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This paper reports on research using a variety of machine learning techniques to a diffi-

cult modelling problem, the spatial distribution of an endangered Australian marsupial, the

southern brown bandicoot (Isoodon obesulus). Four learning techniques – decision trees/rules,

neural networks, support vector machines and genetic programming – were applied to the
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problem. Support vector and neural network approaches gave marginally better predictiv-

ity, but in the context of low overall accuracy, decision trees and genetic programming gave

more useful results because of the human comprehensibility of their models.

© 2005 Elsevier B.V. All rights reserved.

. Introduction

patial phenomena and spatial interaction in the real world
re highly intricate. This makes mathematical models, which
ften rely on good or strong theoretical knowledge, very hard
o build, since in many cases the available theories are suspect,
nd at best poor. Machine learning has consequently been
sed to explore such datasets, and where the data are
ighly regular and the effects are strong, has yielded valuable

nsights. However ecological modelling problems frequently
ombine small datasets, noisy data, and weak domain theo-
ies, and thus provide severe challenges to machine learning
echniques. This paper presents a comparative study of what
an be obtained from a variety of machine learning techniques
n one such difficult problem, the distribution of a native
ustralian animal, the southern brown bandicoot (Isoodon obe-
ulus).

The southern brown bandicoot is a small, omnivorous,
round-dwelling marsupial which occurs in southern and
astern Australia. Habitat fragmentation, feral predators and
ther factors have led to a continuing decline in the distribu-
ion and abundance of the bandicoot.

In order to protect it, it is necessary to understand the rela-
tionships between its population and these factors. In 1998
and 1999, over 300 sites were surveyed in South Australia, and
population data for the bandicoot, and surrounding factors,
such as vegetation, soil, fire history and geomorphology were
obtained. In this paper, four machine learning techniques
(decision tree/rule learning, genetic programming, neural net-
works and support vector machines) are used to try to identify
the potential relationships between the bandicoot and geo-
graphical factors.

The rest of this paper is organised as follows. Section
2 describes the modelling problem and underlying dataset,
while Section 3 surveys the learning techniques used in this
research. The data preparation and experimental setup are
described in Section 4, while Section 5 presents the results.
The results are discussed in Section 6, and the conclusions
are presented in Section 7.

2. Bandicoot conservation and survey data

The southern brown bandicoot I. obesulus is a small
(∼0.5–1.5 kg), omnivorous, ground-dwelling marsupial occur-
∗ Corresponding author. Tel.: +82 2 880 9392; fax: +82 2 871 4912.
E-mail address: rim@cse.snu.ac.kr (R.I. McKay).
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Fig. 1 – Location of the study area and the 343 survey points used in this analysis.

ring in southern and eastern Australia. Habitat fragmentation,
feral predators and other factors have caused a decline in
its abundance and one subspecies, I. o. obesulus, which is the
focus of this paper, is listed as endangered by Australia’s Envi-
ronmental Protection and Biodiversity Conservation Act 1999.

In order to conserve the southern brown bandicoot, it is
necessary to understand the ecological factors that influence
its distribution and abundance. In 1998 and 1999, a detailed
field survey was conducted for I. obesulus in south-eastern
South Australia (Fig. 1), and information was gathered at
343 sites on bandicoot abundance and habitat characteristics
including landforms, soils, vegetation and fire history.

In this paper, four machine learning techniques are applied
in an effort to gain an understanding of the potential relation-
ships between the abundance of I. obesulus and features of its
habitat.

The field survey allocated sites proportionally to habitat
sampling units, which were defined by overlaying digital maps
of topography, vegetation and fire using a Geographic Infor-
mation System (Paull, 1999). To maximize the sample size, a
protocol was developed for making a rapid site assessment of
I. obesulus foraging activity. When I. obesulus excavates sub-
terranean invertebrates and fungi it leaves behind distinctive
pits or ‘iggings’ and the number of these reveals the number
of food items taken from a site. Counting diggings, therefore,
offers a useful surrogate measure of the abundance of I. obe-
sulus, which is a difficult species to detect using conventional

tion structure and soil properties were therefore emphasized
in the survey (Table 1).

Landforms (Lform) of the study area influence local
drainage conditions, soil formation and vegetation patterns,
and they were described in three basic classes: (1) slopes (>3◦,
measured with a clinometer), (2) flats, (3) closed depressions.
The site drainage variable (Drscore) provided information on
soil wetness conditions and was assigned to one of five ranked
classes based on the classification of McDonald et al. (1990): (1)
very poorly drained, (2) poorly drained, (3) imperfectly drained,
(4) moderately well drained, (5) well drained. A soil sample was
collected at each site at a depth of 10–15 cm, which approxi-
mated the depth that I. obesulus digs in the study area. In a
laboratory, the soil samples were oven dried at 50 ◦C, sieved
to <2 mm (i.e. sand grain and smaller fractions), sub-sampled
using a soil splitter, moistened with water and kneaded to field
capacity. Soil texture (Soiltext) was then classified using the
system for a wet soil bolus described in McDonald et al. (1990)
and soil colour (Colour) was determined using a Munsell® Soil
Colour Chart (Munsell® Color, 1994).

