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Abstract

This paper develops an algorithm that extracts explanatory rules from microarray data, which we treat as time series, using
genetic programming (GP) and fuzzy logic. Reverse polish notation is used (RPN) to describe the rules and to facilitate the
GP approach. The algorithm also allows for the insertion of prior knowledge, making it possible to find sets of rules that
include the relationships between genes already known. The algorithm proposed is applied to problems arising in the construc-
tion of gene regulatory networks, using two different sets of real data from biological experiments on the Arabidopsis thaliana
cold response and the rat central nervous system, respectively. The results show that the proposed technique can fit data to

a pre-defined precision even in situations where the data set has thousands of features but only a limited number of points
in time are available, a situation in which traditional statistical alternatives encounter difficulties, due to the scarcity of time
points.
© 2006 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Fuzzy logic is based on fuzzy set theory and espe-
cially on the concept of a fuzzy set. Informally, a fuzzy
set is a set with imprecise boundaries, in which the tran-
sition from membership to non-membership is gradual
rather than abrupt. A fuzzy set F in a universe of dis-
course U is characterized by a membership function μF,

which associates each element u ∈ U with a grade of
membership μF(u) ∈ [0,1] in the fuzzy set F. Note that
a classical set A in U is a special case of a fuzzy set with
all membership values μA(u) ∈ {0,1} (Hiirsalmi et al.,
2000).
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A fuzzy implication is viewed as describing a fuzzy
relation between the fuzzy sets forming the implication.
A fuzzy rule, such as “if x is A then y is B” is implemented
by a fuzzy implication (fuzzy relation) which has a mem-
bership function μA→B(x, y) ∈ [0,1]. Note that μA→B(x,
y) measures the degree of truth of the implication rela-
tion between x and y. A set of related fuzzy rules forms
a fuzzy rule base that can be used to infer fuzzy results
in the form of fuzzy sets.

Fuzzy logic offers an appealing method for describing
phenomena by a set of rules and data sets. These data
sets relate directly to concepts used on a daily basis,
such as “fast”, “strong” or “high”, while the rules express
knowledge approximately the same way a human expert

would. An example of a fuzzy rule would be “if the car
is fast, then the force applied to the brakes is strong”.

Given these characteristics, fuzzy rules are easy to
understand, verify and extend, since they are very simi-

ed.
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ar to the way a person might express knowledge. This
lso makes them attractive for use in domains where
xperts are available and can seed the systems with
number of effective rules from the outset (Bentley,

999).
The goal of this paper is to propose an algorithm that

nds a set of fuzzy rules that could represent the actual
egulation of gene expression performed in the cell. This
roblem is analogous to fuzzy control, because there is
n unknown control process determining how each gene
ill be expressed. In fact, a major challenge in current

uzzy control research is learning good controllers for
arge-scale, non-linear systems with many input and out-
ut variables where no training data are available from
n expert (Carse et al., 1996).

The optimization abilities of evolutionary algorithms
EA) could be used to develop a good set of rules to be
sed by a fuzzy inference engine and to optimize the
hoice of membership functions. This has been done in
ther situations, starting as far back as (De Jong and
pears, 1991) and, more recently, in Bentley (1999),
ounias et al. (2002) or Yang et al. (2003) and in the

eview work in Freitas (2003) for example. EAs are used
n this paper as a way to find a fuzzy rule base that might
xplain phenomena at hand.

Evolutionary algorithms are inspired by Nature. The
dea is to mimic the natural evolution of the species
n order to create a new kind of search technique that
s robust and intelligently seeks solutions in a possibly
nfinite search space (Mitchell, 1996). Some of the tech-
iques that are part of this branch of computer science
re genetic algorithms (GA), genetic programming (GP)
nd evolutionary programming (EP).

All evolutionary algorithms use a population of com-
eting solutions subjected to random variation and selec-
ion for a specific purpose (Fogel and Corne, 2003) which
s to evolve the population to one that contains a higher
roportion of superior (“fitter”) individuals. The fitness
f each individual in the population (its quality) is a mea-
ure of how well that individual achieves the desired
oal. The variation and selection are usually based on
wo operators, the crossover operator which combines
wo different individuals into a new one and the mutation
perator, which randomly changes parts of one individ-
al in order to increase diversity.

An evolutionary algorithm could be described by the
ollowing pseudo-code
reate Initial Population
hile termination criteria not met

Select from current population parents which will generate
offspring
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Apply genetic operators to the selected parents and generate
offspring

Select next population from current individuals and
generated offspring

End While
Present best solution(s)

In this algorithm, the termination criteria are usually
time based (a number of generations has elapsed), qual-
ity based (a certain performance has been achieved) or
stagnation based (the best individuals has not improved
for a certain number of generations), while parent selec-
tion is usually based on a roulette approach, where the
parents with highest evaluation (“fittest”) correspond to
a bigger fraction of the roulette wheel.

Therefore, in order to define an EA one must define
the coding scheme (how each individual will be repre-
sented in the computer), the operators (both mutation and
crossover and any other specific one that will be used),
the evaluation or fitness function (i.e., a measure of the
quality of the current solutions to the problem at hand).

In genetic algorithms (GA), a form of EA, each
solution is encoded by a binary string or another simple
structure called a chromosome. Genetic programming
(GP), which is another form of EA, can be used to
evolve programs to perform certain tasks (Koza, 1992).
In GP, the simple chromosome structure is replaced by a
tree structure, in which a solution is either an algebraic
equation or a program based on the input variables
(Yang et al., 2003).

Many problems of current interest in bioinformat-
ics have high dimensionality without a corresponding
number of examples (data points) that would allow the
application of well-known statistical techniques. One
such area is the reverse engineering of genetic net-
works, further described below. The data set available
for this reverse engineering generally consists of hun-
dreds to thousands of signals, usually measured for
no more than twenty time-steps. The paucity of data
renders network models inferred from this data statis-
tically insignificant (Van Someren et al., 2000). Since
GP methods are able to generate a broad spectrum of
solutions, even from incomplete or insufficient data sets,
they are adequate for application in this area, gener-
ating testable hypotheses for the biological laboratory.
GP methods might even succeed when the data scarcity
might make statistical methods unable to generate
solutions.
The ongoing revolution in the field of genomics can
be attributed mainly to the development of new tools
that have flooded scientists with huge amounts of data.
These new tools have made it clear that the current
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understanding of biological phenomena will not be
impaired by lack of data, but rather by the growing dif-
ficulty in analyzing and interpreting it adequately. One
of the technologies that is causing this huge impact in
the biological sciences is DNA microarray technology,
which consists of an ordered array of nucleic acids,
proteins, small molecules, that enables parallel analysis
of complex biochemical samples (Schena et al., 1995).

