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Abstract

Neural networks (NN), genetic algorithms (GA), and genetic programming (GP) are augmented with

fuzzy logic-based schemes to enhance arti®cial intelligence of automated systems. Such hybrid

combinations exhibit added reasoning, adaptation, and learning ability. In this expository article, three

dominant hybrid approaches to intelligent control are experimentally applied to address various robotic

control issues which are currently under investigation at the NASA Center for Autonomous Control

Engineering. The hybrid controllers consist of a hierarchical NN-fuzzy controller applied to a direct

drive motor, a GA-fuzzy hierarchical controller applied to position control of a ¯exible robot link, and

a GP-fuzzy behavior based controller applied to a mobile robot navigation task. Various strong

characteristics of each of these hybrid combinations are discussed and utilized in these control

architectures. The NN-fuzzy architecture takes advantage of NN for handling complex data patterns,

the GA-fuzzy architecture utilizes the ability of GA to optimize parameters of membership functions for

improved system response, and the GP-fuzzy architecture utilizes the symbolic manipulation capability

of GP to evolve fuzzy rule-sets. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Traditional robot control methods rely upon strong mathematical modeling, analysis, and

synthesis. The approaches, proposed to date, are suitable for control of industrial robots and

automatic guided vehicles which operate in structured environments and perform simple

repetitive tasks that require only end-e�ector positioning or motion along ®xed paths.

However, operations in unstructured environments, such as in remote planets and harzardous

waste sites, require robots to perform more complex tasks without an adequate analytical

model. In cases where models are available, it is questionable whether or not uncertainty and

imprecision are su�ciently accounted for. For example, robot manipulators in waste handling

applications operate in the unstructured and unknown environment of a waste tank or a waste

disposal site. Such robots may be required to repair a leak for an underground aging tank, or

to manipulate the hazardous waste inside the tank which may have been deposited and

solidi®ed over time. This concept also applies to space applications where robots must

autonomously, and with little or no communication with Earth, operate in harsh environments

and perform complicated multi-faceted tasks.

The advent of fuzzy logic provided a powerful tool for control of such mathematically

complex, uncertain or noisy systems [1,2]. Fuzzy logic control o�ers an attractive alternative to

the existing highly mathematical conventional controllers proposed for such complex systems.

Herein, we refer to a complex system as one for which model-based classical control techniques

cannot easily render a reasonable solution due to ambiguities, uncertainties and/or

nonlinearities in the complex system's mathematical model. Fuzzy controllers are robust in the

presence of perturbations, easy to design and implement, and e�cient for systems that deal

with continuous variables [3].

The application of fuzzy logic relaxes the need for an accurate mathematical model of the

system by replacing the mathematical knowledge with human (expert) knowledge and intuition.

As a result, performance of a fuzzy logic controller is a function of the quality of its embedded

expert knowledge rather than a highly accurate mathematical model. Developing quality expert

knowledge, however, can be a time-consuming and costly endeavor. Furthermore, a human

expert may ®nd it di�cult to express his/her control actions, which are often partly decided at

a subconscious level, in terms of a set of constrained rules and membership functions. Also, in

most instances, the available knowledge-based controller may adequately control a given

process, but may not necessarily be the optimal controller.

The process of knowledge acquisition is indeed a challenging problem in fuzzy logic; and up

until now, there is not yet a systematic method for knowledge acquisition in conventional

applications of fuzzy logic control. Consequently, in many practical instances, fuzzy control

alone is not su�cient for addressing the complex intelligent control problems of robotic

systems. Additional tools are necessary to achieve adaptation and learning capabilities. The

control schemes described herein are examples of approaches that augment fuzzy logic with

other soft computing paradigms [4] such as neural networks (NN), genetic algorithms (GA),

and genetic programming (GP) to achieve the level of intelligence required of complex robotic

systems.

In this expository paper, three dominant hybrid fuzzy control approaches are applied to

address various robotic control issues which are currently under investigation at the NASA

M.-R. Akbarzadeh-T et al. / Computers and Electrical Engineering 26 (2000) 5±326



Center for Autonomous Control Engineering. The ®rst methodology uses neural networks to

learn rules and change membership functions for a fuzzy logic controller (FLC) of a direct

drive motor, used in many industrial robots. The second methodology develops a two-level

hierarchical fuzzy control structure for ¯exible manipulators. It incorporates genetic algorithms

[5] in a learning scheme to adapt to various environmental in¯uences on the system. The third

approach incorporates fuzzy logic control, with rule learning by genetic programming [6], into

the framework of behavior-based control for mobile robot navigation. Experimental results of

fuzzy controllers learned with the aid of these soft computing paradigms are presented.

2. Real-time neuro-fuzzy control

This section describes a novel architecture for intelligent control of robotic systems by

combining the capabilities of NN and fuzzy logic paradigms. In particular, a neuro-fuzzy

controller is presented which uses NN to modify the parameters of an adaptive fuzzy logic

controller. The adaptability of the fuzzy controller is derived from a rule generation mechanism

and modi®cation of the scaling factor or the shape of the membership functions. The rule

generation mechanism monitors the system response over a period of time to evaluate new

fuzzy rules. Non-redundant rules are appended to the existing rule base during tuning cycles.

The membership functions of the input variables are adjusted by a scaling mechanism. A multi-

layer perceptron neural network classi®es the temporal response of the system into various

patterns such as oscillatory behavior, overshoot in response, or steady state error, etc. This

information is used by the decision mechanism which determines the scaling factor of the input

membership functions. Another neural network identi®es the dynamic system, hence acting as

a reference model. This model can be used to determine the stability of the new rules generated

before applying to the real system.

In order to implement this hybrid controller in real time, it is necessary to have substantial

computing power. The TMS320C30 digital signal processor from Texas Instruments, with its

powerful instruction set, high-speed number crunching capability, and its innovative

architecture is ideally suited for such an application [7]. There are commercially available

boards based on TMS320C30 chips, which can be installed on a personal computer (PC). A

board from DSP Research has been utilized for this purpose [8]. The software for the control

algorithm is developed in C-language and is compiled and downloaded to the DSP board.

