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Abstract

Genetic Algorithms has given rise to two new fields of research where (global) optimisation is of crucial importance: ‘genetic based

machine learning’ (GBML) and ‘genetic programming’ (GP). An advanced implementation of GBML (Fuzzy Efficiency based

Classifier System, FECS, developed by the authors) and GP (as defined by Koza) are both applied to the case study ‘fibre-to-yarn

production process’. Results for both systems are presented and compared. Finally, the GP generated equations are transformed

into rule-sets similar to those obtained from FECS.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Genetic Algorithms(GAs) are generally used as an
optimisation technique to search the global optimum of
a function. However, this is not the only possible use for
GAs. Other fields of applications where robustness and
global optimisation are needed could also benefit greatly
from the use of GAs. The two most important domains
using GAs as the underlying methodology are Genetic

Based Machine Learning (GBML) (Goldberg, 1989) and
Genetic Programming (GP) (Koza, 1992).
GBML is a GA driven implementation of Rule Based

Machine Learning (RBML). The goal in RBML is to
generate a set of rules using an automated learning
algorithm. This set of rules should allow the machine to
perform optimally in its environment. This paper
considers an advanced GBML algorithm, called Fuzzy
Efficiency based Classifier System (FECS) as has been
introduced by Boullart and Sette (1998), Sette (1998)
and by Sette and Boullart (2000). GP is basically a GA
applied to a population of Computer Programs (CP).
While a GA operates on (coded) strings of numbers a
GP operates on computer programs. The purpose of this
paper is to compare GP (as described by Koza) with the
ng author. Tel.: +32-56/241299; fax: +32-56/241292.
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aforementioned FECS. To this end a real-life industrial
production problem is introduced.
One of the important production processes in the

textile industry is the spinning process. Starting with
cotton fibres, yarns are (usually) created on a rotor or
ring-spinning machine. The spinnability of a fibre and (if
spinnable) the resulting yarn strength is dependent on
the fibre quality and on the machine settings of the
spinning machine (BRITE, 1990–1993). FECS and GP
will be applied to generate, respectively, classifiers (rule-
sets)/mathematical equations for predicting spinnability
and yarn strength departing from a certain product
quality and machine settings.
FECS generates a rule set of 123 classifiers with a

predictive accuracy of 94% for spinnability and a rule
set of 119 classifiers with a predictive accuracy of 91%
for yarn strength. Moreover, each classifier has a real
life meaning (IFy THENy) and includes a parameter
(membership degree) which gives an important indica-
tion about the applicability of the corresponding rule.
GP generates mathematical equations (1 for spinnability
and 1 for yarn tenacity) allowing a correct overall
prediction in all cases of at least 90%. Moreover, the
resulting equations have a limited complexity (eliminat-
ing several input parameters) and give the user an
insight into the importance of the database parameters.
Not only are similar accuracies obtained using

GP and FECS, but a more detailed analysis shows
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also that the GP selected parameters correspond to
the FECS evaluation of the most important input
parameters.
2. Fuzzy efficiency based classifier system

The three basic components to construct a LCS
(Goldberg, 1989) are:

* A rule and message system, which allows the machine
to interact with its environment (accepting informa-
tion from the environment and generating actions
towards the environment).

* A reward mechanism to evaluate the rule set. This
mechanism allows separating successful rules from
unsuccessful or meaningless rules.

* A GA is used to generate new (more optimal) rules for
the rule set.

A schematical overview of a LCS is given in Fig. 1.
The goal of this part was to generate rules between

[quality/machine settings] and [spinnability/yarn
strength]. However, the original LCS algorithm (by
Goldberg) is limited to discrete values and shows also
some basic deficiencies (Sette et al., 1998; Sette, 1998).
Fuzzy Efficiency Classifier System introduced a

number of additional features to correct the aforemen-
tioned problems:

* introduction of additional performance (called effi-
ciency) parameters for the classifiers and for the
global system;

* making the reward dependant on the global perfor-
mance of the system;

* elitist reproduction based on two parameters
(strength and performance);

* introduction of a so-called ‘guided mutation opera-
tor’, generating likely better mutations based on
performance characteristics;

* introducing fuzzy sets to overcome the limitation of
parameters to be discrete.
Environment 

Message 

Classifier Set 

Reward 

MechanismBid 
Selected 

Classifier 
Match set

GA

Fig. 1. Basic classifier system.
The efficiency of a classifier (or more general, the total
classifier system) can be described using the following
parameters:

* a(t) the accuracy or number of accumulated success-
ful rewards of the classifier or classifier system

* g(t) the generalism or total number of accumulated
selections (successful or not) of the classifier or
classifier system

Effficiency E(t) is then defined as

EðtÞ ¼
aðtÞ
gðgÞ

with 0pE(t)p1.0.
E(t) is the maximum (1.0) indicating that all selections

were successful and minimum (0.0) indicating that no
successful selections were made up to time t.
The following specific efficiency parameters can be

defined:

* Global efficiency Eg(t): the efficiency of the whole
classifier system at time t is calculated as the ratio of
all the successful rewards to all presented environ-
ment messages. It describes the efficiency of the whole
classifier system at time t. A 1.0 efficiency would
indicate a classifier system which responds to all
environment messages with 100% successful re-
sponse.

