
Fuzzy Sets and Systems 113 (2000) 333–350
www.elsevier.com/locate/fss

Identifying fuzzymodels utilizing genetic programming
Andreas Bastian

Electronic research, Brie�ach. 1776, Volkswagen AG, 38436 Wolfsburg, Germany

Received August 1997; received in revised form March 1998

Abstract

Fuzzy models o�er a convenient way to describe complex nonlinear systems. Moreover, they permit the user to deal
with uncertainty and vagueness. Due to these advantages fuzzy models are employed in various �elds of applications, e.g.
control, forecasting, and pattern recognition. Nevertheless, it has to be emphasized that the identi�cation of a fuzzy model
is a complex optimization task with many local minima. Genetic programming provides a way to solve such complex
optimization problems. In this work, the use of genetic programming to identify the input variables, the rule base and the
involved membership functions of a fuzzy model is proposed. For this purpose, several new reproduction operators are
introduced. c© 2000 Elsevier Science B.V. All rights reserved

Keywords: System identi�cation; Fuzzy modeling; Genetic programming

1. Introduction

By the term system an object in which variables of
di�erent kinds interact and produce observable signals
is described. When interacting with a system, a sound
understanding of how the variables of that system re-
late to each other is usually of major importance. We
will refer to such a relationship as a model of the
system.
Clearly, not every system can be exactly represented

by a mathematical model. Take for instance the task
of modeling a driver backing up a car. The closer we
look at this problem, the more we realize the di�culty
of writing down a rather concise mathematical model.
Interestingly, we actually can describe the action of
this driver in terms of simple linguistic rules, as it
was done for example in [1]. Fuzzy logic provides a
convenient method to implement such knowledge into

computers. This logic is the concept of fuzzy sets [18]
incorporated into the framework of multivalued logic.
The models expressed by this concept are called fuzzy
models. We distinguish between relational fuzzy mod-
els and rule based fuzzy models. Since the rule based
model is the most often employed one, in this work
we will focus on this model type.
The development of fuzzy models began very early.

As a matter of fact, one can view the very �rst fuzzy
controller by Mamdani (and Assilian) [11] as a fuzzy
model of the human operator’s control actions. Today,
fuzzy models are widely employed. They cover a wide
range of applications: from the control of an unmanned
helicopter [14] to the judgment of river water [7].
Unfortunately, the identi�cation of fuzzy models is

a very complex task that comprises the identi�cation
of (a) the input and output variables, (b) the rule base,
(c) the membership functions and (d) the mapping

0165-0114/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0165 -0114(98)00086 -4



334 A. Bastian / Fuzzy Sets and Systems 113 (2000) 333–350

parameters. Thus, we face an optimization task with
many local minima. The complexity of this task was
shown for instance in [5].
Today, we can �nd a large amount of fuzzy model

identi�cation approaches. Yet, most of those proposed
methods are simply identifying the membership func-
tions of a prede�ned rule base. In other words, an op-
timization of the membership function is performed.
If also the rule base has to be identi�ed, the optimiza-
tion becomes more complex, since the amount of the
parameters to be optimized varies with the size of the
rule base.
For those two identi�cation cases, neural networks

have proven to be very e�ective optimization tools.
Especially when the fuzzy model is incorporated into
the neural network structure, the learning algorithms
of the neural networks perform very good. One ex-
ample is the local linear model tree (LOLIMOT)
algorithm [13]. This neuro-fuzzy approach consists
of an upper level that determines the input partition,
while a lower level estimates the parameters. Another
neuro-fuzzy approach was proposed in [10]. Here, a
two-phase neural network was proposed that com-
bines unsupervised learning and supervised gradient
descent learning to construct the rule nodes and op-
timize the membership functions of the node terms.
Notice that those two algorithms assume that the
“right” input variables are already known in advance.
Thus, no good model can be identi�ed if “wrong”
input variables are o�ered to the algorithms described
above. Unfortunately, especially in real life applica-
tions, we are often faced with a fast number of possi-
ble input variables. Here, an algorithm that identi�es
also the input variables of the model would be very
useful.
Scanning through the literature, we will not en-

counter many fuzzy model identi�cation approaches
that identify the input variables, the rule base and
the involved membership functions. The approach de-
scribed in [3] starts by clustering the data using the
fuzzy c-means algorithm [6]. Therefore the modeling
result depends very much on the employed cluster va-
lidity function. Since the selection of the cluster va-
lidity function is not always trivial, this approach is
somehow limited in its use. Moreover, the top-down
nature of the algorithm tends to lead the optimiza-
tion into one of the nearest local minima. Another
approach that also identi�es identi�es the input vari-

ables, the rule base and its membership functions was
described in [15], however, this modeling approach
was designed for quantitative modeling, thus the nu-
merical accuracy of the fuzzy model is not very good.
Moreover, also this approach depends very heavily on
the fuzzy c-means algorithm.
In view of the fact that fuzzy models are becoming

increasingly popular for modeling complex technical
systems there is a need for an identi�cation method
that identi�es the input variables, the rule base and the
involved membership functions. In this work, a fuzzy
model identi�cation method based on genetic pro-
gramming [9] is proposed. Due to the parallel nature
of the evolutionary algorithm, the possibility to reach a
global minimum is rather high. The proposed method
is of universal nature, thus there is no limitation in its
usage.
This paper is organized as follows: in Section 2 the

basic de�nitions of the to be identi�ed fuzzy models
are presented. In Section 3 the identi�cation approach
is discussed in detail. In Section 4 an application
examples is given, followed by the conclusion in
Section 5.