Vegetation inventories were made to determine plant
species richness (SR), dominant species in the canopy layer
(Assoc) and dominant ground layer species in the 0–1 m stra-
tum (Gveg). I. obesulus uses several vegetation formations but
in the study area it is most frequently found where the ground
stratum is dense (Paull, 1993, 1995, 2004). To score this vari-
able (Gld) vegetation in the 0–1 m layer was allocated to one
trapping methods (Paull, 1995). Diggings were counted during
active searches of 100 m × 100 m sites. After making a close
examination of the ground surface, the number of diggings
seen was assigned to one of four abundance classes (Abund)
relative to the distance walked throughout the site: (0) no dig-
gings, (1) 1–5 diggings per 100 m, (2) 6–20 diggings per 100 m,
(3) >20 diggings per 100 m.

Predictor variables were chosen to reflect aspects of habitat
use by I. obesulus based on the species’ primary needs of shelter
from predators and surface soils which contain food. Vegeta-
of ten classes: (1) 10% cover, (2) 20% cover, (3) 30% cover, . . .

(9) 90% cover, (10) 100% cover. Detailed assessments were also
made of the abundance, height and condition of Xanthorrhoea
australis, which is a grass-tree used by I. obesulus to hide its
nests beneath (Paull, 1995). In the study area, I. obesulus usu-
ally nest beneath X. australis with stems between 30 and 80 cm
tall and foliage that hangs to the ground to form an enclosed
skirt (Paull, 1995, unpublished data). Table 2 summarizes the
survey method used to score the abundance, height and skirt
condition of X. australis (Xanscore).
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Table 1 – Attributes of the survey data

Variable name Description Range of values Type of variable

Abund Abundance of digging class 0, 1, 2, 3 Numeric
Landsys Land system CRL, KLN, MBU, MSA, NGW, YOU Unordered categorical
Lform Landform description Depression, flat, slope Unordered categorical
Drscore Drainage class (1) very poorly drained, (2) poorly drained, (3)

imperfectly drained, (4) moderately well
drained, (5) well drained

Ordered categorical

Soiltex Soil texture (10–15 cm depth) clay, loam, clayey sand, loamy sand, sand Unordered categorical
Colour Soil colour (10–15 cm depth) black, brown, very dark grey, dark grey, grey Unordered categorical
SR Plant species richness (1) 1–5 species, (2) 6–10 species, (3) 11–15

species, (4) >15 species
Ordered categorical

Assoc Dominant plant species in the
vegetation canopy

eucbax (E. baxteri), eucobl (E. obliqua), eucova
(E. ovata), eucvim (E. viminalis), shrubs
(species of Melaleuca and Leptospermum),
reed/sedge (communities of poorly drained
areas), other (species of Acacia, Pinus radiata,
Eucalyptus camaldulensis, exotic/native
complex)

Unordered categorical

Gveg Dominant plant species in the ground
layer (0-1 m).

pteesc (Pteridium esculentum), xanaus
(Xanthorrhoea australis), reed, sedge, lepto mel
(species of Leptospermum and Melaleuca),
other (includes species of Allocasuarina,
Astroloma and Gahnia)

Unordered categorical

Gld Ground layer (0–1 m) vegetation cover (1) 10%, (2) 20%, (3) 30%, (4) 40%, (5) 50%, (6)
60%, (7) 70%, (8) 80%, (9) 90%, (10) 100%

Ordered categorical

Xanscore Xanthorrhoea australis
abundance/height/condition score
(see Table 2)

1–6 Ordered categorical

Litter Litter depth class, adjusted for
percentage litter cover

(1) <0.1 cm, (2) 0.1<0.25 cm, (3) 0.25<0.5 cm, (4)
0.5<1.0 cm, (5) >1.0 cm

Ordered categorical

N fire Number of fires since 1958 (1) 0 fires, (2) 1 fire, (3) 2 fires, (4) 3 fires, (5) 4
fires, (6) 5 fires

Ordered categorical

F age Years since burning class (1) 0–4 years (2) 5–9 years, (3) 10–14 years, (4)
15–19 years, (5) >19 years

Ordered categorical

Fire is thought to be an important variable in structur-
ing the habitats of I. obesulus (Stoddart and Braithwaite,
1979; Possingham and Gepp, 1996; Paull, 1995). A fire his-
tory of each site was therefore obtained from archived
forestry records and two variables were modelled: num-
ber of fires since 1958 when accurate record keeping com-

menced (N fire) and the number of years since last burning
(F age).