* Virtual efficiency Ev(i,t): all classifiers i within the
match set M are considered (virtually) selected and
for each of them it is determined if they would be
eligible for reward, resulting in an virtual efficiency at
time t. The resulting ratio determines Ev(i,t). They are
not necessarily selected within the BBA for effective
reward.

* Real efficiency Er(x,t): only the classifiers xAM

selected by the BBA (for possible reward) are
considered when calculating real efficiency at time t.

An ECS cycle can basically be described as follows:
The environment generates a message, which is

presented to the classifier system. From the classi-
fier set S the matching classifiers are selected and
presented in the matching set M. During this phase,
the value for Evði; tÞ is upgraded for all matching
classifiers i.
From the match set M the highest strength classifier x

is selected and checked if it is eligible for reward. At the
same time Erðx; tÞ (for the selected classifier x) and EgðtÞ
(for the whole classifier system) are upgraded. The
strength reward of the classifier x (if successful) is
calculated based upon EgðtÞ: After a fixed number of
such cycles has occurred the GA will introduce a
number of new classifiers within the classifier set based
upon the classifier strength, Erðx; tÞ;Evði; tÞ and EgðtÞ:
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ECS (and other LCS configurations) are suitable for
the generation and evaluation of rules that are
composed from discrete parameters. But the great
majority of the ‘real’ environments and processes has
continuous parameters where the conversion to a
functional classifier format is less evident. To overcome
this deficit a solution is suggested in which the
continuous parameters are divided in ‘fuzzy sets’ where
the parameter is split in a number of fuzzy classes and
the ECS algorithm is extended for the processing of
classifiers on the basis of their membership degree (the
so-called Fuzzy Efficiency Classifier System). Each
(continuous) message of the environment that is
presented to the ECS can be compared to all (discrete)
classifiers (belonging to the classifier list) where a
corresponding membership function is calculated.
The membership function is a measure for the applic-
ability of the classifiers on the presented example,
introducing fuzzy classes to allow handling of contin-
uous values.
A more in-depth discussion of FECS is outside the

scope of this paper but a detailed analysis, including a
discussion of fuzzy membership degrees and defuzzifica-
tion of the results, can be found by Sette and Boullart
(2000), Sette (1998) and by Boullart and Sette (1998).
Insert generated CP into new population 

Fig. 2. Schematical overview of GP.
3. Genetic programming

3.1. Introduction

A schematical overview of the GP algorithm is given
in Fig. 2. The following steps can be distinguished:

1. Generation of a random population of CP.
2. Evaluation of the fitness of all CPs in the population.
Moreover, if a certain criterion is reached (for
example a certain fitness threshold), the algorithm is
terminated and the CP with the highest fitness is
selected as the final result.

3. Replacing the current population by a new popula-
tion by means of applying genetic operators (repro-
duction, crossover and mutation) probabilistically.

4. Return to step 2.

It is clear that this procedure is nearly identical to the
one followed in a ‘classic’ GA. The major difference will
be the representation and the corresponding fitness
evaluation of the CP and this will be discussed in the
next paragraph.

3.2. Representation of the computer program (cp)

In a GA a population member is an (often binary)
coded representation of a number. However, a popula-
tion member in GP is a hierarchically structured
(computer) program consisting of functions and term-
inals. The functions and terminals are selected from a set
of functions and a set of terminals. For example, a
function set F could contain the basic arithmetic
operations: F ¼ fþ;�; �; =g: However, the function set
may also include other mathematical functions, Boolean
operators, conditional operators or any user defined
operators. For each of the operators the number of
arguments (‘arity’) has to be defined. For F the
corresponding number of operators is given by {2, 2,
2, 2}. The terminal set T contains the arguments for the
functions. For example T ¼ fx; yg with x and y two
independent variables.
A CP can now be depicted as a rooted, point-labelled

tree with ordered branches, using operations (internal
points of the tree) from the function set and arguments
(leaves of the tree) from the terminal set.
4. Experimental setup