Collectively, these computing resources are used to implement the neuro-fuzzy controller

architecture in real-time to control a direct drive motor used as a robot actuator.

2.1. Neuro-fuzzy controller

The proposed neuro-fuzzy controller uses the capability of a fuzzy logic based controller to

control systems, without prior knowledge of the dynamic characteristics, that are nonlinear in

nature and for which a mathematical model is unavailable. So there is a need for a nonlinear

fuzzy controller to adapt to the changes in model parameters, operating conditions, etc. This

requires a mechanism by which the information about these changes can be gathered and used

for adapting the fuzzy controller. The extraction of abstract system knowledge is performed by
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neural networks and their learning capability used in designing the fuzzy controller. This

makes the controller robust and intelligent, aware of changing environmental and physical

conditions. As mentioned above, the scheme uses two neural networks and an adaptive fuzzy

controller (see Fig. 1). Each NN has a speci®c role. One is used for pattern recognition and the

other for system identi®cation. The aim of the system is to automatically form the fuzzy

controller and tune itself to changes in the operating conditions. During tuning, the adaptive

mechanism alters the fuzzy rule base, and scales membership functions to make the system

perform in a desired manner.

The response of the system is determined by monitoring the controlled variable for some

disturbance. The disturbance can be a step change in the desired input signal. The dynamics of

the object system behave in a certain way depending on the present status of the controller.

This behavior over a certain period of time (tuning cycle) is monitored. Based on the temporal

response, the fuzzy rule generation algorithm decides whether a new fuzzy rule has to be formed

or not and the fuzzy scaling mechanism decides whether a tuning operation is needed or not for

the scaling of membership functions associated with the currently established rules. If there are

no rules at the initial state of the fuzzy controller, then the algorithm sets up some initial

control value U0 to control the object system.

Fig. 1. Block diagram of the adaptive neuro-fuzzy controller.
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A static neural network (NN1) is used to identify the pattern of response of the controlled

system. NN1 classi®es the dynamic responses of the object system to the following typical

patterns which it is made to learn as a pre-process to system integration.

. A-type: a similar pattern to the desired response.

. B-type: an oscillating and slowly converging pattern.

. C-type: an overshoot pattern.

. D-type: a pattern with a steady state deviation value.

. E-type: an asymptotic and slowly converging pattern.

. F-type: an oscillating and diverging pattern.

. G-type: any other type of response.

Initially, a set of responses with the above characteristics is simulated and the neural network

is made to learn these standard patterns. This however may not exactly represent the true

characteristics of the object system, in which case there is an on-line learning option. The

operator in this case determines the typical responses and makes the neural network learn these

patterns. Since the neural network has learned the standard patterns, learning similar patterns

corresponding to the object system takes less time.

A dynamic neural network (NN2) is used to identify the dynamic characteristics of the

controlled system. As a pre-process, neural network NN2 learns the dynamic characteristics of

the object system through pairs of input and system response. Identi®cation of the system

model is performed o�-line by collecting the input and output data over a length of time which

constitutes a tuning cycle. Once NN2 is su�ciently capable of identifying the dynamics (i.e. it

is able to imitate the real object system), then it can be used to simulate the object system in

cases where it is too risky to control the object system with an incomplete fuzzy controller.

NN2 can also be used to monitor the stability of the adaptive fuzzy controller or to ®nd the

normalizing values of the membership functions to control the object system adequately. There

are, however, many questions on identifying the real plant. First of all, the plant identi®ed

represents the closed-loop dynamic system rather than the real open loop plant. This is because

we are using the fuzzy controller in the loop. There is also a question of the training data

being su�ciently rich to take into account all the modes of operation. This means that NN2

may not necessarily have learned all the system characteristics if we have operated the object

system under only a limited range of operating condition and limited order of disturbances.

In a typical process plant, the tuning of the various control loops is performed by

monitoring the response of the controlled variable to some disturbances. The disturbance may

be created by a step change in the desired value. The time history of the controlled variable is

recorded on a chart. The gains of the conventional controller are tuned by the operator based

on the observation of these responses. Suppose the response of the object system is oscillating,

then an increase in the derivative gain of the PID control normally reduces the oscillation. If

there is an overshoot in the response, decreasing the proportional gain reduces the overshoot.

Likewise if there is a steady state error then increasing the integral gain or increasing the

proportional gain would cause the response to approach the desired pattern. This practice is

continued until each of the control loops in question is optimally tuned. This operation of

course takes into account the experience of the operator.

The same procedure is incorporated into the adaptive neuro-fuzzy controller. The NN1
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classi®es the response into the patterns A through F as described. The value of each of the

outputs of NN1 varies from 0 to 1 depending on how best it can classify a particular pattern.

A multi-layer perceptron with a large number of input nodes, for example say 100,

corresponding to the input pattern bu�er, and a certain number of outputs, say 7 (A through

G ) can be trained to recognize the various patterns described. The output of the neural

network is a set of inputs for the fuzzy scaling mechanism. The fuzzy rules in the fuzzy scaling

mechanism consist of linguistic rules based on tuning a typical process parameter. The output

of the fuzzy scaling mechanism is the incremental change in the scaling factor for the input and

output scaling factor of the adaptive fuzzy controller. Fine tuning of these incremental changes

is performed by another fuzzy ®ne tuning mechanism. This mechanism of scaling the input/

output membership functions for currently established fuzzy control rules is repeated until the

dynamic response is classi®ed to A-type response (desired) by the neural network, NN1.

Let the fuzzy control rules in a system be represented as follows:

If x1�k� is mxNi
1
and x2�k� is mxNi

2
and x3�k� is mxNi

3
then u�k� is muNi

i
�1�

where x1(k ), x2(k ) and x3(k ) are the error, derivative of error and integral of error of the

deviation of the dynamic response of the object system from the desired value and its variation

with respect to time k, respectively. The symbols mNix1 , m
Ni
x2
, mNix3 and mNiu in (1) indicate fuzzy

variables represented by membership functions of the inputs xi(k ) and output u(k ) variables,

respectively. The number of membership functions of each variable is de®ned by Ni. Here we

assume, for simplicity, all the inputs and output variables contain the same Ni membership

functions.