Leaf litter on the ground was included in the habitat
assessments because it forms a potentially important micro-
habitat for invertebrates eaten by I. obesulus. Litter cover
classes used were: (1) <1%, (2) 1–10%, (3) 10–30%, (4) 30–70%,

Table 2 – Site-based scoring system for suitability of X. australis for nesting by I. obesulus based on the plant species’
abundance, height and ‘skirt’ condition

>50% of the available
ground cover

10–50% of the available
ground cover

<10% of the available
ground cover

A: 30–80 cm stem with a well developed skirt 16 8 4
B: <30 or >80 cm stem with well developed skirt, or

30–80 cm tall with sparse skirt
8 4 2

C: <30 or >80 cm stem with sparse skirt 4 2 1
D: any stem height but with negligible skirt 2 1 0

Total raw score Xanthorrhoea abundance/height/condition class

0 1
1–5 2
6–10 3
11–15 4
16–20 5
>20 6

The total raw score for a site may include component scores from more than one abundance/height/condition class if the growth form of X.
australis is not uniform. For the analysis, raw scores were reclassified into six abundance/height/condition classes.
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(5) >70%. Litter depth (Litter) was also estimated then multi-
plied by the mid-points of the litter cover class estimates to
obtain an estimate for average litter depth, which was divided
into five classes: (1) <0.1 cm, (2) 0.1 < 0.25 cm, (3) 0.25 < 0.5 cm,
(4) 0.5 < 1.0 cm, (5) >1.0 cm.

I. obesulus is distributed over a range of different land sys-
tems, which are areas or groups of areas with a recurring pat-
tern of landforms, soils and vegetation. Undetermined aspects
of land systems may influence the distribution of I. obesulus
and for this reason the variable (Landsys) with six possible
values was included.

In this research, we used four machine learning techniques
to generate models, aiming to predict the abundance of bandi-
coots, represented as the density of bandicoot diggings.

3. Machine learning techniques

Previous investigations on the dataset using Generalised Lin-
ear Modelling had resulted in little understanding of the data.
For example, the best forward selection model for the dataset
included Gld, Drscore and Xanscore, with a residual deviance
of 281.4 and only 97.4 of the sum deviance explained (Paull,
unpublished data). Hence it was seen as a suitable candidate
for investigation with machine learning techniques, as the
potential would be—an understanding of the influences on
the distribution of an endangered animal.

pruning, and the resulting rules can sometimes be more com-
prehensible to human readers.

The comprehensibility of decision tree learning comes at a
significant cost: the language learnt by decision tree systems
is not universal, so it may be impossible for the decision tree
system to accurately fit a dataset simply because it cannot
represent the information contained in the dataset.

The experiments in this research were conducted with the
C4.5 package (Quinlan, 1993).

3.2. Neural network learning

Artificial neural networks are an abstraction from the current
understanding of the functioning of the animal nervous
system. In the commonest model, synapses are simulated by
nodes containing a transfer function (usually nonlinear, and
often sigmoid). Incident edges are divided into inputs and
outputs; the inputs are summed proportionately according
to weights attached to each edge, then the output values are
generated by the transfer function. The simplest commonly-
used representation, the feed-forward multi-layer perceptron,
prescribes a layered architecture in which edges feed only
forward from one level to the next; theoretically, only a single
hidden (internal) layer is required, and this is the approach
used in this work. A wide variety of algorithms are available
for training the weights from the data; back-propagation,
effectively a gradient descent algorithm for minimising the
Four machine learning techniques, namely decision tree
induction (DT, Quinlan, 1993), genetic programming (GP, Koza,
1992, neural network learning (NN, Haykin, 1994) and sup-
port vector machines (SVM, Vapnik, 1998) were applied to
the dataset. Of these, two (DT and GP) directly yield models
with potentially human-comprehensible meaning, while the
other two (NN and SVM) do not. Techniques are available for
extracting meaningful models from NNs (Tickle et al., 1998),
and are being developed for SVMs (Nuñez et al., 2000), but
these techniques in general involve a reduction in predictive
accuracy.

3.1. Decision tree and rule induction

Decision tree induction (and the closely related regression
tree induction) is a traditional and well-respected method for
generating predictive models from data. It proceeds by recur-
sively partitioning the data according to values of attributes;
most algorithms work from the root node of the tree down-
ward, generating progressively more refined definitions for the
classes being learnt. Most algorithms are greedy, partitioning
the data at each level based on which attribute gives the best
value of whatever criterion is in use to judge the quality of
data partitions. In most algorithms, the partitioning is contin-
ued until a further heuristic criterion, deliberately designed
to generate overfitting, is triggered. The resulting tree is then
pruned to give optimum generalisation performance on an
independent test dataset.

Decision tree induction may be extended to generate deci-
sion rules instead: the unpruned decision tree is converted
into a logically equivalent rule set, then pruning is conducted
on the rule set rather than the tree. Decision rule pruning can
permit generalisations which are not available in decision tree
error function, is perhaps the most commonly used.
The learnt information embedded in a trained neural net-

work is not directly human-comprehensible. Techniques are
available for extracting meaningful knowledge from a neural
network, but there is no guarantee that the extraction process
will preserve the accuracy of the predictions made.

The experiments in this research were conducted using the
Tlearn package (Plunkett and Elman, 1997).

3.3. Support vector machine learning

Linear support vector machine learning (Vapnik, 1998) aims to
find separating hyperplanes, which will separate the dataset
as reliably as possible into the distinct data classes. In the
ideal case, when the data are completely linearly separable,
the hyperplanes will be as far as possible from the nearest ele-
ments of the classes. In general, SVM aims to approximate this
condition as nearly as possible. Nonlinear SVM replaces hyper-
planes with other classes of manifolds, but the basic principle
remains the same.