The dataset for the fibre-to-yarn process was selected
from the database described by Sette et al. (1996, 1998).
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This database was originally built within the framework
of a BRITE/EURAM project (BRITE, 1990–1993) and
consisted of twenty different cotton types for which
five different spinning machine settings were system-
atically changed. For all these settings it was experi-
mentally determined whether the fibre was spinnable
or not, resulting in a dataset of 1260 spinnable and
900 unspinnable experiments. The whole fibre-to-yarn
database (2160 data samples) was used with regard
to the prediction of spinnability, while the 1260
spinnable experiments were used in the prediction of
yarn strength.
The dataset used for modelling is a subset of the

aforementioned database and was constructed as
follows:

* 5 machine parameters mi (m1=yarn count, m2 ¼
twist; m3 ¼ navel; m4 ¼ breaker and m5 ¼ rotor)
with several possible discrete settings were used to
set up the machine;

* 5 different continuous fibre characteristics fi were
selected (f1 ¼ length; f2 ¼ uniformity; f3 ¼ strength;
f4 ¼ elongation and f5 ¼ micronaire).

For FECS, the rules were all coded using a ternary
alphabet {0, 1, x} with the ‘x’ symbol representing either
a 0 or 1.
For the GP implementation, the LISP code is a

modified version of the code presented by Koza (1991).
It now supports multiple dimensional input parameters,
reading learning data from an ASCII file and more
functions in the GP function set. The function set
consisted of:

* the basic functions ‘+, �, �, X’
* a maximum/minimum function ‘max, min’ selecting
maximum/minimum of two parameters

* a step function S which rounds a parameter to 1.0 if
the parameter is larger then 0.5 or 0.0 otherwise.
Table 1

Ten Most important rules for predicting spinnability

Input

m1 M2 m3 m4 m5 f1 f2

#0 01 0 ## 1 0 0

## 0# # 10 0 0 #

0# #0 1 ## 1 # #

00 01 1 ## 1 # #

0# 10 1 0# 0 # #

0# 00 1 ## 1 # #

## 01 1 0# 0 # #

01 01 0 ## # # #

#1 10 0 ## # # #

## ## 1 ## 1 # 0

E.g. rule number 10 {## ## 1 ## 1 # 0 0 # # : 0} is interpreted as follows: if n

and strength are low (f2 ¼ 0 and f3 ¼ 0) then all other input parameters do
* a (protected: only positive values) square root
function

* cos, sin functions
5. First results

Using FECS, 123 rules (also called classifiers) have
been generated, resulting in a total accuracy of 94% for
spinnability. For yarn strength a rule set of 119
classifiers was generated with a predictive accuracy of
91%. Tables 1 and 2 give the 10 most important rules
generated by FECS for predicting spinnability and yarn
strength (ordered according to importance: rule 1 being
the least important and rule 10 the most important).
As demonstrated in the legend of Table 1, each

classifier has a (real life) meaning. An indication of the
importance of each input parameter is given in Table 3,
by summing up its meaningful selections (at least one 0
or 1) in the 10 most important rules.
Using GP for spinnability Sp, the following GP

generated equation showed an accuracy of 90.1%
towards the whole database:

Sp ¼SðMaxðMaxðMaxðm1;m3 þ m2Þ;Sðm1ÞÞ

� ð�4:6=m5ÞÞ;m3 � m5Þ: ð1Þ

As a consequence, following the GP, spinnability is only
dependent on the machine parameters m1, m2, m3, m5:
i.e. 90% of the database is correctly described without
the use of any fibre parameter fi.
Using GP for tenacity Str, the following GP generated

equation showed an accuracy of 90% towards the whole
database:

Str ¼ sinðf3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jsinðcosðf3 � 6:0ÞÞ � sinðm1Þj

p
Þ: ð2Þ

This equation shows that a reasonable good accuracy
for predicting the tenacity can be reached using only two

parameters: fibre strength f3 and yarn count m1.
Output Rule nr Reward

f3 f4 f5

# # 0 1 1 44

1 # # 1 2 45

# 0 # 0 3 46

# # # 0 4 51

# # # 1 5 80

# # # 0 6 86

# # # 1 7 115

# # # 1 8 117

# # # 1 9 118

0 # # 0 10 214

avel is high ðm3 ¼ 1Þ; rotor speed is high ðm5 ¼ 1Þ and fibre uniformity
not matter (##, #) the fibre is not spinnable (output=0).
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Table 2