The proposed rule generation algorithm takes the time history of the input variable or the

temporal input data and generates a set of fuzzy rules which attempts to control the process. The

sample input data is taken over a speci®c tuning cycle. The tuning cycle represents a speci®c

period where a disturbance or change in the set point of the controlled variables is performed.

The response to this disturbance e�ectively shows the performance of the controller. The rule

generation algorithm generates new rules based on the response of the previous tuning cycle.

These new rules are augmented with the previous rule set. The new rule set may generate a

di�erent response in the next tuning cycle and this may generate another set of new rules. This

process continues until the rule base stabilizes in order to control a particular system. Each rule

in a rule set is assigned some weight depending upon how many times it is used or ®red during a

speci®ed number of tuning cycles. There may be some rules which are not ®red or are used less

frequently after the rule base has stabilized. Least frequently used rules are removed from the

rule set. The details of the rule generation mechanism can be found in [9].

The fuzzy scaling mechanism rules are represented as follows:

If A is RNj
a and B is R

Nj
b and C is RNj

c and D is R
Nj
d and E is RNj

e and F is R
Nj
f then

Da1 is I Nja1 and Da2 is I Nja2 and Da3 is I Nja3 and Db is O
Nj
b

�2�

where A, B, C, D, E, and F are the output of NN1 taken as the input to the fuzzy scaling

mechanism. Dai (i= 1,2,3) are increments of the scaling factor of the input variables x1(k ),

x2(k ) and x3(k ), respectively and Db is the increment scaling factor of the output variable u(k ).
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The associated membership functions of A, B, C, D, E, and F are RNj
a , RNj

b , RNj
c , RNj

d , RNj
e , and

RNj
f , respectively. The membership functions of Dai are INjai , (i= 1,2,3) and membership

functions of Db are ONj
b . Nj is the number of membership functions which is assumed to be the

same for all the variables.

Fig. 2. Flowchart of the neuro-fuzzy controller.
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The above inference results in updating of the scaling factors represented by:

a1�T� 1� � a1�T � � Da1�T �

a2�T� 1� � a2�T � � Da2�T �

a3�T� 1� � a3�T � � Da3�T �

b�T� 1� � b�T � � Db�T � �3�

where T indicates the number of tuning operations.

Fine tuning of the scaling factor may be performed to account for the maximum absolute

values of the error during the tuning cycles. The input and output patterns of the object system

controlled by the currently established fuzzy control rules are sampled at sampling time k

(k= 0,1, . . . ,l ). The ®ne tuning mechanism then detects the errors xi(k ) (i= 1,2,3) and

variation u(k ) of the input at each sampling time k, and ®nds the values xi(k )
max (i= 1,2,3)

and u(k )max as follows:

xmax
i � max

�
jxi�k�j

	
i � 1, 2, 3

u�k�max � max
�
ju�k�j

	
k � 0, . . . , l: �4�

2.2. Integration of system components

Fig. 2 shows the ¯owchart of the neuro-fuzzy controller. The various steps involved in the

tuning procedure are as follows.

Step 1 There are no rules in the initial state of the system. The control system sets up the

initial constant control value u0 to make the ®rst fuzzy control rule, and the object system is

controlled by this value u0.

Step 2 Create a disturbance or give a small step change in the desired variable from the

initial condition. Perform a tuning cycle.

Step 3 The dynamic responses of the object system controlled by the currently established

fuzzy rules (initially U0) are sampled at sampling time k (k= 0,1, . . . ,l ) and the errors xi(k )

from the desired value are detected from this sampled information. (For ®ne tuning xi(k )
max

are then determined.)

Step 4 Send the time history of the response xi(k ) to the rule generating algorithm.
* Create new rules.
* If the new rules are unique, append them to the original rule base. Make sure there are no

repeated rules.
* Determine from the weights of the old rules if they should be retained. If not, delete these

rules. This is done by determining how many times the rules are ®red in the previous

tuning cycle.
* If the new rules created are already present, this indicates the rules have stabilized and

generation of additional rules is unnecessary.
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Step 5 Send the time history of the response xi(k ) to NN1 (the classi®er).
* Determine the pattern of the response.
* If a pattern is not detected or if the pattern does not correspond to any of the existing

patterns, make the neural network learn the new pattern.
* If the desired pattern is detected then there is no need for doing further tuning of the

scaling factor.

Step 6 Send the output of the neural network (NN1) to the fuzzy scaling mechanism.

Determine the increment changes in the scaling factor.

Step 7 Update the scaling factors. If the ®ne tuning mechanism is turned on, do the ®ne

tuning before updating. Initially the scaling factors are set to a priori values.

Step 8 If the stability of the new rule base has to be checked, then apply it to NN2 (the

system identi®er). If the model's response is the desired one, then the rules are safe for

applying it to the object system.

Step 9 Go to step 2 and perform the tuning cycle once again.

2.3. Real-time control of a direct drive motor

In order to perform real-time control, it is necessary that the controller stand alone with the

sole task of calculating the output needed to control the object system. This means the task of

communicating data for storing as well as acquiring controller parameters (if the controller is

adaptive) should be performed by external processors. This way a real-time control can be

achieved with required sampling rate for high bandwidth of operation. Typically, in order to

achieve a particular closed loop bandwidth the sampling rate of the input parameters and

control law updates has to be ten or more times faster than the bandwidth itself.