2. Fuzzy models

2.1. Basic de�nitions

The fuzzy models used in this work are based on the
compositional rule of inference. Such a model consists
of three main blocks as shown in Fig. 1. In the input
block the crisp input values are transformed into fuzzy
sets. Usually those fuzzy sets are in form of singletons
since they are natural and easy to implement. This
transformation is named fuzzi�cation.
The inference block contains the rule base consist-

ing of a certain amount IF–THEN rules. The fuzzi-
�ed data are passed to this block and are matched
to each rule antecedent. The result of this matching
is the degree of membership. When an antecedent
contains several conditions then the overall degree of
match of this antecedent has to be determined �rst.
The sentence connectives in the antecedent, e.g. the
connective AND, are usually implemented as fuzzy
conjunctions in a Cartesian product space in which
the variables take values in di�erent universes of dis-
course. Commonly used aggregation operators for the



A. Bastian / Fuzzy Sets and Systems 113 (2000) 333–350 335

Fig. 1. Computational structure of a fuzzy model.

connective AND are the minimum and the product
operators.
Subsequently the meaning of the IF–THEN rule is

determined using the implication function. To repre-
sent the output values of all rules, a fuzzy set of output
values is obtained using the compositional operator.
One commonly used operator is the max-operation.
To obtain a crisp output, the resulting fuzzy value

is mapped back to the crisp domain in the output
block. This mapping is called defuzzi�cation. One
common defuzzi�cation strategy is the center of grav-
ity method:

zo=
∑
w�C(w)∑
�C(w)

; (1)

where �C is the membership function of the inferred
consequence C which is pointwise de�ned for all w
in the universe of discourse W .
In respect of the consequence part of an IF–THEN

rule, there are two widely employed types of rules:
the M-type by Mamdani [11], and the TSK-type by
Takagi, Sugeno and Kang [16]. In this work we will
only consider the M-type of fuzzy rule where each
consequence is a linguistic value. The fuzzy rules cre-
ate a partitioning of the input spaces, with an linguistic
output value being assigned to each of those spaces.
For a single output and multiple input system the rules
have the form:

Ri: IF (x1 is Ai1) AND (x2 is A
i
2) · · ·AND (xn is Ain)

THEN (y is Bi); (2)

Fig. 2. Membership functions.

where Ri is the ith rule, xj are the j linguistic input
variables, y is the linguistic output variable, and Aij
and Bi are the linguistic values of those variables. For
simplicity Eq. (2) is rewritten as

Ri: IF (x is Ai) THEN (y is Bi); (3)

where x=(x1; : : : ; xn), and A=(A1; : : : ; An).
In this work, trapezoidal membership functions are

employed to represent the input terms. The trapezoidal
membership function Tz: U ∈ [0; 1] is a function de-
�ned as follows:

Tz(u; a; b; c; d)=




0; u¡a;

(u− a)=(b− a); a6u6b;

1; b6u6c;

(d− u)=(d− c); c6u6d;

0; u¿d:

(4)

Fig. 2 pictures this de�nition. This notation is very
convenient since it allows the algorithm to freely
choose between the type of membership function.



336 A. Bastian / Fuzzy Sets and Systems 113 (2000) 333–350

Fig. 3. Fuzzy model identi�cation [13].

The output terms are represented by singleton mem-
bership functions, de�ned as follows:

S(u; a)=

{
0; u 6=1;
1; u= a:

(5)

In this work only complete rule bases are consid-
ered. A rule base is said to be complete when any
combination of input values results in an appropriate
output value. Therefore, the number of rules of a fuzzy
model can always be deducted from the number of in-
put variables and the corresponding number of terms.
For example: a fuzzy model with two input variables
where the input X consists of two terms and the in-
put Y consists of three terms has a total of six fuzzy
rules.

2.2. Fuzzy system identi�cation

Fuzzy system identi�cation is the process of iden-
tifying the structure and the parameters of a fuzzy
model. This process can be de�ned as shown in
Fig. 3. The structure identi�cation of a fuzzy model
consists of the input variable identi�cation and the rule
identi�cation. The input variable identi�cation is the
identi�cation of the input variables of the model. The
rule identi�cation consists of (a) the identi�cation of
the rule type used by the fuzzy model to represent a
given input-output data relation, and (b) the identi�-
cation of the rule structure. The latter is the process
of selecting the input and output variables involved
in each individual rule, and determining the number

Table 1
The common fuzzy model identi�cation cases

Identi�cation Input Rule Rule Mapping
variables structure parameters parameters

Case 1 X X X X
Case 2 X X X
Case 3 X X X
Case 4 X X
Case 5 X X X
Case 6 X X
Case 7 X X
Case 8 X

of rules. The parameter identi�cation consists of (a)
the rule parameter identi�cation, and (b) the mapping
parameter identi�cation. The rule parameters are all
the parameters related directly to the interpretation of
a fuzzy rule, as there are the membership functions,
the aggregation operator and the implication function.
The mapping parameters are the parameters related
to the mapping of a crisp set to a fuzzy set, and
vice versa.
In view of this distinction, we can distinguish

between several identi�cation cases. In the Table 1
the most common cases found in the literature are
displayed. A concise treatment about fuzzy system
identi�cation can be found in [2]. The most common
identi�cation is Case 8 where usually only the mem-
bership functions of a given rule base are identi�ed.
As one can see, Case 1 subsumes all other identi-
�cation cases. In this work we will employ genetic
programming for the Case 4 identi�cation task.