The learnt information embedded in support vectors is not
directly human-comprehensible. Techniques are under devel-
opment for extracting meaningful knowledge, but there is no
guarantee that the extraction process will preserve the accu-
racy of the predictions made.

The experiments in this research were conducted using the
LibSVM package (Chang and Lin, 2001).

3.4. Grammar guided genetic programming

Genetic programming (Koza, 1992) is a form of evolutionary
algorithm. Evolutionary algorithms are motivated by Darwin’s
theory of evolution by natural selection, and search a problem
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space through the interaction of stochastic variation operators
(mutation and crossover) and selection operators (often also
stochastic). Genetic programming is a specific form in which
the problem space is specified (usually) as the set of structures
which may be generated from a set of function and variable
symbols, usually within a bounded depth. In this paper, we
make use of grammar-guided genetic programming (GGGP,
Whigham, 1995), a variant in which the problem space is speci-
fied by a grammar, usually context-free. Instead of evolving the
structures themselves, GGGP evolves their parse trees, but in
other respects closely resembles standard GP. Compared with
canonical GP, GGGP has the following five advantages.

With the grammar constraint, the closure requirement of
canonical GP (that all possible structures have a semantic
meaning so that they can be evaluated) is removed, permit-
ting the evolution of more expressive program structure.

The grammar in GGGP provides a natural and formal-
ized way to represent background knowledge, either domain
knowledge restricting the form of possible solutions or meta-
knowledge about the form of acceptable solutions. With back-
ground knowledge, the search space may be dramatically
reduced.

Problem-related building blocks, a kind of a priori knowl-
edge, can be represented through the grammar, further
improving search efficiency.

During the GP search process, the grammar itself can also
be evolved, leading to incremental learning.
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ing, and one-fold for testing, the experiments being replicated
n times with a different fold used each time for the testing set.
Commonly, the number of folds is set to 10. However, in the
context of the small sample size and highly skewed class dis-
tribution, 10-fold cross-validation would typically result in the
two classes of highest interest being sparsely represented in
the testing set, potentially giving highly misleading results.
Instead, the dataset was divided into approximately equal
datasets (training: 170; testing: 173) 10 times, using random
sampling stratified over the classes. This set of ten training
and 10 corresponding testing sets was then used for the repli-
cations of all experiments.

The highly skewed nature of the data implies that the naı̈ve
hypothesis, namely that all instances are in the majority class,
has reasonable performance. Thus machine learning tech-
niques are reasonably likely to start with this hypothesis, and
attempt to refine it. Unfortunately, prediction of the major-
ity class (i.e. absence of diggings) is not particularly useful in
understanding the mechanisms affecting their distribution;
in fact, we attach at least equal importance to understand-
ing the causes of the smallest class (high number of diggings).
All of the learning methods considered incorporate mecha-
nisms for weighting the importance of different classes; but
the methods are different, and the differences could poten-
tially confound an understanding of the differences between
the learning algorithms. Hence rather than use the built-in
weighting mechanisms, we took the straightforward approach
During the overall modelling process, the grammar can be
eadily modified manually and incrementally, to reflect the
ser’s increasing familiarity with the problem.

While these have been of limited importance in this work
o the present stage, the second point is the key to further
xtensions to be discussed in the conclusions.

While GGGP can, in general, represent almost any search
pace of interest, in the interests of comprehensibility the
earch space was restricted to be logically equivalent to that
sed by decision rules (see details below).

The experiments in this section were conducted using
rian Ross’ DCTG-GP system (Ross, 2001).

. Data preparation and experimental
etup

he original data contained 344 sites (i.e. instances) described
n terms of the attributes discussed in Section 3. One of
hese sites contained a missing value for one attribute. It was
eemed expedient to omit that instance rather than need-

essly raise the complex issues involved in dealing with miss-
ng values.

The class distribution of the instances is highly skewed—
here are only 13 instances of class 3 (> 20 diggings per 100 m),
8 of class 2 (6–20 diggings), 123 of class 3 (1–5 diggings) and
59 of class 0 (no diggings).

The aim of the experiments described here was to com-
are and understand the behaviour of the various learning
lgorithms. Hence a replicated-trials approach was used, in
rder to gain an understanding of the overall performance of
he algorithms. It is customary, in this discipline, to use n-fold
ross-validation for trials, with n − 1-fold being used for train-
of re-sampling the data, using replication of instances to build
a new set of training and test datasets in which the class
distributions were equal. These are referred to hereafter as
the balanced datasets, in contradistinction to the unbalanced
datasets previously described.

4.1. Decision tree/rule setup

C4.5 data preparation is straightforward, since no data trans-
formation is required (the algorithm is independent of any
scaling or other effects). C4.5 was used in its default mode:
using the gain ratio criterion for splitting, with the pruning
confidence level set at 25%. C4.5 was run once on each of the
10 training/testing dataset pairs, for both balanced and unbal-
anced datasets, making 20 runs in all. The experiments were
then repeated using C4Rules to generate decision rules, for a
further 20 runs.