The fuzzy logic control algorithm requires processing of several operations such as

fuzzi®cation, inferencing and defuzzi®cation. This means the computation time taken by the

fuzzy controller itself does not leave any room for an adaptive algorithm such as rule

generation, calculating the scale factor of the membership function, or neural network

algorithms. In order to implement all these functionalities, a multi-processing architecture is

needed. This can be achieved by combining a fast processor speci®cally meant for real-time

processing, such as a TMS320C30 digital signal processor combined with a PC Intel processor

(Pentium or 486). Fig. 3 shows the hardware built to interface and control a direct drive

motor. The dynamics of a direct drive a.c. motor exhibits nonlinear characteristics. This is

evident in the dead-zone regions of operation and frequency load characteristics. Industrial

robots such as AdeptTwo use direct drive a.c. motors. The speed of the a.c. direct drive motor

is a function of the frequency of the pulse signal on its ®eld. This means that by varying the

frequency of the a.c. power signal, the speed of the motor can be altered in an open loop

con®guration. This is achieved by a voltage to frequency converter which takes a d.c voltage

from +10 V to ÿ10 V to move the motor in either direction. A digital to analog converter of a

resolution of 12 bits is used to interface to the DSP board through a memory mapped register

I/O port via a tri-state bu�er. The position of the motor is measured by an optical encoder

(which generates 8000 pulses, or counts, per revolution of the motor). This is converted to

digital 12-bit position data by encoder circuitry. A velocity signal is available which is digitized
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using an analog to digital converter and interfaced to the DSP's I/O port. The DSP's expansion

memory is accessible to the PC with which the data communication is carried out using direct

memory access (DMA). The experimental data as well as fuzzy controller parameter and

communication control data are sent back and forth using this DMA. The PC is interfaced

with the user through a user friendly Lab Windows software interface.

The experiment of tuning the direct drive motor is carried out by generating new rules. The

program running on the PC generates new fuzzy control parameters and updates the real-time

fuzzy control algorithm running on the DSP. Based on the parameters of the new fuzzy

controller the direct drive motor response is recorded. The last response is used to evaluate the

new rules. These are again updated on the DSP memory and a new response is recorded. This

tuning continues until the end of the tuning cycles. Here we describe only the e�ects of the rule

Fig. 3. Hardware for implementing neuro-fuzzy controller for real-time control of a direct drive motor using a

digital signal processor.
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generation mechanism. The e�ects of the fuzzy scaling mechanism are discussed in [10]. In

order to perturb the direct drive motor we give a desired step change in the position of +1000

to ÿ1000 encoder readings. For the 8000 count per revolution encoder, +1000 counts means

458 revolution of the motor, i.e. we are changing the desired position from +45 to ÿ458. Fig.

4 shows the result of the experiment. Each input variable has ®ve symmetrical triangular-

shaped membership functions. The rules can be interpreted as given by Eq. (1). Initially, there

are no rules in the fuzzy controller. Hence for the ®rst two cycles when the motor was

commanded to go from +1000 to ÿ1000 encoder readings, there is no action and the motor is

stationary (0±1000 sampling time; each cycle corresponds to 500 sampled data). However, in

the third cycle when the motor is commanded to go to +1000 counts, the motor spins out of

control clockwise. This is because the rule generation mechanism has produced 4 new rules in

the last two cycles and they are in action. These initial rules cause system instability and are

not su�cient to control the motor adequately. This unstable behavior continues until after the

8th tuning cycle (after 4000 sampling instants). The corresponding motor command shows a

bounded region. Fig. 5 shows the stabilized response. Here, the fuzzy controller has completely

learned to control the direct drive motor.

Fig. 4. Position control direct drive motor: response after ®rst trial.
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3. Genetic algorithms and fuzzy logic control

Genetic algorithms are robust optimization routines modeled after the mechanics of

Darwinian theory of natural evolution [5]. GAs do not require gradient evaluation, hence they

are applicable to solving a great range of optimization problems including determination of

optimal parameters of a fuzzy logic rule-set. GAs have demonstrated the coding ability to

represent parameters of fuzzy knowledge domains such as fuzzy rule sets and membership

functions [11] in a genetic structure, and hence are applicable to optimization of fuzzy rule-sets.

In this section, several issues pertaining to such integration of the two paradigms are discussed

and illustrated through an application on real time hierarchical fuzzy control of a single-link

¯exible robotic arm.

To understand the actual mechanism of GAs, one may begin with its three most commonly

used operators, namely: reproduction, crossover, and mutation. A member of a given

population which has a higher ®tness is given a higher chance to reproduce identical replicas of

itself in an intermediate population. In this fashion, the optimization routine facilitates

reproduction of higher ®t individuals and hampers the reproduction of lower ®t individuals.

After reproduction, crossover randomly mates two individuals from an intermediate population

and creates o�springs which are made up of a random combination of their parent's genetic

code. For each generation, the process of crossover is repeated for all individuals in the

Fig. 5. Position control direct drive motor: response after ®nal trial.
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population. The population size is often a constant equal to the number of individuals in the

initial population. The operations of reproduction and crossover create an environment where

every generation bene®ts from the best genetic codes of the previous generations. However, if

the building blocks for the optimal genetic structure is not in the initial population, these two

genetic operators will be unable to ®nd it. The last genetic operator, mutation, randomly

mutates one or more of the values in the individual's genetic code in order to create diversity.

The mutation operator allows for exploring new structures (directions of search) hence allowing

the genetic optimization routine to invent new solution and ®nally locate the optimal solution

even though the individuals in the initial population may not have contained the building

blocks for the optimal solution.

When applying GA to optimization of fuzzy rule-sets, several

questions arise. First is the design of the transformation function (the interpretation

function) between the fuzzy knowledge domain (phenotype) and the GA coded domain

(genotype). This is perhaps the most crucial stage of GA design and can signi®cantly degrade

the algorithm's performance if a poor or redundant set of parameters are chosen for a given

optimization problem. Two important general categories of fuzzy expert knowledge consists of

domain knowledge and meta-knowledge. Meta knowledge is the knowledge used in evaluating

rules such as fuzzi®cation (Scaling or l cut), rule evaluation (such as Min/Max) and

defuzzi®cation (such as Max Membership, Centroid, or Weighted Average) methods. Relatively

few research has been performed to study the e�ect of optimizing the meta-knowledge [12].

Most of the current research, as in this work, concentrate on optimizing parameters of the

domain knowledge. The domain knowledge consists of the following two categories,

. Membership Function: General Shape (Triangular, Trapezoidal, Sigmoidal, Gaussian, etc.),

De®ning points (Center, Max Right, Min Left, etc.)