A. Bastian / Fuzzy Sets and Systems 113 (2000) 333–350 337

Fig. 4. Cycle of reproduction.

3. Genetic programming for fuzzy system
identi�cation

3.1. The basic paradigm

It has been shown in several publications, e.g.
[4,17], that genetic programming is a very powerful
tool for system identi�cation when only little about
the underlying structure in the data is known. There-
fore, in this work the usage of genetic programming
for the identi�cation of fuzzy models is proposed.
Genetic programming [9] can be regarded as an ex-

tension of the common GA [8]. Like the GA, it com-
bines a survival the �ttest optimization strategy with a
structured yet randomized information exchange; and
since the search is conducted from a population, even
large search spaces can be covered quickly. Its cycle
of reproduction is shown in Fig. 4.
In essence, the evolution of an arti�cial population

can be simulated as follows:

1. Generate an initial population.
2. Evaluate the individuals and assign �tness values
to them.

3. Use a biased random process to select (usually two)
individuals for reproduction.

4. Perform the reproduction.

5. If necessary, mutate the new individual.
6. Repeat from Step 3 until a new population (new
generation) is established.

3.2. Some basic de�nitions

De�nition 1. The coded information in an individual
is named its structure. It consists of tree-like arranged
nodes. In this work several basic nodes are used: (a)
P-nodes containing parameters, (b) V-nodes contain-
ing variables, (c) A-nodes containing arithmetic op-
erators, (d) T-nodes containing the number of terms
of a linguistic variable, and (e) M-nodes containing
fuzzy membership functions.
The structure shown in Fig. 5 consists of two

A-nodes containing the division and subtraction op-
erators, two V-nodes containing the parameters X
and Y , and one P-node containing the value 4. This
structure is named a functional structure since it
contains a function. Such functional structures are
decoded using the simple rule

(left branch or node) (execute preceding A-node)

(right branch or node): (6)



338 A. Bastian / Fuzzy Sets and Systems 113 (2000) 333–350

Fig. 5. A structure containing the function f(X; Y )=X=(Y − 4):

This rule is applied bottom-up, starting from the left
most terminal node. Using this rule the structure is
decoded as follows: Eq. (6) is applied starting from
the left most terminal node, in this case the V-node
“X ”, resulting in:

f(X; Y )=X=(right branch): (7)

Decoding the left branch according to the general rule
given in Eq. (6) results in

right branch =Y − 4: (8)

Inserting (8) into (7) yields the function

f(X; Y )=
X

Y − 4 : (9)

If a structure only consists of P- and A-nodes it is
called a parameter structure. Here, the decoded struc-
ture is a constant. We will use such parameter struc-
tures to code fuzzy membership functions.
For real world applications, the universe of dis-

course of every node type has to be restricted. For
this purpose, so-called node vectors are introduced.
A node vector contains the permitted contents of a
node. For example: the P-node vector

Vp= {0; 1; 2; 3; 4; 5} (10)

contains six possible node contents.
To ensure that every individual contains a compre-

hensible solution, the relations between the di�erent
node types have to be de�ned. For this purpose so-
called node protocols are de�ned for each node type:

P(T)= { n; m; V | x∈ (permitted types);
y∈ (permitted types)}; (11)

where T is the node type, n the number of its in-
put connections to it, m the number of its output
connections, V its node vector, x and y are the
sets of permitted node types of the inputs and the
outputs.

3.3. Mechanisms of reproduction

3.3.1. The cloning operation
The cloning operation ensures that a certain amount

of individuals with outstanding �tness values will sur-
vive and appear in the next generation. This measure
prevents the algorithm from loosing the best found so-
lution. Usually, the best individual of a generation is
copied into the following generation. This operation
is often referred to as elitist strategy.

3.3.2. The crossover operation
This operation is producing an o�spring that inher-

its some of the characteristics of its parents. For a bet-
ter understanding, let us �rst observe the structure of
an individual. The individual in Fig. 6 presents a fuzzy
model with one output Z and two inputs X1 and X2
where the input X1 consists of the two terms A1 and
A2 and the input X2 consists of the three terms B1, B2
and B3. Thus, the rule base of this fuzzy model con-
tains six rules. Since each rule is de�ned to has its own
output, there are six output terms C1; : : : ; C6. The very
�rst node is the so-called main node. Its only func-
tion is to connect all branches of the tree. This main
node is followed by three V-nodes containing the two
inputs and the output. Each input V-node is followed
by a T-node containing the number of terms the pre-
ceding input variable has. Each T-node is followed
by M-nodes representing the membership functions.
Each M-node is connected to four parameter struc-
tures representing the parameters of the membership
function. In this example the membership function A1
is the function Tz(x; 0; 0; 2; 2:66) and the output sin-
gleton C1 is the function S(z; 7:5).
In a crossover operation two parents are selected

using the roulette wheel method [8]. The new indi-
vidual is produced by copying the �rst selected parent
and subsequently swapping some parts of its structure
with equivalent parts from the structure of the second
parent.
For this purpose, in the structure of the �rst selected

parent (also called dominant parent) one random node



A. Bastian / Fuzzy Sets and Systems 113 (2000) 333–350 339

Fig. 6. An individual containing a fuzzy model.