Microarrays are based on the idea that, in every cell, at
every state, only a fraction of the total DNA is transcribed
into mRNA, which is subsequently translated into pro-
tein. The translated gene is said to be expressed and the
analysis of the expressed genes is called gene expression
analysis.

Microarrays allow one to study expression levels in
parallel thus providing static information about gene
expression (i.e., in which tissue(s) the gene is expressed)
and dynamic information (i.e., how the expression pat-
tern of one gene relates to those of others). The high
degree of digital data extraction and processing of these
techniques supports a variety of samples or experimental
conditions (Duggan et al., 1999). Microarray technol-
ogy, as a high throughput approach of differential gene
expression studies, efficiently generates massive amount
of gene regulation data, facilitating scientists in quickly
identifying what gene candidates to follow up with func-
tional characterization.

In higher metazoa, each gene or protein is estimated
on average to interact with four to eight other genes
(Arnone and Davidson, 1997), and to be involved in
about ten biological functions. Therefore, the expression
process in any particular cell can be seen as a dynamic
network, the nodes of which are genes and the links
between genes having real-valued weights, either pos-
itive or negative, which model the degree to which the
expression of one gene affects the expression of another
(Fogel and Corne, 2003).

This is a simplified view of gene expression, appropri-
ate for exploratory data analysis. In reality, gene expres-
sion is a complex process regulated at several stages in
the synthesis of proteins. Apart from the regulation of
DNA transcription, the best-studied form of regulation,
the expression of a gene may be controlled during RNA
processing and transport (in eukaryotes), RNA transla-
tion, and the post-translational modification of proteins.
The degradation of proteins and intermediate RNA prod-
ucts can also be regulated in the cell. The proteins that
carry out the above regulatory functions are produced

by other genes. This gives rise to genetic regulatory
systems structured by networks of regulatory interac-
tions between DNA, RNA, proteins, and small molecules
(Smolen et al., 2000).
ems 88 (2007) 76–91

The global gene expression pattern is therefore the
result of the collective behavior of individual regulatory
pathways. In such highly interconnected cellular signal-
ing networks, gene function depends on its cellular con-
text; thus understanding the network as a whole is essen-
tial. However, dynamic systems with very large numbers
of variables also present computational difficulties.

It is not practical, especially under tight financial con-
straints, to propose that biologists should execute tens or
hundreds of microarrays in order to develop a biologi-
cal hypothesis. This is the context in which the algorithm
proposed here should be used, i.e., to search for candidate
regulators that could reduce the number of experiments
needed for genetic network determination.

Other approaches to the problem of genetic network
determination are now described briefly. For example,
(Creighton and Hanash, 2003) searched for association
rules, while (Ideker et al., 2000) and (Wagner, 2001)
performed perturbation analysis on the genetic data and
(Weaver et al., 1999) trained neural networks. All these
methods are data intensive, and the process of obtaining
these data sets is expensive. In this paper we propose a
method for generating hypotheses that can guide exper-
iments and perhaps decrease the number of experiments
performed, allowing for an economy of time and money,
and increase the efficiency of biologists as well as of the
methods mentioned above.

The rest of this paper is organized as follows: in Sec-
tion 2, we describe the algorithm proposed and in the
Section 3.1 it is shown one possible application for it. In
Section 3.2 it is discussed how this algorithm compares
to others previously discussed in literature and finally,
Section 4 contains concluding remarks and a discussion
on some improvements that may be made in the future
on the work proposed in this paper.

2. The proposed genetic program

Given the pseudo-code in Section 1 above, the GP pro-
posed here can be further specified by its three basic ele-
ments: chromosome structure, evaluation function and
genetic operators. The other elements used in the GP are
described in the next section of this paper.

The model used in the prediction of control structures
for microarray data analysis is described in this section.

2.1. Pre-processing
The genetic program described in this paper deals
with the undetermined nature of microarray data, which
leads to a “blessing of dimensionality”. An average
microarray has hundreds, or even thousands, of genes
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easured in a single-digit number of time points. This
eads to a situation where there are so many degrees
f freedom and so few constraints, that there are many
ossible “good fit” solutions. Thus, it can be argued
hat any search method will stumble upon a reasonable
olution, and the key is how to differentiate between
arious solutions.

In order to deal with this problem, a clustering
pproach was developed. This approach is based on the
ssumption that genes that exhibit the same behavior
re under the same kind of control, which means that
trongly correlated genes should be under the same con-
rol. Since, the goal of the work is to discover control
elationships, this assumption leads to the consequence
hat any strategy that is found to work for one gene should
ork for all the ones that are in its cluster. Therefore,

earching for the techniques that work in the entire clus-
er helps to eliminate many that would work solely on
ne of the genes in it.

The clusters were developed using the Pearson
roduct-moment correlation coefficient (Moore and
cCabe, 2005) as distance metric. A cut-off value was

efined ad-hoc and all genes that have a correlation value
ith the gene under consideration above the chosen value
ere considered to be in the same group. One of the clus-

ers generated is shown in Fig. 1.
The assumption that every gene is under the same

ontrol may not often be correct, but since the correla-
ion value used as a cutoff is very close to 1, all genes
ave the same pattern of expression as the gene under
onsideration. Therefore, this approach will not create
purious associations, and will limit the number of regu-
ations that will effectively fit the data correctly, therefore

educing the “blessing of dimensionality” that is inherent
o microarray data.

The second operation performed to reduce the data
imensionality was to try to find the suitable candidates

ig. 1. Example of cluster generated when looking for the regulation
f gene 15997 s at. All the genes show a similar expression pattern
ver time, even if their expression values are not equal.
ems 88 (2007) 76–91 79

for the regulator role. In order to choose these candi-
dates, the correlation coefficient was used once again. In
order to infer causation from a high correlation, it is nec-
essary to establish that change in one of the variables
always occurs first and that the causation hypothesis
is in accordance with a specific theoretical model. In
other words, high correlation by itself does not imply
causation.

It was decided then to use the delayed correlation,
which is defined as the correlation between the expres-
sion values of the genes under evaluation at time t and
the expression values of the candidate regulators at time
t − τ. An ad-hoc value of 0.80 was established as the cut-
off value for the candidates that accounted for a reduction
in data dimension of one order of magnitude. Only those
genes that passed the cut-off criterium were selected as
possible regulators and submitted to the genetic pro-
gramming algorithm.

2.2. Chromosome structure

A rule is represented as an expression in reverse pol-
ish notation (RPN). In this notation, all operators pre-
cede their operands. An operand can be an expression
that has its own operator, and so on, recursively. Three
operators are used: NOT, OR, AND. Although every log-
ical expression can be represented with just two (either
NOT and AND or NOT and OR), using three makes
the resulting expressions smaller, simpler and easier to
understand.

