mining with

evolutionary computation, Artificial Intell. Med. 16 (1999) 73–96.

[24] W. Pedrycz, Generalized fuzzy Petri nets as pattern classifiers, Pattern Recogn. Lett. 20 (1999)

1489–1498.

[25] L. Prechelt, Proben1––A set of neural network benchmark problems and benchmarking rules,

Tech.Rep. 21/94, University of Karlsruhe, Karlsruhe, Germany, 1994.

[26] J.R. Quinlan, Induction of decision trees, Mach. Learning 1 (1986) 81–106.

[27] A. Ratle, M. Sebag, Genetic programming and domain knowledge: beyond the limitations of

grammar-guided machine discovery, in: M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E.

http://www.qucis.queensu.ca/home/hussain/web/1997_cellular_encoding_review.ps.gz
http://www.qucis.queensu.ca/home/hussain/web/1997_cellular_encoding_review.ps.gz

A. Tsakonas / Information Sciences 176 (2006) 691–724 723
Lutton, J.J. Merelo, H.P. Schwefel (Eds.), Parallel Problem Solving from Nature-PPSN VI 6th

International Conference, Springer-Verlag, Paris, 2000, pp. 211–220.

[29] C. Ryan, J.J. Collins, M. O�Neil, Grammatical evolution: evolving programs for an arbitrary

language, in: W. Banzhaf, R. Poli, M. Schoenauer, T.C. Fogarty (Eds.), Genetic Program-

ming, Lecture Notes in Computer Science, Springer, 1998.

[30] A. Singleton, Genetic Programming with C++, BYTE Magazine, 1994.

[31] A. Tsakonas, G. Dounias, Hierarchical classification trees using type-constrained genetic

programming, in: Proceedings of the 1st International IEEE Symposium in Intelligent

Systems, Varna, 2002.

[32] A. Tsakonas, G. Dounias, H. Axer, D.G. von Keyserlingk, Data classification using fuzzy

rule-based systems represented as genetic programming type-constrained trees, in: Proceedings

of the UKCI-01, Edinbourgh, 2001, pp. 162–168.

[33] A.Tsakonas, G. Dounias, A scheme for the evolution of feedforward neural networks

using bnf-grammar driven genetic programming, in: Proceedings of the Eunite-02, Algarve,

2002.

[34] P. Whigham, Search bias, language bias and genetic programming, in: Genetic Programming

1996, MIT Press, 1996, pp. 230–237.

[35] M.L. Wong, A flexible knowledge discovery system using genetic programming and logic

grammars, Decision Support Syst. 31 (2001) 405–428.

[36] T. Yu, P. Bentley, Methods to evolve legal phenotypes, in: Lecture Notes in Computer Science

1498, Proceedings of the Parallel Problem Solving from Nature V, 1998, pp. 280–291.

[37] A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing, Springer, 2003, ISBN 3-

540-40184-9.

[38] T. Baeck, D.B. Fogel, Z. Michalewicz (Eds.), Handbook of Evolutionary Computation, IOP

Publishing, 1997, ISBN 0-750-30895-8.

[39] W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone, Genetic Programming––an Introduction;

on the Automatic Evolution of Computer Programs and Its Applications, Morgan Kaufmann,

1988, ISBN 3-920993-58-6.

[40] W.H. Wolberg, W.N. Street, O.L. Mangasarian, Machine learning techniques to diagnose

breast cancer from fine-needle aspirates, Cancer Lett. 77 (1994) 163–171.

[41] W.H. Wolberg, W.N. Street, O.L. Mangasarian, Image analysis and machine learning

applied to breast cancer diagnosis and prognosis, Anal. Quantitative Cytol. Histol. 17 (2)

(1995) 77–87.

[42] Statlog, Results on the Pima Indians diabetes domain, University of Jena. Available from:

<http://www.minet.uni-jena.de/www/fakultaet/schukat/ME/SS04/data/statlog/diabetes.txt>

[Date of last access: January 20, 2005].

[43] J.W. Smith, J.E. Everhart, W.C. Dickson, W.C. Knowler, R.S. Johannes, Using the ADAP

learning algorithm to forecast the onset of diabetes mellitus, in: Proceedings of the Symposium

on Computer Applications and Medical Care, IEEE Computer Society Press, 1988, pp. 261–

265.