Table 2
Node types and the related crossover operations

Node type Crossover operation(s)

V-node General variable crossover or local variable
crossover

T-node General term crossover or local term crossover
M-node Membership function crossover
P- or A-node Node crossover or branch crossover

is selected by using a uniform probability distribu-
tion. This node is named the crossover node. Having
selected the crossover node a suitable crossover oper-
ation can be carried out. Table 2 shows the di�erent
crossover operations in dependency of the crossover
nodes.
The general variable crossover operation swaps

whole input or output variables including the involved
membership functions. Note that an input variable can
not replace an output variable, and vice versa. This
operation is performed as follows:

(i) The �rst selected parent is the dominant one.
The other parent is the recessive one.

(ii) If the crossover node is an input variable select
randomly one input V -node from the structure of the
recessive parent. Otherwise select the output V-node.
(iii) Cut away the branches with the crossover

nodes.
(vi) Copy the rest of the dominant parent and insert

the branch cut o� from the recessive parent.
(v) If due to the rule base adjustment additional

output membership functions are needed, copy the
required output membership functions from the reces-
sive parent. Otherwise delete the unnecessary mem-
bership functions. The result is the o�spring.

Example 1. The dominant parent is a fuzzy model
with the input variables X1 and X2, consisting of four
fuzzy rules, namely:

IF (X1 is A1) AND (X2 is A3) THEN (Z is B1)

IF (X1 is A2) AND (X2 is A3) THEN (Z is B2)

IF (X1 is A1) AND (X2 is A4) THEN (Z is B3)

IF (X1 is A2) AND (X2 is A4) THEN (Z is B4)

(12)



340 A. Bastian / Fuzzy Sets and Systems 113 (2000) 333–350

with the membership functions de�ned as follows:

A1 =Tz(x; 4:66; 5; 10; 20);

A2 =Tz(x; 10; 30; 40; 50);

A3 =Tz(x; 10; 10; 10; 20);

A4 =Tz(x; 10; 45; 50; 50);

B1 = S(z; 5);

B2 = S(z; 10);

B3 = S(z; 15);

B4 = S(z; 5);

(13)

The recessive parent is a fuzzy model with the in-
put variables X1 and X2, consisting of six fuzzy rules,
namely:

IF (X1 isC1) AND (X3 isC3) THEN (Z isD1)

IF (X1 isC2) AND (X3 isC3) THEN (Z isD2)

IF (X1 isC1) AND (X3 isC4) THEN (Z isD3)

IF (X1 isC2) AND (X3 isC4) THEN (Z isD4)

IF (X1 isC1) AND (X3 isC5) THEN (Z isD5)

IF (X1 isC2) AND (X3 isC5) THEN (Z isD6)

(14)

with the membership functions de�ned as follows:

C1 =Tz(x; 2; 2; 12:333; 20);

C2 =Tz(x; 4; 5; 6; 10);

C3 =Tz(x; 10; 10; 30; 30);

C4 =Tz(x; 3; 45; 50; 60);

C5 =Tz(x; 10; 15; 20; 20);

D1 = S(z; 1);

D2 = S(z; 13);

D3 = S(z; 12);

D4 = S(z; 93);

D5 = S(z; 13);

D6 = S(z; 30):

(15)

Given that the general variable crossover operation is
selected. The crossover node of the dominant parent is
the V -node X2, and that of the recessive parent is the
V -node X3. The resulting o�spring is the fuzzy model
with the following rule base:

IF (X1 isA1) AND (X3 isC3) THEN (Z isB1)

IF (X1 isA2) AND (X3 isC3) THEN (Z isB2)

IF (X1 isA1) AND (X3 isC4) THEN (Z isB3)

IF (X1 isA2) AND (X3 isC4) THEN (Z isB4)

IF (X1 isA1) AND (X3 isC5) THEN (Z isD5)

IF (X1 isA2) AND (X3 isC5) THEN (Z isD6)

(16)

with the membership functions as de�ned in the
Eqs. (13) and (15).
The local variable crossover operation resembles

the general variable crossover operation. The input
variables are again swapped. However, in this case the
partitioning of the previous variable is kept. In other
words, an input variable takes over the parameters of
another one.
The general term crossover operation swaps the

partition of input variables including the involved
membership functions, while in the local term
crossover operation the membership functions are
kept. Thus, this operation is changing the number of
terms of one variable. If the new partitioning requires
additional terms, they are copied from the other par-
ent, otherwise unnecessary membership functions are
deleted. The membership function crossover opera-
tion swaps whole membership functions of terms. The
node crossover operation is changing the parameters
of the membership by swapping single nodes of the
parameter structures representing the parameters of
the membership function, while the branch crossover
operation is changing the parameters of the mem-
bership by swapping whole branches of the param-
eter structures of the parents. A detailed description
about those crossover operations can be found in the
Appendix.
Note that during all operations in this work the

algorithm ensures that for a membership function
Tz(X; a; b; c; d):

a¿b¿c¿d (17)



A. Bastian / Fuzzy Sets and Systems 113 (2000) 333–350 341

Fig. 7. The branch crossover operaton.

by swapping the parameter structures represent-
ing those membership function parameters. Also if
a= b= c=d, then a new parameter structure d¿c is
created.