RPN is well suited to a tree representation, in which
operands are the descendants at the subtree rooted at the
operator. Each operator has two descendants, with the
exception of NOT, which has only one. This tree repre-
sentation is, in turn, well suited to a graphical display, as
shown in Fig. 2.

Yang et al. (2003); (Dasgupta and Gomes, 2001;
Dasgupta and Gomez, 2002) are good examples of
previous use of RPN notation and their use is com-
pared to the one proposed here in Section 4 of this
paper.

One important difference with respect to (Yang et al.,
2003) is the fact that he does not allow for the use of the
operator NOT, which would be extremely useful in his
linguistic definition of cleavage rules, while (Dasgupta
and Gomez, 2002) uses a representation that relies on
bit strings, which could make the chromosomes very
large, a problem that we experienced in our previous

work (Linden and Bhaya, 2002a, b).

Another feature in which the GP proposed here differs
from these previous works is the fact that the crossover
operator used here, which is strongly based on the
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Fig. 2. Graphical representation of a typical rule consequent.

standard genetic programming operators, as defined in
(Koza, 1992), is similar to a uniform crossover, whilst
both works mentioned above use a slight variation of one
point crossover.

(Bentley, 1999), like (Dasgupta and Gomez, 2002),
also uses binary string representation as well as fuzzy
sets without intersections. In addition to large chromo-
some size, as mentioned above, our experiments, on our
data, with nonintersecting fuzzy sets indicated severely
degraded performance, due to the fact that a single rule
is active at any point.

(Zhou et al., 2002) also evolves rules with RPN. Nev-
ertheless, he uses some mathematical operators such as
square root, addition and multiplication that, although
useful in modeling function, are difficult to justify in a
cellular environment, where there is no evidence of such
complicated mathematical operations. If other applica-
tions were the goal of the algorithm, these operators
would be useful, but in the current context of genetic
control, it is preferable not to use them on account of
their lack of resemblance to real cellular behavior.

Whenever discovered knowledge is to be used to
assist in decision-making by a human user, it is impor-
tant that it be comprehensible to the user (Freitas, 2003).
Since the main purpose is to create hypotheses that can
be verified afterwards in the biological workbench (“wet
lab”), simplicity in the rules is an essential feature.

In order to force the rules to be as simple as possible,
a parameter is embedded in the rule initialization mech-
anism. This parameter is called the expression height
coefficient, and the larger this coefficient is, the shorter

the rules are.

This coefficient is used in the random initialization
of the trees. When generating a new rule a number is
randomly selected in the interval [0,1], and a hard limit
ems 88 (2007) 76–91

is calculated according to the following formula:

1

2 × (coefficient − 1)
(1)

If the random number is smaller than this limit, an
operator that allows the tree height to increase is selected.
Otherwise, a fuzzy set is selected and a leaf is inserted
in the tree.

Several different coefficient values were experi-
mented with and it was found that the best results were
achieved when its value was set to 3, meaning that the
expression trees generated have an average height of 2.5.
Tree height is also a factor in the evaluation function in
order to give preference to simpler and shorter rules (see
below, for further discussion of this topic).

The idea of representing regulatory networks as a
set of rules is not new. It has already been explored in
several papers, such as (Mcadams and Shapiro, 1995),
where cell dynamics was compared with circuit dynam-
ics and simulated using rules representable by logical
gates and also in (Venet et al., 2001), where binary
switches were defined and binary rules based on them
were also used to discover useful relationships in gene
regulation.

A problem that might arise in the use of rules is
described in the experiment, reported in (Thomas, 1998),
that adds a high amount of inducer to an uninduced cul-
ture of E. coli, immediately splits the culture into two
parts (A and B) and dilutes them so that the extracellular
inducer concentration drops to reach the “maintenance”
range. The only difference between subcultures A and B
is that in A dilution takes place immediately, whereas
in B, it takes place after a delay of 10 min. Despite
this, subculture A, which was not in contact with a
high concentration of inducer for a significant time, is
and remains uninduced. In contrast, subculture B is and
remains induced, because it was in contact with a high
concentration of inducer for enough time to be fully
induced, and dilution to the maintenance concentration
does not change the situation.

In order to keep them growing, subcultures A and B
can be serially diluted, always in the same medium (with
the maintenance concentration of inducer). In the exper-
iment reported in (Thomas, 1998), this was done for 150
generations, after which A remained uninduced, B fully
induced. The results were made even more striking by
the demonstration that when a mixture of uninduced and
induced cells is present in the maintenance medium, the

progeny of the induced (respectively uninduced) cells is
induced (respectively uninduced).

This could imply that more than one rule for each
element in the gene network may be necessary – one for
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Table 1
Interpretation of each fuzzy set associated to gene expression

Number of fuzzy sets

2 3 5 7

Fuzzy sets names

Expressed Low expression level Very low expression level Extremely low expression level
Not expressed Medium expression level Low expression level Very low expression level

High expression level Medium expression level Low expression level
High expression level Medium expression level
Very high expression level High expression level
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ach state it might assume. It is an important issue to cre-
te a mechanism that would ensure that the rules created
ould really deal with this characteristic of dependency
n different time delays for different regulators, and
herefore the algorithm proposed allows for this possi-
ility.

It is assumed that each feature may be associated
ith several fuzzy sets, described in Table 1. This is
ifferent from the situation one would face in a dis-
rete (Boolean) algorithm where the gene could be
ither expressed (binary value 1) or not (binary value
). Obviously, since fuzzy logic is being used, member-
hip can be different from 0 to 1 in any set at any given
ime.

The expression space of each feature is divided
venly, so that each fuzzy set has an equal support. The
rocess is shown in Fig. 3. There is overlapping among
djacent fuzzy sets, so that more than one rule may be
ctive for each expression value.

When we are using fuzzy logic, there is no need to
ormalize the expression data because each expression

alue will be turned into a membership value, which
ill be used in the rules. Linear transformations would
e specially pointless, for the fuzzy sets would be
xactly the same, but dislocated in space. A non-linear

ig. 3. Division of an expression space in five fuzzy sets. The interval
s read from the data set and is divided in four parts. The first half part
s the support of the first descending function, the last half part is the
upport of the last ascending function, while the three remaining parts
re the supports of the three triangular membership functions.
Very high expression level
Extremely high expression level

transformation of the data, such as the application of a
log transform is possible, especially in the case where
there may be a large variation in the expression values
of a gene. This was not a common occurrence in the
data analyzed in this paper, since most variations of the
expression values were of the same order of magnitude.

Each fuzzy set must be associated with at least one
rule. Each rule antecedent is a tree similar to the tree
depicted in Fig. 1 above. The only difference is that the
elements that form the rule are now fuzzy sets for one
variable, instead of the variable expression used before.
The consequent of each rule is one fuzzy set of the reg-
ulated gene.