. Rule-Base: Fuzzy Associative Memory, Disjunctive (OR) and Conjunctive (AND) operations

among antecedents in the rule base.

Even though various methods exist to encode both rule-base and membership functions in one

GA representation, such coding can have several potential di�culties. In such situation, in

addition to the level of complexity and large number of optimization parameter, the problem

of competing conventions may arise and the landscape may unnecessarily become multi-modal.

This is an important problem since there are often several (or many) fuzzy rule-sets which can

represent a given nonlinear function. This means that there are more than one optimal solution

to a given optimization problem which raises the issue of multi-modality for fuzzy logic

systems, or more speci®cally competing conventions where di�erent chromosomes in the

representation space have the same interpretation in the evaluation space. When designing the

interpretation function, therefore, the coding needs to contain fewest possible parameters to

avoid the problem of dual representation, and yet the coding needs to have enough complexity

to contain all possible optimal or near optimal solutions. Evolutionary approaches such as

Niched GA [13] are designed to search in complex multi-modal landscapes.

As a result, in the present approach, this problem is attended to by limiting the optimization

parameter space to membership function parameters only. This was a design decision which

was made considering the following two considerations.

. The problem of multi-modality is introduced when the GA string contains both parameters
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of membership functions and rules.

. In control of most physical systems, rules can often be derived either intuitively or through

operator experience. The ambiguous and fuzzy portion of a knowledge base is often the

membership functions.

For simplicity in coding the simulation and the real-time algorithms, only triangular

membership functions are coded for optimization here. Fig. 6 illustrates a triangular

membership function whose three determining parameters (a,b,c) are shown. Assuming a

normalized membership function, the three parameters are real numbers between ÿ1 and 1.

The coding in GA is performed as follows, the real parameter a is ®rst mapped to an n-bit

signed binary string where the highest bit represents the sign, see Fig. 7. This way, the

parameter a can take on 2n di�erent values. Then the binary number is aggregated with other

n-bit binary numbers to construct the phenotype representation.

The second issue which arises is how to utilize initial expert knowledge for a better and

faster convergence. In other search routines such as hill-climbing, it is clear that starting from

a ``good'' point can signi®cantly improve computation time needed for convergence to an

optimal solution. However, the conventional GA applications generate a random initial

population without using any a priori expert knowledge. This, in general, will provide a more

diverse population while sacri®cing convergence time. This convention can indeed be adequate

if there is no a priori knowledge as to where a ``good'' solution may exist. However, in fuzzy

logic applications, there is usually access to some expert knowledge which, even though it may

not be the optimal solution, is often a reasonably good solution. Schultz [14] addressed the

problem of incorporating a priori knowledge by introducing two types of populations,

homogeneous and heterogeneous. The homogeneous population consists of individuals created

randomly while their string is augmented with the same priori rules. In this sense, they are all

identical and hence homogeneous. He concluded that a trade-o� exists between manual

knowledge and machine learning. The heterogeneous population consists of members which are

not identical. This is also referred to as the ``seeding'' technique. In Ref. [15] the process of

seeding the initial population with one or more experts' knowledge is proposed. The few seeded

chromosomes have the chance of reproducing through mutation and crossover with other

randomly generated chromosomes in the population. This method improves the performance

of GA by providing the genetic population with a set of highly ®t building blocks, as

compared with GAs starting with random initial populations. However, such population still

Fig. 6. Triangular membership function with three parameters a,b,c.
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requires a large number of iterations before convergence since the ``useful'' schemata exist in

only one or few seeded members and can only be reproduced as fast as the rate of

reproduction. Akbarzadeh [16] proposed the grand-parenting scheme where the initial

population is comprised of mutations of the ``knowledgeable'' grandparent. This scheme takes

advantage of expert knowledge while maintaining diversity necessary for an e�ective search.

Through grandparenting, an expert's a priori knowledge can be utilized to improve ®tness of

GA's initial population, thereby increasing the speed and performance of the search routine. In

the present approach, the method of grand-parenting is used to improve the convergence rate

of the GA optimization process.

The third issue is de®ning a ®tness function. A ®tness function is a very important aspect of

GA design since it determines the direction of the search. Fitness functions come in as many

di�erent forms as the systems which they are optimizing. In general, for a lumped parameter

system (such as a ¯exible robot arm), parameters such as control e�ort u(t ), rise-time tr,

overshoot g, and steady-state error ess are usually incorporated in a quadratic ®tness function.

Often, constant multipliers de®ne the relative degree of importance which is given to a certain

parameter compared to others. The following equation is a typical equation which gives a

higher ®tness to improved responses with lower overshoot, control e�ort, and steady state

error.

ffitness �

�tf
ti

1

e2ss � g2 � u�t�2 � 1
dt: �5�

3.1. Application to ¯exible robot control

The above concepts are now applied to controller optimization of a ¯exible link robotic

system as shown in Fig. 8. The ¯exible link is a distributed parameter system with spatial as

well as temporal parameters. In other words, the states of a ¯exible robotic system are

functions of both space and time. This complicates the modeling of the system and,

consequently, the process of designing the controller. Due to the complexity of a mathematical

representation for such systems, fuzzy logic is considered an attractive alternative to their

control. One of the issues in development of fuzzy controllers is determining faithful expert

knowledge. Expert knowledge, however, is di�cult to produce since there is often no human

expert to consult and training a human expert may not be a feasible alternative due to cost

and other practical considerations. Furthermore, human psychological issues may prohibit a

faithful reproduction of a rule-base from an expert. In addition, the unstructured operating

environments associated with space and waste handling projects require the robot controller to

also adapt to changing conditions. In the process of designing fuzzy rule sets, membership

Fig. 7. Chromosome coding in representation space.
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functions are often chosen through an ad hoc process of random selection and evaluation. As a

viable alternative, good results have been achieved by employing genetic algorithms to tune

membership parameters within a fuzzy controller's knowledge base [17]. Genetic algorithms

equip the fuzzy controller with some evolutionary means by which it can improve its rule-base

when faced with inadequate a priori expert knowledge or varying circumstances in its operating

environment.