Example 2. The branch crossover operation is to be
performed on the two individuals from the previous
examples. Fig. 7 shows the parameter structures cho-

sen for the crossover operation. The crossover nodes
are marked with boxes. The dominant parent has the
term A1

A1 =Tz(x; 4:66; 5; 10; 20): (18)

The resulting o�spring is shown in the right part of
the Fig. 7. It is a copy of the dominant parent with a



342 A. Bastian / Fuzzy Sets and Systems 113 (2000) 333–350

Table 3
Node types and the related mutation operations

Node type Mutation operation(s)

V-node Variable mutation
T-node Term mutation
M-node Membership function mutation
P- or A-node Node mutation or branch mutation

modi�ed term A1

A1 =Tz(x; 28; 5; 10; 20): (19)

Since the term A1 as de�ned in Eq. (19) is violating
the protocol of a membership function as de�ned in
Eq. (17), the parameters of the membership function
have to be swapped, resulting in the following term:

A1 =Tz(x; 5; 10; 20; 28): (20)

3.3.3. The mutation operation
The mutation is a mechanism to modify reproduced

children in order to enlarge the variation in the popu-
lation. If an o�spring is selected to undergo mutation,
in its structure one random node is selected by using a
uniform probability distribution. This node is named
the mutation node. As in the case of the crossover op-
eration, the mutation operation depends on the muta-
tion node type. Table 3 shows the possible mutation
operations.
The variable mutation operation changes the input

variables of the o�spring. This operation is performed
as follows:

(i) Select randomly a V-node from the de�ned
V -node vector.
(ii) Swap the mutation node with the selected

V-node.
(iii) If additional output membership functions are

needed, generate randomly the required membership
functions. Otherwise delete the unnecessary member-
ship functions.

The term mutation operation changes the partition
size of an input variable. The membership func-
tion mutation operation modi�es the membership
functions of a term. The node mutation aims at in-
troducing new nodes into the parameter structures.
The branch mutation operation reduces or extends
the size of the parameter structure by cutting away

branches or adding a new branch. This operation
helps the population to develop new generations stem-
ming from good individuals. A detailed description
about those crossover operations can be found in the
Appendix.

Example 3. The node mutation operation is to be per-
formed on the o�spring from the previous examples.
The left part of the Fig. 8 shows the parameter struc-
ture of the o�spring before mutation. It has the term A1

A1 =Tz(x; 4:66; 5; 10; 20): (21)

One node is randomly selected for mutation. This
mutation node is marked with a box. The mutated o�-
spring is shown on the left side of the Fig. 8. The re-
sulting o�spring is a copy of the dominant parent with
a modi�ed term A1

A1 =Tz(x; 15:33; 5; 10; 20): (22)

As in the previous example, the parameters of the term
A1 have to be swapped. The modi�ed term is

A1 =Tz(x; 5; 10; 15:33; 20): (23)

3.4. Applying the algorithm

In view of the large search space and the large
amount of reproduction possibilities, an e�cient evo-
lution mechanism has to be found in order to limit the
computing time as well as the population size. First,
the probability to perform certain crossover is biased
as shown in Table 4. Those are the so-called crossover
ratios.
The probability to perform certain mutation oper-

ations is shown in Table 5. Those are the so-called
mutation ratios.
The ratios shown in the Tables 4 and 5 are de-

termined after a series of identi�cation experiments.
One of those experiments is described in the follow-
ing: to investigate the in
uence of the crossover ratios,
the three di�erent ratio sets shown in Table 6 were
de�ned. The mutation ratios are the ones de�ned in
Table 5.
A data set consisting of 250 training data was gener-

ated using a prede�ned two input single output fuzzy
model consisting of four rules. Data of two additional
input variables were randomly generated and added to



A. Bastian / Fuzzy Sets and Systems 113 (2000) 333–350 343

Fig. 8. The node mutation operation.

Table 4
Probability of the crossover operations to be selected

Crossover General Local General Local Membership
method variable variable term term function Node Branch

Probability 0.05 0.05 0.15 0.15 0.1 0.25 0.25

this data set. The task was to identify a model based
on those training data. Thus, the task consists of the
identi�cation of (a) the input variables, (b) the num-
ber of terms, and (c) the membership functions. The
algorithm was restricted as follows: (1) the maximum
number of model inputs was set to three, and (b) the
maximum number of terms was set to three. The iden-
ti�cation was terminated after 1000 generations. The
population size was set to 1000 individuals.
The �tness of an individual is determined by calcu-

lating a biased mean squared error of the fuzzy model:

MSE=
∑m

i=1(yi − wi)2
m

+ k
r
rmax

; (24)

where m is the number of data within the support of
the antecedent fuzzy sets of the ith rule, y the desired
output value,w the result of the decoded individual, k a