The average number of rules per fuzzy set is a param-
eter to be chosen. Nevertheless, it is not guaranteed that
the number of rules per fuzzy set is equal to the average,
since mutation, as used in the GP, may change the total
number of rules per gene and per fuzzy set.

Hence, if a gene is associated with k fuzzy sets, and
the average number of rules per fuzzy set is m, a gene
will have a number close to m × k rules, where each of
the rules is described by the following set of syntatic
rules:
<rule>:: = IF <antecedent> THEN <consequent>
<consequent>:: = <Fuzzy Set> (<gene name>)
<antecedent>:: = <Fuzzy Set> (<gene name>)|NOT

<antecedent>|AND <antecedent> <antecedent>|OR
<antecedent> <antecedent>

Each fuzzy set is guaranteed to be associated with
at least one rule, which ensures that it will cooperate in
the calculation of gene progress. In the examples shown
below in this paper, the average of rules per fuzzy set
was defined as 3, while using three sets per element.
Therefore, each of the chromosomes created represents
a fuzzy rule base containing, on average, nine rules.
Since gene names were used directly in the chromosome

representation, the number of genes does not affect the
chromosome size (as it would in a binary representation).
Hence the chromosomes created are not very big and it
is computationally efficient to evolve them.
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Another important characteristic of the proposed
algorithm is that it allows the user to insert rules that
he may find interesting for the algorithm to research.
These rules may be inserted as required, desirable or
forbidden. In the first case, it is guaranteed that they will
appear in the rule base and in the last case it is guar-
anteed that they will be banned from it. In the case of
rule insertion as “desirable”, a high percentage (25%)
of the candidate chromosomes are initialized with the
desirable rules and also give these candidates a high per-
centage (10%) chance of being chosen during mutation.
This gives them a high chance of being present in the
final rule base evolved.

This characteristic is an important step towards
achieving the primary goal of this work, which is to offer
biologists a tool that allows them to test and create some
hypotheses in silico before resorting to expensive in vitro
experiments for confirmation.

2.3. Evaluation function

In order to evaluate the performance of the chromo-
some, t trajectories with nst steps each were stored. Each
trajectory represents the “real” behavior of the network
to be modeled. Therefore, every network receives the first
state of each trajectory and the GA calculates the inter-
mediate and final steps for this network. When dealing
with Boolean data, the number of bits that differ at each
stage of the trajectory is added and averaged over the
number of steps.

The averaging is necessary in order not to penalize
long trajectories. It is clear that a small difference over
a large number of steps will lead to a large sum. On the
other hand, a large difference over a small number of
steps will lead to a small sum. Thus errors are averaged
in order to prevent the multiplicative effect of the number
of steps.

This approach does not account for one fact that is
biologically plausible, namely, that a gene may regulate
another only at a certain time point, while remaining
quiescent during the rest of the interval evaluated. In
this scenario, a single high error rate at one time point is
indicative of the fact that perhaps only at that time the
regulation was wrong.

In order to be able to deal with such a situation, it
would be necessary to define a different regulation func-
tion for each time point. This is not done in this paper: it
is supposed that the same regulation function is always

acting on a regulated gene, but such an improvement will
be considered in future work.

In previous Boolean work (Linden and Bhaya, 2002a,
b), each chromosome was penalized according to the
ems 88 (2007) 76–91

number of active relationships it represents, so that
the shorter chromosomes get extra credits. (Rutter and
Zufall, 2004) gave empirical evidence that the length
of a biochemical pathway has the potential to constrain
the rate of evolution in that system. In the set of 48
sequenced organisms studied in their paper, there was
a strong tendency for longer amino acid biosynthesis
pathways to remain evolutionarily static in their structure
while shorter pathways demonstrated greater evolution-
ary ability, suggesting that the connection of steps in
long pathways may deter evolutionary change. Another
interesting piece of evidence on this topic comes from
(Wain-Hobson et al., 2003), where it is shown that in
retrovirus, shorter pathways are dominant due to the mas-
sive recombination that takes place.

It is important to understand that there also seems to
be some evidence that nature rewards redundancy in the
form of alternative pathways performing the same func-
tion, so that there are backups in case that one pathway
fails. This is often a problem in knock-out experiments,
where knocking one seemingly crucial component of a
pathway may not lead to the pathway being switched off,
since a backup component is activated and takes over the
function of the knocked one. Nevertheless, only the cur-
rently active pathway can be uncovered and the idea that
shorter individual pathways are less prone to interruption
seems to be true.

Since a bit string chromosome is not used in our
approach, a different approach to reward minimality
is adopted. A coefficient c ≤ 1 is created to multiply
by the evaluation of the chromosome. The bigger the
chromosome tree height, the smaller is the coefficient
c. Therefore, in the case where there are two different
chromosomes with the same evaluation, the simpler and
shorter one will be preferred. This coefficient is given by
the following formula:⎧⎪⎪⎨
⎪⎪⎩

c = 1

n
, h ≤ 2,

c = 1

(h − 1) × n
, h ≥ 2

(2)

where n is the number of rules describing a regulation
and h is the maximum height of the trees that describe
the corresponding rules.

It is also important to recall that the number of time-
points that are required to identify correctly the weights
of a sparsely connected network is of the order of its max-
imal connectivity (Van Someren et al., 2000). Therefore,

in the context of few available data points, it makes sense
to look for networks with lower connectivity.

There are, of course, many ways to calculate the dif-
ference between the calculated trajectories and the ones
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whether or not the sub-tree rooted in nc will be exchanged
with the other parent. An example of this operator
can be seen in Fig. 4. This strategy preserves the sub-
expressions rooted at the selected nodes and therefore the
R. Linden, A. Bhaya /

ead in the microarray data, which are composed of
eal values. In the discrete (Boolean) case described in
Linden and Bhaya, 2002a, b), the difference is absolute
either the bit is equal to the one read, or it is not), thus
he measure adopted is to count the number of bits that
iffer from the supposedly correct ones in each step on
ach trajectory.

On the other hand, in the continuous case, there is a
nite continuous difference whose meaning is different
rom element to element. For instance, if the read value
s 0.1, a difference of 0.02 is quite high, while the same
ifference, when compared to a read value of 25.5 is
lmost negligible.

Therefore, instead of using the absolute difference,
he mean absolute percentage error (MAPE) was used.
his metric is defined by the following formula:

APE = 1

N

N∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣ (3)

his value is divided by the number of steps per trajectory
nd summed over the trajectories available and its inverse
s used as the evaluation for the chromosome. The overall
ormula is:

1(∑no of traj.
t=1

(∑no of genes
g=1

MAPEg

no of stepst

))
/no of traj.

(4)

he calculated value is inverted because this is an error
inimization process and therefore, larger errors should

eceive smaller evaluations and, consequently, smaller
ortions of the roulette wheel.