4.2. Neural network setup

Neural network data preparation is more complex.
Neural networks require numeric data. The values of all

categorical variables were mapped to a numeric range.
Efficient learning requires the variables to be scaled to the

same range. Hence, all input variables were mapped onto the
range [0,1].

Two possible representations for the class were tried:
Single output: the four class values were mapped onto the

output values 0.0, 0.3333, 0.6666 and 1.0. In testing, the output
value was mapped to the nearest neighbouring class value,
which was taken to be the neural network predicted class.

Multiple output: the network had four output nodes, and
classes 3, 2, 1 and 0 were represented by the outputs [1,0,0,0],
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[0,1,0,0], [0,0,1,0] and [0,0,0,1]. On testing, the output class was
taken to be that corresponding to the highest output activa-
tion level.

Neural network architecture is also important. In these
experiments, we used an input layer of 13 nodes (correspond-
ing to the 13 independent attributes), an output layer of either
1 or 4 nodes, as described above, and a single hidden layer,
fully connected to both the input and output layers. However,
the size of the hidden layer is also important. Theoretically,
too small a hidden layer will not permit the complexity of the
problem to be learnt, resulting in poor training data perfor-
mance, whereas too large a hidden layer will permit overfitting
to the training data, giving poor generalisation to the test
data. However there is no a priori method to determine an
appropriate size, and unlike decision trees, there is no built-in
mechanism equivalent to pruning to optimise the size. Exper-
iments were repeated at each hidden-layer size from 2 to 12
nodes, giving 440 experiments in all (1 or 4 output nodes * bal-
anced or unbalanced * 11 hidden layer sizes * 10 replications).
The experiments used the default learning rate of 0.1, and the
learning algorithm was trained for 1,000,000 sweeps.

4.3. Support vector setup

As with the neural network learning, categorical attributes
were mapped to numeric values, and all variables were trans-
formed to the range [0,1]. A linear kernel was used because of

Table 3 – Grammar used in genetic programming
experiments

S → if BOOL abundance 3
else if BOOL abundance 2
else if BOOL abundance 1
else absent

EXP → PRE EXP
| EXP OP EXP
| NUM
| if BOOL EXP EXP
| CVAR

BOOL → BOOL and BOOL
| BOOL or BOOL
| not BOOL
| EXP CP EXP
| ORD CP ORD VALUE
| NORD in NORD VALUE SET

PRE → exp | sqrt | log
OP → + |−|*|/| power
CP →<|>|=
NUM → N fire |Xanscore| Litter vol
ORD → Drscore |Gld| SR
NORD → Lform |Color| Soiltex| Assoc| G veg|Landsys
CVAR → ephemeral const

Table 4 – Genetic programming parameters

Parameter Value

Terminals and nonterminals See Table 3
Fitness function No. of misclassified instances
Generation type Generational
Selection scheme Tournament, size 3
Population 1500
No. of generations 200
Initialisation Ramped half and half
Initial max depth 5
Crossover probability 0.9
Mutation probability 0.1
Internal crossover probability 0.9
Terminal mutation probability 0.75

tionary pressure (i.e. the genome tends to fill up with non-
effective code such as “NOT NOT”) indirectly provides some
degree of parsimony pressure on the effective part of the code.
However to fully investigate this aspect, the depth limit in the
system was varied over the range 4–11, giving 80 runs. Each
run used a population of 1500 for 200 generations. The exper-
iments use tournament selection with a tournament size of 3.
Other genetic programming parameters are detailed in Table 4.

5. Results

The results of the runs are shown in Table 5. Each entry gives
the mean and standard deviation, over ten runs, of the error
rate (as a percentage) for the particular combination of learn-
ing mechanism and learning parameters.

The first point to note is that none of the performances is
particularly good. While some of the algorithms fit the training
data accurately, this is simply the result of overfitting, as the
test-set performance is much weaker.

For the unbalanced-class data, none of the methods is able
to reduce the test-set error to below 46.4%; this is only a 9.1%
improvement on the 55.5% error of the naı̈ve classifier, which
the reduced parameter-setting requirement; standard param-
eter values were used, in particular a cost parameter of 1.

4.4. Grammar guided genetic programming setup

4.4.1. Target language
One of the important preparatory steps for GGGP is to identify
a suitable target language in which to evolve programs. On
one hand, the language should be expressive enough to cover
the potential solution space. On the other hand, too general
a language may adversely affect the efficiency of execution.
This trade-off needs to be carefully considered.

The grammar used for modelling bandicoot abundance is
shown in Table 3. According to this grammar, every model gen-
erated by our GP search process, starts from

S →if BOOL abundance 3
else if BOOL abundance 2
else if BOOL abundance 1
else absent

This means that the system tries to find a Boolean statement
covering the cases with bandicoot abundance at level three,
where the number of diggings is over 20; then another Boolean
statement covering the cases with bandicoot abundance at
level two, i.e. between 6 and 20; finally another Boolean state-
ment covering the cases with abundance level 1, i.e. from 1 to 5
diggings. All the other cases will be classified into class absent.
The remaining part of the grammar is self-explanatory.