Table 5
Probability of the mutation operations to be selected

Mutation Membership
method Variable Term formula Node Branch

Probability 0.05 0.2 0.15 0.3 0.3

constant, r the number of rules used by the individual,
and rmax the maximum amount of possible rules.
The in
uence of the crossover ratio set on the con-

vergence speed of the algorithm is shown in Fig. 9.
As shown in this �gure, the algorithm with the ra-

tio set 1 yields the best result. After only 300 genera-
tions the correct input variables and number of terms
was found. The correct membership functions were
retrieved after additional 311 generations. Using the
ratio set 2, the algorithm is favoring the term crossover
operations. Although the algorithm quickly identi�ed



344 A. Bastian / Fuzzy Sets and Systems 113 (2000) 333–350

Table 6
Three ratio sets used by the identi�cation algorithm

Cross over General Local General Local Membership Node Branch
method variable variable term term function

Ratio set 1 0.05 0.05 0.15 0.15 0.1 0.25 0.25
Ratio set 2 0.1 0.1 0.25 0.25 0.1 0.1 0.1
Ratio set 3 0.2 0.2 0.2 0.2 0.1 0.05 0.05

Fig. 9. In
uence of the reproduction ratios on the convergence speed.

the right input variables, due to badly de�ned mem-
bership functions it took over 800 generations until a
model with a rather good �t to the data was identi-
�ed. Even though this model consisted of four rules,
the correct membership parameters could not be iden-
ti�ed. The ratio set 3 is favoring the term and the
variable crossover operations. The slow convergence
shown in Fig. 9 is caused by the poor parameter opti-
mization capability of the algorithm. This �nal model
consisted of three input variables with 12 rules. This
experiment shows the signi�cance of the choice of the
reproduction ratios.
The results of the other experiments carried out to

verify the selection of the crossover ratio set are sum-
marized in Table 7. The table is read as follows: �rst,
the dimension of the single output fuzzy model used
to generate the training data is described. In case 1,
the fuzzy model consists of 2 inputs where each in-
put consists of three terms. In the following column,
the average number of generations needed to achieve
a MSE¡100 in three runs is displayed for each ratio
set. The population size is again limited to 1000 in-

dividuals. As in the previous experiment, the data of
two additional input variables were randomly gener-
ated and added to this data set.
As one can see, the results continue the trend shown

in the �rst experiment.
Since the identi�cation of fuzzy membership func-

tions is a complex optimization task with many local
minima, the initialization of the membership function
parameters has a huge impact on the convergence, as it
was shown in [5] where a modi�ed genetic algorithm
identi�ed fuzzy membership functions. Like it was
done in [5], in this work three initialization methods
were compared: (a) random initialization, (b) fuzzy
C-means based initialization, and (c) mean value ini-
tialization.
In the random initialization, the parameter struc-

ture is randomly generated as described in the previ-
ous section. The only additional measure ensures that
the membership function parameters are related as de-
scribed in Eq. (17).
In the second initialization method the fuzzy

C-means clustering algorithm [6] is used to calculate



A. Bastian / Fuzzy Sets and Systems 113 (2000) 333–350 345

Table 7
Result of various test problems

Identi�cation Number of
generation

problem Ratio set 1 Ratio set 2 Ratio set 3

2 input variables 656 770 1512
3× 3 rule base
2 input variables 637 812 1704
2× 5 rule base
1 input variables 701 743 2139
5 rules

the cluster centers of the data. Because the maximum
number of terms is �xed, three cluster centers are
calculated for each input variable.
Using those cluster centers the parameter structures

are generated as follows:

1. Each calculated cluster center is approximated by
a simple parameter structure.

2. Those parameter structure are de�ned to be the core
of the membership function. The other parameters
of the membership functions are set such that the
whole universe of discourse of that input variable
is covered by membership functions.

3. The other individuals of the initial population are
obtained by modifying those ten individuals using
the branch mutation operation.

4. The singleton functions of the output variable is
constructed by projecting the core of the �rst input
variable to the output variable. The result is again
approximated by a simple parameter structure.

The last initialization method is the so-called mean-
value initialization. In this method, each input variable
range is divided into equal three sections. The center
value of each section is de�ned to be the core of the
membership function. Using those mean values the
membership functions are de�ned as it was done with
the cluster centers.
Using the reproduction ratios shown in the Tables 4

and 5 the identi�cation of the fuzzy model described
above is performed again with those three initializa-
tion methods. The result of this experiment is dis-
played in Fig. 10. As one can see, the second ini-
tialization method yields superior results. Therefore
in this work the fuzzy C-means based initialization is
employed.

Further analysis of the identi�cation process
showed that the parameter structure optimization is
crucial for the convergence. Although in many cases
the algorithm did identify the correct input variables
in a very early stage of the identi�cation, the conver-
gence was very slow due to the slow identi�cation
of the membership parameters, and in some cases
the algorithm even terminated with falsely identi�ed
models.
As a solution to this problem, a local optimization

of the membership functions was carried out for each
individual using the downhill simplex method pro-
posed by Nelder and Mead [12]. For this purpose, one
P-node of the core of each membership function is
optimized for a certain amount of optimization steps.
After the optimization, those nodes are replaced by the
most suitable nodes in the prede�ned P-node vector.

3.5. The program 
ow

The simpli�ed program 
ow of the algorithm is as
follows:

1. Generate the initial population.
2. Compute the �tness of the population and sort the
population according to the �tness.