Ten most important rules for predicting the yarn strength

Input Output Rule nr Reward

m1 M2 m3 m4 m5 f1 f2 f3 f4 f5

1# #0 # 00 0 # 1 1 # # 2 1 14.8

01 01 0 0# # # 1 1 # # 2 2 15.4

01 00 # 00 0 # # 1 # # 2 3 16.8

10 ## # 0# 1 # # # 0 # 1 4 16.9

#1 #0 1 0# 0 0 # 0 # # 0 5 17.9

1# 00 0 ## # # # 1 # # 2 6 20.5

0# 00 0 0# # 0 # 0 0 # 0 7 21.9

0# 00 0 01 1 0 # 0 # # 0 8 23.8

10 #1 # ## # # # 1 # # 2 9 48.2

00 0# 1 0# 0 0 # 0 # # 0 10 117.2

Table 3

Meaningful selections (FECS) for each input parameter

m1 m2 m3 m4 m5 f1 f2 f3 f4 f5

Spinnability 7 9 9 3 8 2 2 2 1 1

Strength 10 9 6 8 6 4 2 9 2 0
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Comparing the results from Table 3 with Eq. (1) it is
clear that the top scoring parameters for spinnability
(m1, m2, m3 and m5) are effectively the only ones used in
the GP generated Eq. (1) for spinnability. The same can
be said for the prediction of yarn strength (Eq. (2)),
although somewhat less pronounced (some other para-
meters not included in the GP equation also have
considerable values).
When comparing the results from both algorithms it

becomes clear that:

* GP is slightly less accurate then FECS (somewhere
between 1% and 4%).

* Although supplied with 10 input parameters, GP
selected only a few parameters (4 for spinnability
and 2 for yarn strength) to reach good accu-
racy, while FECS used all the 10 available input
parameters. This basically means that 90% of
the database can be accurately modelled using only
2–4 parameters. An increase of only 3% accu-
racy requires at least an additional 6 para-
meters. (Using a neural network and 17 input
parameters, accuracy can still be improved by
another 3%.) In this case, accuracy seems to be
highly dependable on the number of parameters,
which are taken into consideration, as could be
expected.

* The results of GP and FECS showed several
similarities. The GP selected parameters correspond
to the FECS evaluation of the most important input
parameters.
6. Comparing the rule sets from genetic-based machine

learning and genetic programming

In order to have a better insight in the comparison of
the GP and FECS results, the GP equations can be
converted to a rule-alike form. Eq. (2) for yarn strength
can easily be converted (with some loss of accuracy) to
the ruleset given in Table 4 by implementing, respec-
tively, 2 and 3 (fuzzy) classes for f3 and m1:
It can be seen that all FECS rules, except rule 4, have

an immediate equivalent in the above GP derived rules.
For example: the most important FECS rule {00 0# 1 0#
0 0 x 0 # # : 0} (number 10 from Table 1, the positions in
bold correspond with f3 , m1 and strength) is clearly
a more specific version of the first rule {0x 0 : 0} in
Table 4.
A similar procedure can be applied to the GP

Equation (1) for spinnability, resulting in the ruleset
given in Table 5.
Again all FECS rules have a corresponding GP

derived rule. It can be seen however that the GP derived
rules are more general and therefore convert to simpler
‘rules of thumb’. For example:
The first rule for yarn strength {0# 0 : 0} reads ‘If the

fibre strength is low and the yarn count is low or
medium then the resulting yarn strength will be low’
The first rule for spinnability {## ## 1 1 : 0} reads ‘If

the navel and rotor speed are high, yarn count and twist
do not matter, the yarn is not spinnable’.
Finally, an overview of some of the advantages and

disadvantages of GP/FECS is depicted in Table 6.
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Table 5

Rule reduction of spinnability (Spin) equation

m1 m2 m3 m5 Spin FECS rules

## ## 1 1 0 3,4,6,10

## ## 1 0 1 5,7,(2)

#1 or 1# ## 0 # 1 1,8,9,(2)

Table 4

Rule reduction of strength equation

M1 f3 Strength FECS rules nr

0# 0 0 5, 7, 8 and 10

10 0 1 (4)

## 1 2 1, 2, 3, 6 and 9

Table 6

Overview of advantages/disadvantages of GP/FECS

FECS GP

Learning time High Very high

Executing speed Fast Very fast

Data compression High (a few dozen

rules, 10 parameters)

Very high (1

equation, 2 to 4

parameters)

Accuracy High Medium

Physical information More detailed More general
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7. Conclusions

FECS generates a rule sets with a predictive accuracy
of 94% for spinnability and 91% for yarn strength. The
GP generated mathematical equations allowed a correct
overall prediction in all cases (prediction of spinnability
and yarn strength) of at least 90%. Also, the resulting
equations have a limited complexity (eliminating several
input parameters) and give the user an insight into the
importance of the database parameters. This corre-
sponded closely with the results obtained using genetic
based machine learning. Moreover, the GP equations
could be converted into similar (but more general) rules
as those generated by FECS. GP gives a more
elementary model using (very) few parameters, but
otherwise with similar results to FECS.
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