[44] J. Zhang, Selecting typical instances in instance-based learning, in: Proceedings of the Ninth

International Machine Learning Conference, Morgan Kaufmann, Aberdeen, Scotland, 1992,

pp. 470–479.

[45] W.H. Wolberg, O.L. Mangasarian, Multisurface method of pattern separation for medical

diagnosis applied to breast cytology, Proc. Natl. Acad. Sci. 87 (1990) 9193–9196.

[46] P.A. Whigham, Grammatically based genetic programming, in: J.P. Rosca (Ed.), Proceedings

of the Workshop on Genetic Programming: From Theory to Real World Applications, Tahoe

City, CA, USA, pp. 33–41.

[47] N.L. Cramer, A representation for the adaptive generation of simple sequential programs, in:

J.J. Grefenstette (Ed.), Proceedings of an International Conference on Genetic Algrorithms

and the Applications, Carnegie Mellon University, Pittsburgh, PA, USA, pp. 183–187.

http://www.minet.uni-jena.de/www/fakultaet/schukat/ME/SS04/data/statlog/diabetes.txt

724 A. Tsakonas / Information Sciences 176 (2006) 691–724
[48] Y. Shan, R.I. McKay, C.J. Lokan, D.L. Essam, Software project effort estimation using

genetic programming, International Conference on Communication Circuits and Systems,

UESTC Press, Chengdu, China, 2002, pp. 1108–1112.

[49] M. Schoenauer, M. Sebag, F. Jouve, B. Lamy, H. Maitournam, Evolutionary identification of

macro-mechanical models, in: P.J. Angeline, K.E. Kinnear Jr (Eds.), Advances in Genetic

Programming II, MIT Press, Cambridge, MA, 1996.

[50] Y. Shan, R.I. McKay, R. Baxter, H. Abbass, D. Essam, H.X. Nguyen, Grammar model-based

program evolution, in: Proceedings of the Congress on Evolutionary Computation 2004,

Portland, US, 2004, pp. 478–485.

[51] N.X. Hoai, R.I. McKay, H.A. Abbass, Bias in tree adjoining grammars, in: Proceedings of the

European Conference on Genetic Programming (EUROGP), Lecture Notes in Computer

Science LNCS-2610, Springer-Verlag, Berlin, 2003.

[52] T.G. Dietterich, An Experimental Comparison of Three Methods for Constructing Ensembles

of Decision Trees: Bagging, Boosting, and Randomization Machine Learning, Kluwer

Academic Publishers, Boston, 1999.

[53] M.J. Pazzani, Searching for dependencies in Bayesian classifiers, in: D. Fisher, H.J. Lenz

(Eds.), Learning from Data: AI and Statistics V, Springer-Verlag, 1996, pp. 239–248.

[54] T.G. Dietterich, G. Bakiri, Solving multiclass learning problems via error-correcting output

codes, J. Artificial Intell. Res. 2 (1995) 263–286.

[55] R. Detrano, A. Janosi, W. Steinbrunn, M. Pfisterer, J. Schmid, S. Sandhu, K. Guppy, S. Lee,

V. Froelicher, International application of a new probability algorithm for the diagnosis of

coronary artery disease, Amer. J. Cardiol. 64 (1989) 310.

[56] J.H. Gennari, P. Langley, D. Fisher, Models of incremental concept formation, Artificial

Intell. 40 (1989) 11–61.

[57] D. Aha, D. Kibler, M. Albert, Instance-based learning algorithms, Mach. Learning 6 (1991)

37–66.

[58] W. Schiffmann, M. Joost, R. Werner, Comparison of optimized backpropagation algorithms,

in: Proceedings of the European Symposium on Artificial Neural Networks, ESANN�93,
Brussels, 1993, pp. 97–104.

	A comparison of classification accuracy of four genetic program #13 ming-evolved intelligent structures
	Introduction
	Background
	Grammar-guided genetic programming
	Context-free grammars
	Cellular encoding

	The data sets
	Design and implementation
	G3P for decision trees
	G3P for fuzzy rule-based systems
	G3P for artificial neural networks
	G3P for fuzzy Petri-nets

	Results and comparison
	Generalization performance
	Comparison on solution size and effective training time
	Comparison with larger models
	Comparison with other methodologies
	Breast Cancer problem
	Diabetes problem
	Gene problem
	Heart problem
	Horse problem
	Thyroid problem

	Discussion
	Conclusions and future work
	References