3. If the �tness of the best individual is less than
0.001, go to Step 11.

4. Clone the best individual.
5. Select the parents for reproduction using the
roulette-wheel method. Randomly select the
crossover operation according to the crossover
ratios and breed the o�spring.

6. Decide whether or not the o�spring has to undergo
mutation. The mutation rate is set to be 0.1. If no
mutation is necessary, go to Step 11.

7. Randomly select the mutation operation according
to the mutation ratio and mutate the o�spring.

8. If the number of generation¿100 then optimize
the parameter structures of the individuals using
the downhill simplex method. This optimization is
performed for 100 steps.

9. Repeat the algorithm from Step 5 until the new
population is established.

10. Repeat the algorithm from Step 2 until 2000 gen-
erations are reached.

11. Print out the �nal report, save the results and ter-
minate the algorithm.



346 A. Bastian / Fuzzy Sets and Systems 113 (2000) 333–350

Fig. 10. In
uence of the initialization method.

4. Application example

In this section the proposed algorithm is employed
to identify a more complex fuzzy model. For this pur-
pose a fuzzy model with two inputs and one output is
constructed. The membership functions of the inputs
are displayed in Fig. 11.
Using this fuzzy model a data set consisting of

300 data sets were created. Three randomly generated
dummy input variables were added to the training data.
Thus, the data consisted of �ve input variables and the
output variable. 250 data sets were used as training
data, while 50 randomly selected data sets were used
as validation data.
The identi�cation algorithm was restricted as fol-

lows: (a) the maximum number of model inputs was
set to ten, and (b) the maximum number of terms was
set to ten.
The maximum number of input variables of an in-

dividual was set to be �ve. The A-node vector was
de�ned as

VA = {+;−; ∗; =} (25)

The P-node vector was de�ned as

VP={0:001; 0:05; 0:1; 0:5; 1:0; 2:0; 3:0; 5:0; 10:0; 25:0}
(26)

The �tness evolution of the best individual is dis-
played in Fig. 12. After 50 generations the correct
two input variables were identi�ed. The correct rule
base was identi�ed after 112 generations. After 500
generations the algorithm converged. Notice that al-
though the rule base was correctly identi�ed, the ini-
tial membership functions could not be retrieved per-
fectly. The MSE of the best individual was 4.01. The
training data is compared to the model in Fig. 13. No-
tice the good �t of the identi�ed model to the original
data.

5. Outlook and conclusion

The use of genetic programming for fuzzy sys-
tem identi�cation was proposed. For this purpose, sev-
eral new crossover and mutation operations were de-
veloped. Although the limited amount of examples is
not su�cient to prove the generality of the proposed
identi�cation concept, the results give a clear indica-
tion about the ability of the proposed method. Further
investigations will be conducted in the near future to
prove its generality.
Replacing the singleton of the output variable with

a function yields the TSK-rule. Future works are going
to investigate the identi�cation of fuzzy models with
this rule type.



A. Bastian / Fuzzy Sets and Systems 113 (2000) 333–350 347

Fig. 11. (a) Membership functions of the fuzzy model. (b) Rule base of the fuzzy model.

Acknowledgements

The author would like to sincerely thank Ms.
Mayumi Inada for her everlasting support. The fruitful
discussions with Professor Ey and Mr. Schulze from
the Fachhochschule Braunschweig=Wolfenb�uttel are
highly appreciated.

Appendix A

The local variable crossover operation is performed
as follows:

(i) The �rst selected parent is the dominant one.
The other parent is the recessive one.
(ii) If the crossover node is an input variable select

randomly one input V-node from the structure of the
recessive parent. Otherwise select the output V-node.
(iii) Swap the V-nodes. The result is the o�spring.

The general term crossover operation is performed
as follows:

(i) The �rst selected parent is the dominant one.
The other parent is the recessive one.
(ii) Select randomly one input T-node from the

structure of the recessive parent.



348 A. Bastian / Fuzzy Sets and Systems 113 (2000) 333–350

Fig. 11. Continued

Fig. 12. Fitness of the best individual.

(iii) Cut away the branches with the crossover
nodes.
(iv) Copy the rest of the dominant parent and insert

the branch cut o� from the recessive parent.
(v) If due to the rule base adjustment additional

output membership functions are needed, copy the
needed output membership functions from the reces-
sive parent. Otherwise delete the unnecessary mem-
bership functions. The result is the o�spring.

The local term crossover operation is performed as
follows:

(i) The �rst selected parent is the dominant one.
The other parent is the recessive one.
(ii) Select randomly one input T-node from the

structure of the recessive parent.
(iii) Copy the dominant parent and swap the

crossover nodes.
(iv) If due to the rule base adjustment additional

output membership functions are needed, copy the
needed output membership functions from the reces-
sive parent. Otherwise delete the unnecessary mem-
bership functions. The result is the o�spring.

The membership function crossover operation is
performed as follows:

(i) The �rst selected parent is the dominant one.
The other parent is the recessive one.
(ii) Select randomly one input M-node from the

structure of the recessive parent.
(iii) Cut away the branches with the crossover

nodes.
(iv) Copy the rest of the dominant parent. If the

crossover node of the dominant parent belongs to an
output variable and the crossover node of the reces-
sive parent belongs to an input variable insert only the
�rst parameter structure of the branch cut o� from the
recessive parent. Otherwise insert the whole branch.
The result is the o�spring.