In this application, we use the number of misclassi-
fied cases as the fitness. This fitness function provides no
direct pressure for parsimonious (and hence general) models,
although the well-known phenomenon of bloat under evolu-
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Table 5 – Machine learning error rates

Unbalanced training (%) Unbalanced test (%) Balanced training (%) Balanced test (%)

Decision tree
Unpruned 15.1 ± 2.0 53.9 ± 4.4 5.3 ± 0.9 67.4 ± 3.6
Pruned 27.2 ± 4.2 47.8 ± 3.2 7.3 ± 1.0 66.6 ± 4.1
Pruned rules 32.3 ± 3.2 48.2 ± 3.1 9.0 ± 2.1 64.1 ± 4.2

Single output neural network
Hidden units

2 37.6 ± 2.8 50.3 ± 3.9 34.4 ± 4.2 58.1 ± 5.3
3 31.4 ± 3.3 50.7 ± 4.5 27.4 ± 3.2 58.2 ± 4.6
4 22.5 ± 4.1 51.3 ± 6.1 19.3 ± 3.9 58.0 ± 8.4
5 17.4 ± 4.0 54.3 ± 4.3 14.5 ± 3.3 59.0 ± 3.4
6 14.1 ± 3.5 55.0 ± 4.0 11.5 ± 2.6 61.5 ± 5.5
7 9.9 ± 4.1 54.5 ± 4.7 7.7 ± 2.4 61.4 ± 4.4
8 6.8 ± 3.3 54.9 ± 4.2 6.6 ± 1.7 60.4 ± 4.5
9 5.5 ± 1.9 55.9 ± 4.2 5.5 ± 1.7 59.2 ± 5.5

10 4.5 ± 2.4 56.2 ± 5.5 4.3 ± 1.6 61.0 ± 5.5
11 4.2 ± 2.0 54.6 ± 3.3 4.2 ± 2.3 57.1 ± 4.9
12 3.0 ± 1.1 53.8 ± 5.0 4.1 ± 1.4 59.1 ± 5.3

Four output neural network
2 41.4 ± 26.4 46.6 ± 2.9 38.1 ± 19.5 61.3 ± 4.2
3 24.4 ± 3.2 47.7 ± 3.0 28.1 ± 16.7 60.1 ± 7.4
4 26.5 ± 24.7 49.5 ± 4.2 23.2 ± 18.5 60.8 ± 5.5
5 36.4 ± 37.2 51.4 ± 3.5 33.1 ± 29.3 64.0 ± 4.5
6 20.0 ± 27.0 53.1 ± 4.0 17.3 ± 20.4 61.8 ± 4.5
7 25.6 ± 37.4 52.4 ± 2.6 22.2 ± 27.9 61.7 ± 6.6
8 46.8 ± 41.3 53.1 ± 3.7 42.0 ± 35.0 61.2 ± 4.9
9 5.2 ± 1.4 51.1 ± 2.5 6.4 ± 1.4 61.9 ± 6.0

10 5.2 ± 1.9 50.9 ± 2.8 5.3 ± 1.1 63.7 ± 4.1
11 17.0 ± 28.8 52.3 ± 2.8 18.2 ± 30.0 62.9 ± 4.7
12 18.4 ± 31.6 52.6 ± 3.0 18.3 ± 29.9 61.7 ± 4.5

Support vector machine
42.5 ± 4.4 46.6 ± 3.2 43.4 ± 6.0 57.1 ± 5.8

Grammar-guided genetic programming
Depth bound

4 43.0 ± 2.5 49.2 ± 2.2 44.6 ± 2.3 62.5 ± 3.7
5 40.0 ± 3.0 48.0 ± 4.0 42.2 ± 2.6 62.4 ± 5.8
6 39.1 ± 2.5 49.1 ± 3.4 39.3 ± 3.8 63.4 ± 2.9
7 38.5 ± 2.9 48.2 ± 1.9 38.5 ± 5.5 63.7 ± 4.5
8 37.0 ± 3.1 46.9 ± 2.7 37.5 ± 5.0 61.2 ± 4.3
9 35.6 ± 2.4 48.3 ± 3.2 35.2 ± 3.6 61.9 ± 4.7

10 36.4 ± 2.7 46.4 ± 1.7 34.4 ± 3.1 63.6 ± 4.0
11 36.2 ± 5.0 47.7 ± 3.4 34.5 ± 1.9 63.0 ± 3.8

simply classifies all data into the majority class (here ‘absent’).
Moreover some parameter settings of the single-output neural
network classifier actually gave worse performance than the
naı̈ve classifier. Of the methods tested, only the single-output
neural network is clearly worse than the others.

For the balanced-class data, the performance relative
to the naı̈ve classifier (whose error rate is 75%) is some-
what improved. The worst performance, of 66.6% (omitting
unpruned decision trees, whose performance is irrelevant)
is still 8.4% better than the naı̈ve classifier, while the best,
that of the support vector machine is 17.9% better. The 1-
output and 4-output neural network methods appear to have
changed places, with the former outperforming the latter
(though always within the standard deviation) for all archi-
tectures. The support vector machine gives equal best perfor-
mance (with the 1-output, 11-internal-node neural network),
but given the high variance of the data, not too much should
be read into this.