The GA-learning hierarchical fuzzy control architecture is shown in Fig. 9. Within the

hierarchical control architecture, the higher level module serves as a fuzzy classi®er by

determining spatial features of the arm such as straight, oscillatory, curved. This information is

supplied to the lower level of hierarchy where it is processed among other sensory information

such as errors in position and velocity for the purpose of determining a desirable control input

(torque). In [18] this control system is simulated using only a priori expert knowledge.

To demonstrate the usage of genetic algorithms, GA is applied to optimize parameters

related to input membership functions of the higher level of hierarchy. Other parameters in the

knowledge base are not allowed to vary. The following ®tness function was used to evaluate

various individuals within a population of potential solutions,

fitness �

�tf
ti

1

e2 � g2 � 1
dt, �6�

where e represents the error in angular position and g represents overshoot. Consequently, a

®tter individual is an individual with a lower overshoot and a lower overall error (shorter rise

time) in its time response.

Here, results from previous simulations of the architecture are applied experimentally. The

Fig. 8. A single link ¯exible robot arm.
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method of grand-parenting [16] was used to create the initial population. Members of the initial

population are created through mutation of the knowledgeable grandparent(s ). As a result, a

higher ®t initial population results in a faster rate of convergence as is exhibited in Fig. 10(a).

Fig. 10(a) shows the time response of the GA-optimized controller when compared to

previously obtained results through the non-GA fuzzy controller. The rise time is improved by

0.34 s (an 11% improvement), and the overshoot is reduced by 0.07 radians (a 54%

improvement). The average ®tness of each generation is shown in Fig. 10(b). A total of 10

generations were simulated. The mutation rate for creating the initial population was set at 0.1.

Fig. 10. GA simulation. (a) comparison of simulation responses; (b) plot of average ®tness; and (c) initial

experimental results.

Fig. 9. GA-based learning hierarchical control architecture.
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This value was chosen to increase diversity among members of initial population. GA depends

on this diversity to exploit a large number of di�ering path of solutions in parallel. The

mutation rate throughout the rest of the simulation, however, was set to 0.01. Since a high

mutation rate delays convergence. The probability of crossover was set to 0.6. Initial

experimental results demonstrate that the GA-learned controller is able to control the actual

experimental system as in Fig. 10(c).

The hardware used to implement the above algorithms is the same as was explained in

Section 2 with a few modi®cations pertaining to ¯exible robot control such as a tip end

position sensor and several strain gauges distributed evenly across the length of the ¯exible

beam. Control update was performed at 250 Hz.

4. Genetic programming of fuzzy navigation behavior

In this section, we describe the application of GP to the problem of learning/discovering

rules for use in a fuzzy rule-based behavior control system. Like GA, GP computationally

simulates the Darwinian evolution process by applying ®tness-based selection and genetic

operators to a population of individuals. However, in this case each individual represents a

computer program of a given programming language, and is a candidate solution to a

particular problem. The programs are structured as hierarchical compositions of functions (in a

set F ) and terminals (function arguments in a set T ). These individuals participate in a

probabilistic evolutionary process wherein the population evolves over time in response to

selective pressure induced by the relative ®tness of the individuals for solving the problem.

For the purpose of evolving fuzzy rule-bases, the search space is contained in the set of all

possible rule-bases that can be composed recursively from F and T. The set, F, consists of

components of the generic if-then rule and common fuzzy logic connectives, i.e. functions for

antecedents, consequents, fuzzy intersection, rule inference, and fuzzy union [19]. The set, T, is

made up of the input and output linguistic variables and the corresponding membership functions

associated with the problem. A rule-base that could potentially evolve from F and T can be

expressed as a tree data structure with symbolic elements of F occupying internal nodes, and

symbolic elements of T as leaf nodes of the tree. This tree structure of symbolic elements is the

main feature which distinguishes GP from GAs which use the numerical string representation. All

rule-bases in the initial population are randomly created, but descendant populations are created

primarily by reproduction and crossover operations on rule-base tree structures.

GP cycles through the current population evaluating the ®tness of each rule-base based on

its performance in computer simulations of the fuzzy control system. After a numerical ®tness

is determined for each rule-base, genetic operators are applied to the ®ttest rule-bases to create

a new population. The cycle repeats on a generation by generation basis until satisfaction of

termination criteria (e.g. lack of improvement, maximum generation reached, etc). The GP

result is the best-®t rule-base that appeared in any generation.

The symbolic data processing done by GP makes it particularly amenable to automatic

evolution of fuzzy rules, which are comprised of symbols representing fuzzy sets and fuzzy

logic connectives. In the GP approach to evolution of fuzzy rule-bases, the same fuzzy

linguistic terms and operators that comprise the genes and chromosome of the rule-base persist
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in the phenotype. Thus, the use of GP allows direct manipulation of the actual linguistic rule

representation of fuzzy rule-based systems. Furthermore, the dynamic variability of the tree

representation permits populations with rule-bases of various sizes and di�erent numbers of

rules. This enhances population diversity which is important for the success of a GP system,

and any evolutionary algorithm for that matter. We have applied GP to evolve fuzzy rule-

bases that are used to coordinate multiple fuzzy-behaviors arranged in a hierarchical structure.

This hierarchy of fuzzy-behaviors has been employed for autonomous control of mobile robot

navigation. Before presenting application results, we describe the behavior hierarchy to clarify

the context in which GP was used and our motivation for doing so.

4.1. Fuzzy-behavior hierarchy

Under the behavior control paradigm, one decomposes high-level robot motion control into

a set of special-purpose behaviors that achieve distinct tasks when subject to particular stimuli.