The node crossover operation is performed as fol-
lows:

(i) The �rst selected parent is the dominant one.
The other parent is the recessive one.
(ii) Select randomly one node of the same type as

the crossover node from the structure of the recessive
parent.
(iii) Copy the rest of the dominant parent and swap

the nodes. The result is the o�spring.

The branch crossover operation is performed as
follows:

(i) The �rst selected parent is the dominant one.
The other parent is the recessive one.
(ii) Select randomly one P- or A-node from the

structure of the recessive parent.
(iii) Cut o� the branches succeeding the crossover

nodes.
(iv) Copy the rest of the dominant parent and swap

the nodes. The result is the o�spring.



A. Bastian / Fuzzy Sets and Systems 113 (2000) 333–350 349

Fig. 13. Modeling result compared to the training data.

The term mutation operation is performed as fol-
lows:

(i) Select randomly one input T-node from the de-
�ned T-node vector.
(ii) Swap the mutation node with the selected

T-node.
(iii) If additional output membership functions are

needed, generate randomly the required membership
functions. Otherwise delete the unnecessary member-
ship functions.

The membership function mutation operation is
performed as follows:

(i) Select randomly the parameter structures to be
mutated. Note that more than one parameter structure
can be mutated at one time.
(ii) Cut away the branches with the selected param-

eter structures.
(iii) Generate randomly new branches replacing the

removed branches.

The node mutation operation is performed as fol-
lows:

(i) Select randomly an exchangeable node in the
de�ned node vectors.
(ii) Exchange the mutation node with the new one.

The branch mutation operation is performed as fol-
lows:

(i) Determine randomly whether the branch suc-
ceeding the mutation node has to grow or shrink.

(ii) Cut o� the branch with the mutation node.
(iii) If the branch has to shrink then select randomly

a P-node in the de�ned P-node vector and append it
to the remaining individual.
(iv) If the branch has to grow then generate ran-

domly a new parameter structure and append it to the
remaining individual.

The random generation of a parameter structure is
performed as follows:

(a) Select randomly an A-node as the starting node.
(b) Select randomly A- or P-nodes and append them

to the two output connections of the starting node.
(c) Determine the new amount of outputs according

to the node protocols of the appended nodes.
(d) Select randomly further A- or P-nodes and ap-

pend them to the unused output connections.
(e) Repeat the steps (c) and (d) until no free output

connections are left.

References

[1] A. Bastian, An approach towards linguistic instructions
understanding using the concept of 
exible linguistic
variables, Proc. IFES=FUZZ-IEEE’95, Yokohama, Japan,
1995, pp. 927–934.

[2] A. Bastian, Modeling and identifying fuzzy systems under
varying user knowledge, dissertation, Meiji University,
Tokyo, Japan, 1995.

[3] A. Bastian, Sequential fuzzy system identi�cation, J. Control
Cybernet. 25 (2) (1996) 199–223.



350 A. Bastian / Fuzzy Sets and Systems 113 (2000) 333–350

[4] A. Bastian, Genetic programming for nonlinear model
indenti�cation, Internat. J. Eng. Design Autom. 3 (1) (1997)
201–216.

[5] A. Bastian, I. Hayashi, An anticipating hybrid genetic
algorithm for fuzzy modeling, J. Jpn. Soc. Fuzzy Theory
Systems 10 (1995) 801–810.

[6] J.C. Bezdek, Pattern Recognition with Fuzzy Objective
Function Algorithm, Plenum Press, New York, 1981.

[7] A.W. Deshpande, D.V. Raje, P. Khanna, Fuzzy description
of river water quality, Proc. 4th EUFIT, Aachen, Germany,
1996, pp. 1795–1801.

[8] D.E. Goldberg, Genetic Algorithms in Search, Optimizing,
and Machine Learning, Addison-Wesley, Reading, MA, 1989.

[9] J.R. Koza, Genetic Programming, MIT Press, Cambridge,
MA, 1992.

[10] C.T. Lin, Neural Fuzzy Control Systems with Structure and
Parameter Learning, New World Publishing, 1994.

[11] E.H. Mamdani, Applications of fuzzy algorithms for control
of simple dynamic plant, Proc. IEE 121 (1974) 1584–1588.

[12] J.A. Nelder, R. Mead, Downhill simplex method, Comput. J.
7 (1965) 308–313.

[13] O. Nelles, S. Sinsel, R. Isermann, Local basis function
networks for identi�cation of a turbocharger, IEE UKACC
Control’96, UK, September 1996.

[14] M. Sugeno, M.F. Gri�n, A. Bastian, Fuzzy hierarchical
control of an unmanned helicopter, Proc. 5th IFSA World
Congress, Seoul, Korea, 1993, pp. 179–182.

[15] M. Sugeno, T. Yasukawa, A fuzzy logic based approach
to qualitative modeling, IEEE Trans. Fuzzy Systems 1 (1)
(1993) 7–31.

[16] T. Takagi, M. Sugeno, Fuzzy identi�cation of systems and
its application to modeling and control, IEEE Trans. System
Man Cybernet. 15 (1) (1985) 116–132.

[17] A. Watson, I. Parmee, Identi�cation of 
uid systems
using genetic programming, Proc. EUFIT’96, vol. 1, 1996,
pp. 395–399.

[18] L.A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965) 338–
352.