This formula results in a number without units that
oes not have any clear relationship with any error mea-
urement. In order to make its meaning clearer to the
rogram user, a number called “infinite” was calculated,
ased on an error level set by the user for each gene in
ach step of each trajectory.

The evaluation is also inversely and linearly propor-
ional to the per trajectory average error. If there is a
ingle trajectory, there is an inverse relationship between
he average trajectory fitting error in the trajectory and
he chromosome evaluation function. Hence, a five times
igger error will have a five times smaller evaluation
unction.

For example, if there is one trajectory of 10 steps, the
.5% error level generates an error measurement of 200,
o that the user can understand the numbers generated

y the evaluation function simply by comparing it to the
infinite” level previously calculated.

This evaluation function is appropriate because by
easuring the absolute differences at each time point, it
ems 88 (2007) 76–91 83

also captures the changes in time of the expression val-
ues. For instance, if an expression value increases from
time t to time t + 1 and the calculated value decreases in
the same period of time, the error value at this time point
will be very high. Therefore, every chromosome that has
a high evaluation will calculate a solution that has high
correlation with the function that maps real expression
values changes over time.

2.4. Genetic operators

In order to complete the definition of the GP pro-
posed, the mutation and crossover operators are now
defined. As is typical in evolutionary algorithms that use
competing operators, the GP proposed in this paper alter-
nates between the mutation and crossover operators with
a probability that is either fixed or time varying, depend-
ing on a user supplied parameter.

2.4.1. Crossover operator
The crossover operator is intended to exchange infor-

mation between two different individuals in a way simi-
lar to sexual reproduction, and is similar in performance
to uniform crossover for genetic algorithms.

The operator works by randomly choosing sub-trees
to interchange between the chosen parents. Each node
nc of each tree is visited and a random draw decides
Fig. 4. Example of crossover action on our trees.
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crossover is not too disruptive with regard to the current
population.

Since there may be multiple rules per fuzzy set, there
must be an additional control mechanism to choose
which rules will exchange sub-trees. In this case, the
crossover operator guarantees that the rules for a fuzzy
set X in chromosome 1 (Chrom1) only crosses with rules
for the same fuzzy set in chromosome 2 (Chrom2), even
if there are more rules for this fuzzy set in one chromo-
some than in another. This means that if chromosome
Chrom1 has two rules for fuzzy set X and chromosome
Chrom2 has only one, the two rules from Chrom1 will
cross with the single one from Chrom2. If the situation is
reversed and Chrom1 has only one rule while has Chrom2
two or more, the number of rules in the resulting chromo-
some will still be equal to the number of rules in Chrom1.

If both of them have more than one rule for fuzzy set
X, a random choice will be made between the alterna-
tive rules, only ensuring that each rule crosses at least
once. An example of this situation is shown in Fig. 5.
Obviously, crossover generates two rules per operation,
which are done applying the rules described here twice:
first considering the order C1/C2 and secondly, the order
C1/C2. Therefore, children with the characteristic struc-
ture of both parents will be generated.

Given that the evaluation function used evaluates each
part of the chromosome separately (the regulation strat-
egy for each node is given a separate evaluation), dif-
ferent quality measures for each node should be used.
This means that a chromosome may be very good for
regulating one node and very bad for the others.

Therefore, when selecting mates, a different mate

may be chosen for each gene regulated. In fact, the
crossover operator may also involve multiple chromo-
somes, as opposed to the classical approach of a pair
of chromosomes. (Súer et al., 2002) used a strategy

Fig. 5. Example execution of the crossover operator. In (a) we see the situatio
so this rule crosses with all the rules for chromosome 2. In (b) we see a situa
cross are chosen randomly but the algorithm ensures that each rule will cross
ems 88 (2007) 76–91

to force the worst chromosomes to mate before van-
ishing from the population. This could be considered
in future implementations, although experiments have
shown that genetic variability has been well preserved
in the populations generated by the proposed algorithm.
Future implementations of a parallel evolutionary algo-
rithm might also be an interesting alternative to create
good genetic variability.

2.4.2. Mutation operator
The mutation operator is actually threefold—there is

rule mutation, insertion mutation and deletion mutation.
Rule mutation works in the way proposed while

discussing the discrete mutation operator (Linden and
Bhaya, 2002a, b). The only part that cannot be changed
is the consequent; otherwise the rule would refer to a
different fuzzy set.

The rule mutation randomly chooses one node in
the rule tree and prunes the whole branch. Following
this, a new sub-tree is generated using the same gener-
ator that created the initial population and the branch is
then replaced. The population generator in this specific
case is instructed to generate short trees (trees whose
height is equal to or less than 3) by setting the expres-
sion height coefficient, as described in Section 2.1. Its
modus operandi is described in Fig. 6.

Insertion mutation randomly chooses a fuzzy set for
which to create a rule. The new rule is generated using
the same random rule generator that generates the initial
population, while deletion mutation chooses one rule to
delete. It will be deleted if it is not the only rule for a
fuzzy set.
The last two mutation operators described above
change the number of rules per fuzzy set, making it possi-
ble for a certain gene to diverge from the average number
of rules defined as parameter. Since their choice has the

n where chromosome 1 only has one rule for the set being analyzed,
tion where both chromosomes have more than one rule. The ones to
at least once.
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Fig. 7. The evolution of the fitness of the best chromosome during the
discovery of the rule set for gene preGAD67. The fitness was calcu-
lated using the metric described in Section 2.2, and the number 100
corresponds approximately to an average error of 1% in the forecasting
for each time point. Since the evaluation function is linearly inversely
proportional with the trajectory fitting error, an evaluation two times
smaller indicates an error two times bigger and so on. Notice that the
11th run is seeded with the best individuals from each run, so its fit-
ness starts at the same point where the top evaluation from the previous
ig. 6. The mutation operator chooses randomly a sub-tree to cut (cir-
led) and replaces it with a newly generated short tree (dot filled circles,
ower right corner).

ame probability, the global average will not be affected
some genes will have their number of rules increased,
thers will have it decreased, and the global number of
ules will almost always remain stable.

. Application to genetic network determination

This section describes two applications of the pro-
osed algorithm to real, continuous data originating
rom microarray experiments. In previous work, Boolean
ata has already been analyzed by this algorithm
Linden and Bhaya, 2003), showing that it is possible
o mix both kinds of data using the algorithm proposed
ere.

.1. Methodology

In the GP proposed three different termination criteria
ere used:

one based on number of generations (no more than 80
generations per run),
one based on stagnation (stop the run if the best solu-
tion stagnated for the last 20 generations),
one based on the quality of the solution found (stop if
the data was fit to a maximum error of 1%.
The limited number of generations was determined
mpirically. It was somewhat above the limit where
enetic convergence could be perceived in the popula-
runs has stopped (the best chromosome from the 10th run). Some of
the curves stop before the end of the 80th generation because one of
the other stopping criteria has been met.

tion. The effect of genetic convergence can be seen in
Fig. 7, where we show the evolution of the fitness for
one of the examples described below, the determination
of the rule set for preGAD67.