Fuzzy-behaviors are synthesized as fuzzy logic rule-bases, i.e. collections of a ®nite set of fuzzy

if-then rules. Each behavior is encoded as a fuzzy rule-base with a distinct mobile robot

control policy governed by fuzzy inference. Thus, each fuzzy-behavior is similar to a

conventional fuzzy logic controller in that it performs an inference mapping from some input

space to some output space. If X and Y are input and output universes of discourse of a

behavior with a rule-base of size n, the usual fuzzy if-then rule takes the following form

IF x is ~Ai THEN y is ~Bi �7�

where x and y represent input and output fuzzy linguistic variables, respectively, and AÄi and BÄi
(i= 1 . . .n ) are fuzzy subsets representing linguistic values of x and y. In the mobile robot

controller, the input x refers to sensory data or goal information; y refers to motor control

signals or behavior activation levels. In general, the rule antecedent consisting of the

proposition ``x is AÄi'' could be replaced by a conjunction of similar propositions; the same

holds for the rule consequent ``y is BÄi''. Fuzzy-behaviors consist of a ®nite set of such rules.

In our fuzzy-behavior hierarchy, a collection of primitive behaviors resides at the lowest level.

These are simple, self-contained fuzzy controllers that serve a single purpose by operating in a

reactive or re¯exive fashion. Via fuzzy infer ence, they perform nonlinear mappings from

di�erent subsets of the robot's sensor suite to (typically, but not necessarily) common

actuators. As designed, a single behavior operating alone would be insu�cient for autonomous

navigation tasks. Such primitive behaviors are building blocks for more intelligent composite

behaviors implemented as fuzzy decision systems. That is, they are combined synergistically to

produce intelligent behavior(s) suitable for accomplishing goal-directed navigation.

Indoor mobile robots should be capable of collision-free navigation in static and dynamic

environments. Several capabilities are necessary to achieve this including collision avoidance,

self and goal localization, and traversal through indoor features such as halls, doorways, and

densely cluttered spaces. A behavior hierarchy encompassing these capabilities is shown in

Fig. 11. This ®gure implies that goal-directed navigation can be decomposed as a behavioral

function of goal-seek (collision-free navigation to some location) and route-follow.

These behaviors can be further decomposed into the primitive behaviors shown, with

M.-R. Akbarzadeh-T et al. / Computers and Electrical Engineering 26 (2000) 5±32 23



dependencies indicated by the adjoining lines. The purposes of wall-follow and avoid-

collision are implied by their names. The doorway behavior implies one that can guide a

robot through narrow passageways in walls. The go-to-xy behavior will direct a robot to

navigate along a straight line trajectory to a particular location.

In Fig. 11, interconnecting circles between composite behaviors and the primitive level

represent the weights and activation thresholds used to concurrently coordinate of the

associated primitive behaviors. Behavior coordination is achieved by a mechanism of weighted

control decision-making embodied in a concept called the degree of applicability (DOA) Ð a

measure of the instantaneous level of activation of a motion behavior. Fuzzy rules of

composite behaviors are formulated to include weighting consequents which modulate the

DOAs of primitive behaviors at a lower level. We refer to these as applicability rules. The

DOA, a, of a primitive behavior is speci®ed in the consequent of applicability rules of the form

IF x is ~Ai THEN a is ~Di �8�

where AÄi is de®ned as in (7). DÄ i is a fuzzy

subset representing the linguistic value (e.g. high, low, etc) of the behavior's DOA to the

situation prevailing during the current control cycle. It is de®ned over the closed unit interval

[0, 1]. This feature allows certain robot behaviors to in¯uence the overall behavior to a greater

or lesser degree as required by the current situation and goal. Since control recommendations

from each applicable behavior are considered in the ®nal decision, the resultant control action

can be thought of as a consensus of recommendations o�ered by multiple experts. This

strategy operates as a form of adaptation since it causes the control policy to dynamically

change in response to goals, sensory input, and internal state. The behavior hierarchy, then, is

a dynamic nonlinear mapping from situations to actions rather than a static nonlinear

mapping represented by a ®xed set of fuzzy rules.

Fig. 11. Mobile robot behavior hierarchy.
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4.1.1. Related work

During execution of adaptive behavior, complex interactions occur when more than one

primitive behavior is active. When behaviors compete for control of the robot by recommending

di�erent control actions for common actuators, the problem becomes one of coordinating

multiple task-achieving behaviors and resolving con¯icts amongst them. In order to formulate

suitable coordination rules to implement the strategy described above, one must ®rst decide

what the DOAs of low-level behaviors should be in all practical situations perceived from

sensory input. Formulation of such rules for coordination is not entirely intuitive, and expert

knowledge about how to concurrently coordinate primitive behaviors is not readily available. In

fact, in the absence of experts or su�cient knowledge of the problem, the design of knowledge-

based control systems with interacting rule-bases is often met with di�culty. In such cases, a

means of automatic discovery/learning of coordination rules has great utility for developing

robust knowledge-based controllers. As such, it is desirable to supplement the behavior

coordination strategy described above with a technique for learning its governing rules.

Several instances of independent research have converged to similar ways of approaching

multiple behavior coordination [20±23]. However, these e�orts have not proposed approaches

to learning coordination rules. Elsewhere, the rule learning problem has been approached in

the contexts of other coordination schemes by using reinforcement learning [24] and hybrids of

reinforcement and neural networks [25,26]. In [19], we successfully applied GP for learning

fuzzy rule-bases for low-level regulation and tracking types of problems. Using this earlier

success as a foundation, we apply our GP approach here to learn higher-level behavior

coordination rules. In particular, a fuzzy coordination behavior for goal seeking, comprised of

rules in the form of Eq. (8),is what we wish to evolve.

4.2. Rule-base evolution for behavior coordination

Thus far we have described the ingredients of a computing system that incorporates fuzzy

logic control, with rule learning by GP, into the framework of a behavior hierarchy. A block

Fig. 12. GP-fuzzy mobile robot control architecture.
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diagram illustrating the general data ¯ow in this GP-fuzzy control architecture is shown in Fig.

12. The arrow, in the ®gure, delivering GP-evolved coordination behaviors to the behavior

hierarchy is dashed to indicate that these behaviors are learned/evolved o�-line. The laboratory

testbed, called LOBOt, is a custom-built mobile robot driven by a two-wheel di�erential

con®guration with two passive casters for support. The independent drive motors are geared

d.c. motors. As shown in Fig. 13, LOBOt is octagonal in shape; it stands about 75 cm tall and

measures about 60 cm in width. The outputs from the behavior hierarchy are right and left

wheel speeds; the inputs to the hierarchy are the goal location and subsets of sensor readings.