The results are sufficiently similar, and the variances suf-
ficiently large that pairwise T-tests detect few significant dif-
ferences in the table. However the trends in the data are uni-
form enough that we may summarise it as a whole, taking
into account the difference between comprehensible and non-
comprehensible representations, as follows.

For the unbalanced-class data, there is little to choose
between the methods, with the exception of the definitely
poorer performance of the single-output neural networks.

For the balanced-class data, the non-comprehensible rep-
resentation methods give marginally better performance than
the comprehensible; within the former, 4-output neural net-
works performed worse than the other methods, while within
the latter, genetic programming appeared to work substan-
tially better than decision-tree methods.

It is probably not a coincidence that the support vector
machine gave equal best performance on the balanced-class
data, and equal second-best on the unbalanced-class data.



136 e c o l o g i c a l m o d e l l i n g 1 9 5 ( 2 0 0 6 ) 129–138

Table 6 – Best test error achieved by each learning algorithm

Unbalanced data Balanced data

Decision tree 42.2% 59.4%
Neural network (single output) (three hidden) 43.4% (four hidden) 44.4%
Neural network (four outputs) (2 hidden) 41.0% (7 hidden) 51.6%
Support vector machine 42.8% 47.2%
Genetic programming (depth 5) 42.2% (depth 8) 54.1%

Although increasing GGGP depth, and to an even greater
extent, increasing size of the neural network hidden layer,
gave improved performance on the training data, there was
little effect on the test set accuracy, implying that the training
set effect was almost entirely the result of overfitting.

6. Discussion

Although there is some indication in the data that non-
comprehensible representation methods may have given
slightly better learning performance on the balanced-class
data, this effect is absent in the unbalanced-class data. On
the other hand, the usefulness of a black-box predictor with
an error rate of close to 50% (unbalanced) or 60% (balanced)
is open to serious question. With comprehensible represen-
tations, since the predictive performance of the classifiers
has been validated on an independent test set, we have a
guarantee that the information embedded in the classifier has
definite, though weak, predictive accuracy. We can gain value
from the process by examining the classifiers and attempting
to understand the knowledge embedded within them.

6.1. Representative learned classifiers: interpretation

In this section, we discuss the implications of some of the best
models (in terms of testing set error rate and complexity) gen-

The conditions for abundance level 2 (Assoc = eucobl,
Gld > 6) are consistent with a known greater abundance of dig-
gings stringybark eucalypt Eucalyptus obliqua associations.

The conditions for abundance level 1 (Xanscore > 1,
N fire < 5, Gld > 6) are consistent with the view that Xanthor-
rhea australis provides predator-shelter for nests.

6.1.2. Rule 2
The conditions for abundance level 3 (N fire = 1,
Landsys = KLN) single out 5 of the 10 Kalangadoo sites (the
other 5 having N fire = 2). The former have higher abundance
levels than the latter.

Low error rules generated by genetic programming and
decision tree learning
erated by the decision tree and genetic programming learners.
Table 6 shows the best testing-set error rates achieved by each
of the algorithms (these results are not presented for com-
parison purposes, but rather to give a feel for the relative
performance of the models analysed).

We will examine three GP-generated rules and one deci-
sion tree, displayed in the following table. Rules 1 and 2 were
generated by GGGP from the unbalanced training data using
depth bound 6 and 5 respectively, and have error rates of 43.4%
and 42.2%. Rule 3 was generated by GGGP from the balanced
training data using a depth bound of 8, and has an error rate
of 54.1%. Rule 4 was generated by decision tree learning from
the unbalanced training data, and has an error rate of 42.2%.

6.1.1. Rule 1
The conditions for abundance level 3 (Color = brown, Gld > 6,
Landsys = KLN) apply to only two sites in the dataset, both of
which actually have abundance 3; in fact, land system Kalan-
gadoo is quite sparse, with only 10 instances, so this part of
the rule is attempting to predict only a very small number of
sites. Gld > 6 is quite sensible, since bandicoots prefer higher
densities of ground layer vegetation, which provide protection
from predators (but not too high, since that may impede the
movement of the bandicoots themselves).
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The conditions for abundance level 2 are (N fire = 1,
Lform = slope). Landform = slope makes sense because the
best drained sites occur on slopes. They are unlikely to ever
be waterlogged, which can occur with sites on the other
two landform classes (flats and depressions). One reasonable
hypothesis is that well drained soil is optimal for the food of
bandicoots (subterranean invertebrates) because they would
probably drown in the soggy spots. Also, slopes tend to have
sandy, friable soils (they are relict sand dunes from the Pleis-
tocene) while flats can be compacted and depressions have
heavy organic soils. It is possible that this would affect micro-
habitat conditions for invertebrates. It could be conjectured
that well-drained, friable soils are better for invertebrates than
heavy textured, poorly drained soils, and easier for bandicoots
to dig in too (i.e. less energetic cost for metabolic return).