In four of the 11 runs performed, the stagnation cri-
teria stopped the execution before the algorithm could
finish the 80 generations. In the 11th run, the quality
criterion was met before any of the other two criteria,
stopping the algorithm halfway through the execution.

Competing operators were used. Crossover received
an initial probability of 0.95 while the mutation operator
has a probability of 1-crossover fitness. The probability
of the crossover was linearly descending down to a min-
imum of 0.2 in the last generation. When chosen, the
mutation operator would mutate each tree branch with a
probability of 5%.

Each population had 100 individuals and the popu-
lation module used elitism in order to preserve the best
solutions, transferring the best two chromosomes with
the highest evaluation function in the current generation
to the next, while replacing the remaining 98 with newly
generated individuals.

The number of different individuals in each popu-
lation and the number of generations may be consid-
ered low for the genetic programming standards, but,

as explained in the following section, these numbers
allowed for an average error of 1% when calculating
the expression values according to the rule base found,
which is a good result by any standard.
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The fact that good results were achieved in such a
small number of generations may be a consequence of
the fact that the crossover operator successfully preserves
sub-expressions and therefore does not cause a large
impact when changing in the GP tree or may be a con-
sequence of specific problem characteristics. Therefore,
when applying the proposed algorithm to new problems,
users should be aware that larger number of individuals
per population and a larger number of generations may
be necessary.

In both problems described in this section the algo-
rithm proposed here was run 10 times. The two best
results from each run were used to seed the population
for the 11th run, the results of which are reported here.
This means that the initial population of the last run con-
tained 20 chromosomes generated in previous runs and
80 randomly initialized individuals.

The rationale behind this approach is to try to mix
the best performing chromosomes in every run in order
to combine their schemes, instead of simply initializing
randomly another population. This resulted in a individ-
ual with a higher fitness, as determined by the evaluation
function used.

The fact that during the 11th run the best chromo-
some’s evaluation improved does not necessarily imply
that the previous runs have not stagnated. The ten previ-
ous runs added twenty different chromosomes to the new
population, which was augmented by eighty randomly
created chromosomes in order to create a new popula-
tion with a good variability, but this does not permit any
inference on the variability of the final populations of the
previous runs.

The results shown in this paper are those from a divi-
sion of the expression space of each feature into three
different fuzzy sets. Other numbers of fuzzy sets were
tried (2, 5, 7, 11 and 15 different sets), but no significant
improvement in the results was obtained. For each fea-
ture under evaluation an average of two rules per fuzzy
set would be allowed, which would create up to six fuzzy
rules per feature.

A rule simplifier was created, based on the regular
expression mechanism of Perl. This simplifier reduces
tautologies such as A AND A to their simpler form (in
this case, A). The rules shown here have already gone
through this simplification process.

3.2. Results
In all the results shown in this section, the rule set
selected was the one with the highest evaluation in
the last run. This rule set produced the best fit for the
trajectories available, meaning that its prediction made
ems 88 (2007) 76–91

the smallest error from all the chromosomes in the
population.

The first test dataset used was generated by microar-
ray experiments. The algorithm was applied to search for
regulation strategies for a specific set of genes present
in the reaction to cold of Arabidopsis thaliana and
these results were compared against previous biological
knowledge (Gilmour et al., 1998). A. thaliana, like many
plants, increases its freezing tolerance when exposed
to low nonfreezing temperatures. This process of cold
acclimation is a multigenic and quantitative trait that is
associated with complex physiological and biochemical
changes (Hannah et al., 2005).

The dataset was obtained from The Arabidopsis Inter-
net Research project (TAIR).

It is obvious that established statistical methods such
as covariance analysis are not appropriate in this case,
given the fact that there are close to 8000 genes and
only seven data points in our data files. This is a typical
situation where usual methods are unsuitable to extract
meaningful relationships from the data, given the small
number of time points. In such a situation, the application
of the algorithm proposed presents itself as an interesting
alternative.

The genes that are hypothesized to be responsible
for the cold response are 16062 s at, 17520 s at and
16111 f at. The genes 15611 s at, 15997 s at, 13018 at
and 13785 at are some of the genes regulated by the
above named ones.

For the last two elements in this short list, a rule
database was discovered, using the technique described
in the previous sections. No prior knowledge was embed-
ded in the algorithm and no constraint on the results was
applied to privilege the known regulators. The best solu-
tion found by the algorithm presented an average MAPE
below 1.5% at each time point and a correlation of 0.95
with the real trajectory for the expression values of gene
13875 at. The rules obtained for gene 13875 at are the
following:

(a) IF AND Lowly Expressed(17413 s at) NOT
Highly Expressed(16111 f at) THEN
Lowly Expressed(13785 at)

(b) IF NOT Medium Expressed (15714 at) THEN
Lowly Expressed(13785 at)

(c) IF NOT Medium Expressed (17834 at) THEN
Lowly Expressed(13785 at)

(d) IF Lowly Expressed (17421 s at) THEN
(e) IF Medium Expressed (16062 s at) THEN
Medium Expressed(13785 at)

(f) IF OR Lowly Expressed(17050 s at)
Highly Expressed(16062 s at) THEN
Highly Expressed(13785 at)
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Medium Expressed(pre-GAD67)
(g) IF Lowly Expressed (GRb3) THEN

Highly Expressed(pre-GAD67)
R. Linden, A. Bhaya /

g) IF Medium Expressed (17034 s at) THEN
Highly Expressed(13785 at)

h) IF NOT OR Highly Expressed(16062 s at)
Lowly Expressed(15140 s at) THEN
Highly Expressed(13785 at)

Rules (a), (e) and (f) show a relationship with the
nown regulators, while rule (g) shows a candidate
egulator (17034 s at) that was considered interesting
nough by the biologists who provided the data to war-
ant further investigation in the near future. From the
ther rules we can see the presence of 15140 s at and
7050 s at that show high correlation with 17520 s at,
known regulator not present in the rules discovered.
his may be due to the small number of data points
vailable, but no further claims can be made about these
enes.