Range sensing is achieved using a layout of 16 ultrasonic transducers (mounted primarily on

the front and sides); optical encoders on each driven wheel provide position information used

for dead-reckoning. Its control computing environment includes a 75 MHz Pentium-based

master processor (laptop PC) and Motorola MC68HC11 microprocessor slaves for sonar

processing and low-level motor control functions.

GP was used to evolve the necessary coordination rules for LOBOt based on the approach

described above. In the current implementation, applicability rules used by goal-seek to

coordinate the underlying primitive behaviors consider three instantaneous input states Ð the

range to the nearest obstacle, the distance from the goal, and the angular heading to the goal.

The consequents of these rules prescribe a DOA for each relevant primitive behavior.

Fig. 13. UNM LOBOt.
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4.2.1. Behavior ®tness evaluation

During o�-line evolution, each behavior in the current population is evaluated via simulation

in a number of indoor ®tness cases subject to an upper time limit of 200 s. In this work, nf=5

®tness cases are used; the simplest and most di�cult of these are illustrated in Fig. 14(a) and

(b), respectively. Goal locations in the ®gure are indicated by an �, the robot is depicted as an

octagonal icon with a radial line designating its initial heading, and its range sensor horizon is

indicated by the shaded regions of Fig. 14(a).

In each case, the dimension of the indoor space is 10 m � 10 m. Each ®tness case was

chosen to represent situations likely to be encountered in indoor environments. For a given

behavior, the score of a trial run through ®tness case i is given by

Si �

8><
>:
100 ; goal reached

100

g�1� 10eN�
; otherwise

�9�

where eN is the normalized residual distance to the goal in the case of a time-out or collision.

The parameter g=2 if a collision occurs; otherwise g=1. That is, the score for an unsafe trial

is half of that for a collision-free trial with all else being equal (see Fig. 15). The overall ®tness

of the behavior is the average score over all nf ®tness cases:

F �
1

nf

Xnf
i�1

Si: �10�

Thus, the highest possible score, and hence ®tness, is 100. In evolutionary algorithms, such as

GP, it is important that the ®tness function map observable parameters of the problem into a

spectrum of values that di�erentiate the performance of individuals in the population. If the

spectrum of ®tness values is not su�ciently rich, the ®tness function may not provide enough

information to guide GP toward regions of the search space where improved solutions might

be found. The ®tness function and score were formulated with this in mind, and also to reward

behaviors responsible for consistently reaching, or coming within close proximity to, the goals.

Fig. 14. Example ®tness cases.
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4.2.2. Behavior evolution

The best behaviors evolved o�-line by GP were tested in a simulated indoor environment

that is considerably more general than any one of the ®tness cases used during the evolution

process. Such an environment is suitable for testing the generalization capability of the evolved

behaviors. As we will see shortly, the test environment also di�ers from the physical

environment in which LOBOt actually operates.

Population sizes of 10±20 rule-bases were run for a number of generations ranging from 10

to 15. In GP, genetic diversity remains high even for very small populations due to the tree

structure of individuals [6]. The mean performance of GP over ®ve runs is shown, in the left

half of Fig. 16, as the progression of the population average ®tness during the ®rst ten

generations. A trend towards higher ®tness is evident. Evolved coordination behaviors were

Fig. 15. Behavior ®tness case scoring function.

Fig. 16. Performance of GP-evolved coordination.
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tested in the simulated environment (Fig. 16) for sensor-based navigation from initial pose (1

11 ÿp/2) to a goal located at (12,1). The right half of the ®gure shows a navigation run

successfully coordinated by a GP-evolved behavior comprised of 12 fuzzy rules that specify

DOAs for the underlying primitive motion behaviors (see Fig. 11).

4.2.3. Real-time application

Once a suitable coordination behavior is learned it can be ported to the actual robot to

support navigation control in its physical operating environment. For this application, the

cycle time of the control system was 0.15 s (7 Hz). This time includes the time spent acquiring

and preprocessing sonar and encoder data, and commanding the motors. The maximum speed

of the mobile robot was limited to 0.3 m/s.

During operation, the robot is not provided with an explicit map of the environment.

However, it is cognizant of the notion of a two-dimensional Cartesian coordinate system. Its

paths are not pre-planned; they are executed in response to instantaneous sensory feedback

from the environment. Therefore, we are essentially dealing with a local navigation problem as

opposed to a global navigation problem which relies on a global map that is either provided a

priori, or is acquired via exploration. A representative result of goal-seeking without prior map

knowledge is presented here. The experiment was conducted in an indoor environment

consisting of corridors and doors. The robot's task is to navigate from one location to another

on the same ¯oor of the building. The result of the navigation task is shown in Fig. 17 as the

path traveled by LOBOt in a portion of the indoor environment which includes the start and

commanded goal. The robot was commanded to navigate from a start pose (x, y, y )=(9.5 m,

22 m, 3.0 rad) to a goal located at (x, y )=(21.5 m, 37.5 m). As shown in Fig. 17, LOBOt

successfully navigates within close proximity to the goal without prior map-based knowledge

using only ultrasonic sensing and approximate dead-reckoning.

Fig. 17. Real-time goal-seeking task.
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5. Conclusion

In this paper, three experiments illustrate the utility of soft-computing approaches in

handling complex models and unstructured environments. Neuro-fuzzy [9], GA-fuzzy [27], and

GP-fuzzy [28] hybrid paradigms are successfully implemented to solve three prominent robot

control issues, namely: control of direct drive motors, control of ¯exible links, and intelligent

navigation of mobile robots. In the future, as these paradigms mature, we will gain more

knowledge of their exact nature and advantages. This will allow us to combine soft computing

paradigms for more intelligent and robust control. Not long ago, a hybrid combination of

these paradigms could not be applied to a real-time system. However, as shown in this paper,

with the current advances in increase of speed of processing and DSP parallel processors,

various combination of hybrid soft computing paradigms are now realizable.
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