6.1.3. Rule 3
The greater complexity of the conditions for abundance class
1 of this rule make interpretation difficult. The conditions
for abundance classes 2 and 1 (Drscore > 4 and Xanscore > 2,
respectively) are consistent with the discussions of drainage
and X. australis density above.

6.1.4. Rule 4
• If Gld <= 5 then absent

Low densities of ground layer vegetation are associated with
bandicoot absence because of the lack of predator protec-
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largely because of their strong and non-robust dependence on
additional tuning parameters. While the relatively poor perfor-
mance on this problem of all learning methods so far tested
would not lead to optimism on the likely performance of other
kernel functions, we believe it is worth continuing the work in
this direction.

6.2.2. Further work on grammar-guided genetic
programming
Grammar-guided genetic programming performed highly
competitively on the unbalanced-class problem, and only a
little worse than the non-comprehensible representations on
the balanced-class problem. However, GGGP is much more
flexible, as regards representation, than the other methods
considered. It is characteristic of evolutionary methods
such as GGGP that they impose no assumptions on the
form of the fitness function; conversely, then, the fitness
function imposes no constraints on the representation used.
Moreover, GGGP, since it describes the search space via a
grammar, can handle any search space for which a suitable
grammar and semantics may be defined; in the case of the
particular package, DCTG-GP, used here, it is simply a matter
of defining a logic-grammar and its associated semantics.
This permits us to extend the grammar used in two further
directions.

6.2.2.1. Expressivity versus comprehensibility. The language

tion. This part of the rule covers 53 of the testing instances.
If Drscore <= 2 then absent
Poor drainage is also associated with low bandicoot abun-
dance, even if ground layer vegetation is dense. This part of
the rule covers 11 of the testing instances.
If 5 < Gld <= 8 and SR <= 3 then Abundance 1
Intermediate levels of ground layer vegetation density
favour bandicoots. This part of the rule covers 87 of the test-
ing instances.
If 5 < Gld <= 8 and SR > 3 and F age <= 3 then Abundance 3
(abundant)
F age = 2 or 3 and intermediate levels of ground layer veg-
etation are both associated with high levels of bandicoot
abundance; it is possible that high floral species richness
is associated with high levels of vegetation density, abun-
dance and hence high levels of the bandicoots’ invertebrate
foods.

.1.5. Summary
he rules generated by genetic programming and by decision

rees are at least consistent with reasonable hypotheses about
he factors influencing bandicoot distribution.

.2. Further work

rom the results obtained so far, it seems clear that further
ffort on this dataset would be best concentrated on support
ector machines and genetic programming.

.2.1. Further work on support vector machines
inear support vector machines clearly gave performance at
east equal to, and quite probably better than, neural net-
orks. Other kernel functions were not tested in this research,
used in this work was chosen to provide high comprehensi-
bility, at the expense of expressiveness, not permitting math-
ematical combination of numeric attributes. We could have
taken the opposite choice, and use a language expressively
equivalent to that used by neural networks and support vec-
tor machines, at the expense of comprehensibility. But these
extremes are not the only options. In future work, we will
investigate grammars in which the internal structure is given
by Boolean combinations, but the final relationships incorpo-
rate linear or nonlinear mathematical relationships between
the numeric attributes. We hope in this way to generate search
spaces with sufficient expressive power to generate more
accurate explanations, but sufficiently simple for human com-
prehension.

6.2.2.2. Relational learning. All of the representations used in
this work suffer from a further limitation: they are proposi-
tional or attribute-based, rather than relational. That is, they
are able to generate models which predict the class of an
instance from the values of its attributes, but they are unable
to take into account the relationships between this instance
and any other instances.

It is generally believed in the Australian zoological com-
munity that fire is a controlling influence on the distri-
bution of terrestrial marsupials such as bandicoots. In the
case of bandicoots, this makes a lot of sense. Fire is known
to modify the structure of vegetation in which bandicoots
live, and may impact upon the invertebrate food supply
(Paull, 1999).

However standard modeling techniques applied to this
dataset have not demonstrated such an effect. One possi-
ble explanation is that wildfires may have two countervailing
effects on the distribution of the bandicoot. Large-scale wild-
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fires may lead to extinction, whereas small scale fires may well
lead to habitat improvement. If these effects are in approxi-
mate balance, the influence of fire would only be visible to
modelling techniques able to represent spatial effects. Hence,
in this ecological modelling problem, spatial and temporal fac-
tors should be explicitly considered. In GGGP, it is straightfor-
ward to take spatial and temporal factors into consideration.
Whigham (2000) showed that it is quite promising to incorpo-
rate spatial relationships into GGGP for ecological modelling.
We plan further experiments in this area, investigating both
spatial and temporal relationships, in our immediate follow-
up research.

Another focus of future work is spatio-temporal represen-
tation languages. An appropriate language bias is a crucial
component of learning in high dimensional problem spaces,
particularly where, as here, the amount of available data is
very limited. Hence, the choice of spatio-temporal represen-
tation is crucial.

A further strand of the work will focus on evolvability
of the underlying grammar, permitting incremental learn-
ing and the transfer of meta-knowledge between related
problems.

7. Conclusions

We investigated the performance of a range of machine learn-
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