In the second case, some prior knowledge was
ncluded and the program was asked to include neces-
arily activation from 17520 s at and preferentially an
nhibition from 16111 s at. The best solution found by
he algorithm presented an average MAPE below 1% at
ach time point and a correlation of 0.97 with the real
rajectory for the expression values of gene 13018 at.
he rules obtained were the following:

a) IF OR Lowly Expressed(17520 s at)
Highly Expressed(20351 at) THEN Lowly Expressed(13018 at)

b) IF NOT OR Medium Expressed(14969 at)
Lowly Expressed(17034 s at) THEN Lowly Expressed(13018 at)

c) IF Medium Expressed (13018 at) THEN
Lowly Medium(13018 at)

d) IF AND Lowly Expressed (17421 s at)
Highly Expressed(16218 s at) THEN
Medium Expressed(13018 at)

e) IF AND Medium Expressed (16111 s at)
Medium Expressed(17200 at) THEN
Medium Expressed(13018 at)

f) IF AND Lowly Expressed(17034 s at) NOT
Highly Expressed(14832 at) THEN Highly Expressed(13018 at)

g) IF Highly Expressed (17520 s at) THEN
Highly Expressed(13018 at)

The results show that the relationship required was
resent in two different rules: (a) and (g). The desirable
ule was also present, in rule (e). Another interesting
eature is the presence of gene 17034 s at, which was
lso deemed interesting in the previous set of rules.

The rules present a few genes that don’t seem to
belong” in terms of previous knowledge. This kind
f spurious control relationship will always be present

n any method and is a consequence of the blessing
f dimensionality previously mentioned (não foi men-
ionado no artigo, só na resposta aos revisores, acho!!).
ven with the pre-processing methods described in Sec-
ems 88 (2007) 76–91 87

tion 2.1, there are many possible solutions that can be
extracted from the data, so spurious relationships could
be present in any final solution.

If any of the spurious regulations are found to be unac-
ceptable for biological reasons, a new run can be made,
seeding the new population with the previous results
and instructing the algorithm that some specific genes
are forbidden. New solutions that do not include the
unacceptable genes can thus be found. The possibility
of including this knowledge is, as described above, a
strong point of the proposed algorithm.

The second dataset was that of the expression
of the genetic network of the central nervous sys-
tem of a rat during its embrionary and newborn
stage, specifically, glutamic acid decarboxylase (GAD),
which is the enzyme responsible for the conver-
sion of glutamic acid to gamma-aminobutyric acid
(GABA), the major inhibitory transmitter in higher
brain regions, and putative paracrine hormone in pan-
creatic islets. Two molecular forms of GAD (65 and
67 kDa, 64% amino acid identity between forms) are
highly conserved and both forms are expressed in
the CNS, pancreatic islet cells, testes, oviduct and
ovary.

The dataset consisted of 112 genes measured during
nine different stages of development, five of them embri-
onary, three of them during infancy and one of the adult
rat.

The gene interaction diagram can be seen in
(D’Haeseleer et al., 2000). The algorithm proposed was
applied to the determination of the regulation for pre-
GAD67, which is highly connected (five inputs, as
hypothesized in this article). The rules obtained for Pre-
GAD67 were the following:

(a) IF AND Lowly Expressed(5HT2)
Medium Expressed(cellubrevin) THEN
Lowly Expressed(pre-GAD67)

(b) IF Highly Expressed (GAD65) THEN
Lowly Expressed(pre-GAD67)

(c) IF Lowly Expressed (pre-GAD67) THEN
Lowly Expressed(pre-GAD67)

(d) IF Lowly Expressed (GRg3) THEN
Lowly Expressed(pre-GAD67)

(e) IF Medium Expressed (GRa3) THEN
Medium Expressed(pre-GAD67)

(f) IF Highly Expressed (GAD65) THEN
(h) IF Lowly Expressed (GRa4) THEN
Highly Expressed(pre-GAD67)

(i) IF Lowly Expressed (GRa3) THEN
Highly Expressed(pre-GAD67)
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Some features of these rules are as follows:

1. GAD65, which is a supposed repressor, indeed
appears as such, in two rules: (b), where its high
expression level leads to a low expression level of
pre-GAD67 and (f), which shows a mild repression
stating that if it is highly expressed, then a medium
expression level of pre-GAD67 results. Note that the
presence of rule (b) does not allow the alternative
interpretation as a mild activation.

2. GRa3 is also a supposed repressor, which is also
shown in the same way as in the previous item, by
rules (e) and (i).

3. Pre-GAD67 has a feedback activation mechanism.
This could be shown by rule (c), but this may be an
extreme extrapolation, since it is obvious that a low
expression of a gene correlates well with another low
expression of itself, if no other conditions are given.
Nevertheless, it is satisfying to see the relationship
produced by the algorithm.

4. Rule (d) shows another finding about a supposed rela-
tionship. GRg3 is an activator of pre-GAD67 and that
is correctly expressed by this rule, which states that
a low expression level of the activator will lead to a
low expression level of the activated gene. Of course,
this is not true in all activator–activatee relationships,
because there are exponential, enabler and sigmoid
relationships in nature that are not captured by this
kind of rule.

The algorithm was also applied to another gene in
the set, GAD65. This gene is much less connected
than preGAD67, having only two inputs. Neverthe-
less, the number of rules suggested to initialize the
algorithm was the same as in the case of preGAD67.
This was done in order not to influence the results
and to let the algorithm try to prune spurious relation-
ships by itself. The rules obtained for GAD65 were the
following:

(a) IF Lowly Expressed(GAD65) THEN Lowly Expressed(GAD65)
(b) IF Highly Expressed (preGAD67) THEN

Lowly Expressed(GAD65)
(c) IF Highly Expressed (GRb3) THEN Lowly Expressed(GAD65)
(d) IF AND Highly Expressed (GRg3) Highly Expressed (G67I86)

THEN Medium Expressed(GAD65)
(e) IF Lowly Expressed (GRa3) THEN

Medium Expressed(GAD65)

(f) IF Highly Expressed (GAD65) THEN

Highly Expressed(GAD65)

These rules have some characteristics worth empha-
sizing:
ems 88 (2007) 76–91

1. According to previous work, GAD65 self activates.
This can be seen in rules (a) and (f). To be perfectly
honest, however, it should be pointed out that, as in the
previous example, every gene will have a high self-
correlation, so this discovery should be taken with a
bit of caution.

2. According to previous work, GRb3 and preGAD67
are inhibited by GAD65. Rules (b) and (c) describe
the mechanism backwards, although they capture the
essence of the synchronized gene expression changes.

3. GRg3 was predicted as an inhibitor previous work
(D’Haeseleer et al., 2000), and its mild inhibitory
activity is shown in rule (d). It is necessary to point out
that, according to previous work, G67I86 is upregu-
lated by GRg3, so the AND rule may be considered
to have, in essence, discovered a stronger relationship
between GRg3 and GAD65.

When compared with previous work done on this set
of data (D’Haeseleer et al., 2000), it can be said that the
results obtained by the algorithm here proposed are quite
similar to the ones obtained in previously published work
and accepted as biologically plausible.

The work by (D’Haeseleer et al., 2000) predicts that
the inhibitors for gene preGAD67, are GRa3, GRa2 and
GAD65, while the activators are GRg3 and the gene
preGAD67 itself. In the results given by the algorithm
proposed here, there are four of the previously pre-
dicted regulators (GRa3, the preGAD67 itself, GRg3
and GAD65), all of them with the correct role in the
gene dynamics.

In the case of GAD65, (D’Haeseleer et al., 2000) pre-
dicts that there is only one activator (GAD65 itself) and
one repressor (GRg3). The two previously predicted reg-
ulators are present in the best rule set discovered, as well
as several real relationships that occur in the genetic net-
work.

It is important to point out that since data is scarce and
the temporal analysis is not accurate, some cause-effect
relationships may be reversed by the algorithm, as seen
in rules (b) and (c) for GAD65. Nevertheless, it is quite
remarkable that such a relationship was found at all.

The modeling ability of the algorithm proposed can be
seen in Fig. 8, where the real and calculated trajectories
for preGAD67 and GAD65 are compared. A comparison
is made between the expression level predicted by the
algorithm and the actual expression level present in the
data and each point in the graph represents the expression

levels, either real or calculated, depending on the curve
considered, for the genes under analysis.

Notice that although there are some minor differences
in the absolute values predicted by the algorithm, the
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Fig. 8. Calculated (squares) and real (lozenges) trajectories for pre-
GAD67 (solid lines) and GAD 65 (dotted lines) in the rat central
nervous systems in early stages of development for the chromosome
with the highest evaluation generated by our algorithm. The lines rep-
resent the predicted and actual expression levels for each one of the
genes. The x-axis corresponds to different stages of development (the
first five from embryonic days 11–21, the next 3, postnatal days 0–14,
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but from the results described in this paper, it is possible
nd the last one, at adult stage), while the y-axis corresponds to expres-
ion level (measured as fold change to a basis level). Notice that the
urve shapes are almost the same.

urve shape is almost exactly the same. This suggests that
he regulation process underlying the gene expression
ynamics may have been discovered correctly.

In both cases, along with the known regulations, there
re several candidate regulators that are probably spuri-
us. This is to be expected, due to the small number of
ata points available. Nevertheless, the point of using the
lgorithm proposed has been made, since the original
oal was to restrict the search in the biological work-
ench.

A researcher who receives the set of rules obtained
or gene 13875 at, for instance, would have a short list
f nine genes (out of 8000) that are considered suitable
andidates by the algorithm proposed here. This means
hat the search space for a regulator has been reduced by
factor of 99.9%, simply by applying the proposed com-
uter algorithm. This was replicated in both experiments
escribed in this paper and therefore it is reasonable to
onclude that the results are not merely due to chance
orrelations and therefore the algorithm may be consid-
red for further use by biological researchers.

. Conclusions and further work

The algorithm proposed shows results that are inter-
sting when dealing with scarce data. When applied to
nown regulation models, the results generated are very
imilar to known results in biology. This suggests that the
lgorithm may be a tool that will help uncover other reg-
lation processes that are still not known and also that in

he future the algorithm could be applied to genes whose
egulation is unknown so that the hypotheses generated
ould be tested in a lab.
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The results were presented using fuzzy rules, which
use linguistic terms and are, therefore, similar to the
way a person naturally understands complex phenom-
ena. This makes the results more readable and under-
standable, which compares favorably with other complex
data mining algorithms, such as support vector machines,
neural networks and logistic regression, which usually
produce models that are not easily interpretable by biolo-
gists and biomedical researchers, given the high number
of variables and parameters (Vinterbo et al., 2005).

Using fuzzy logic makes it easier for a hypothesis to
be tested. Since the algorithm allows the user to insert any
rules he may deem interesting, the algorithm can become
a test bed for inexpensively discarding non-working reg-
ulation strategies. Therefore, a biologist will save time
and money, avoiding unnecessary lab experiments. In
a way, the tool can complement biological intuition,
allowing biologists to use their insight and then test their
hypotheses quickly and with no further costs.

These two characteristics are the two major strong
points in this application. The idea of generating a small
set of models that represent possible interactions that can
help focus hypothesis generation for biological experi-
ments (i.e., reducing the search space for gene knockout
experiments) has already been proposed, for instance in
(Repsilber et al., 2002; Sokhansanj et al., 2004) and other
contemporary works in this field. Nevertheless, although
these papers use the descriptive power of fuzzy logic,
they do not possess simple mechanisms for the incor-
poration of prior biological knowledge, fundamental in
order to guide the algorithm.

The ability to generate hypotheses leads to a further
use of the algorithm proposed. There are many papers,
such as (Ideker et al., 2000) and (Wagner, 2001) that pro-
pose the inference of genetic networks using perturbation
analysis. The idea behind such methods is that additional
information about a genetic network may be gleaned
experimentally by applying a directed perturbation to
the network, and observing the steady-state expression
levels of every gene in the network in the presence of
the perturbation. The problem with this approach is that
perturbation experiments may become expensive, espe-
cially if they are repeated in order to eliminate spurious
results. Thus the algorithm proposed here could be used
to choose the genes to be deleted or over-expressed, so
that less experiments are performed and money is saved.

It is very difficult, and probably even impossible, to
find the real set of regulators with such a scarce dataset,
to conclude that the algorithm proposed can help narrow
the search making it more cost effective. When dealing
with problems that have enough data points, it is strongly
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recommended that statistical or other well-established
methods be used.

It is important to bear in mind that since the conclu-
sions attained are based on a small amount of data that
is not statistically sufficient, it is possible that spurious
results will be obtained, especially false positives. With
very small numbers of samples this will be a problem for
any method, but with an increasing number of trajecto-
ries, the effects of chance will be minimized.

Nevertheless, it is important to emphasize that the
results obtained point to an effective discovery of regu-
lation, since an elimination of up to 99.9% of the non-
regulating genes was achieved and the ones remaining
included the genes searched for; that is, the genes that
are known to be involved in A. thaliana cold response.

In this paper, ‘validation’ of the rules was done mostly
on the basis that the results obtained with their use relate
well to prior knowledge. Of course, the best validation of
any results would be to take them to the biological work-
bench for further testing. In fact, the rule bases obtained
by the method here proposed should be treated as inter-
esting candidates for the modeling problem, not as final
results. Thus further testing, especially in the biological
workbench, will always be required.

It is important also to understand that simply ana-
lyzing the data is not the final answer for the genetic
network reverse engineering problem. It is also neces-
sary to embed the available state of the art knowledge in
the biological field in order to make any model obtained
more complete (Schrager et al., 2002). The algorithm
proposed here allows for the introduction of knowl-
edge previously available in order to constrain the search
space and obtain results closer to reality.

It is always advisable to use as much of the available
knowledge as possible and in order to do that, we are cur-
rently studying the binding domain determination so that
we can define those elements that are the most probable
candidates for regulation and search exclusively among
them.
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