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Abstract

Genetic programming has rarely been applied to manufacturing optimisation problems. In this paper the potential use of genetic
programming for the solution of the one-machine total tardiness problem is investigated. Genetic programming is utilised for the evolution
of scheduling policies in the form of dispatching rules. These rules are trained to cope with different levels of tardiness and tightness of due

dates. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Manufacturing optimisation has become a major applica-
tion field for evolutionary computation methods. The
surprisingly wide range of manufacturing optimisation
problems covered by active evolutionary computation
research is highlighted in Ref. [1].

The combinatorial nature of most manufacturing optimi-
sation problems encourages the use of evolutionary algo-
rithms (EAs) or any other form of meta-heuristics
(simulated annealing [2], tabu search [3]). Manufacturing
optimisation has rarely been the subject of genetic program-
ming (GP) research ([4,5]). One of the possible reasons for
the lack of GP applications in manufacturing optimisation is
the difficulty of evolving a direct permutation through a GP
algorithm. Most solutions of manufacturing optimisation
problems — especially in scheduling — are represented
by permutations. While in a classic genetic algorithm
(GA) a permutation can be easily coded as a fixed-size
chromosome and the feasibility of solutions is guaranteed
by the application of various specially designed operators, a
similar GP structure would suffer unfeasibility problems
from the application of subtree-crossover and mutation
operators.

In this paper the potential use of GP for the solution of the
one-machine total tardiness problem is investigated. The
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aim is to evolve a dispatching rule that challenges man-
made dispatching rules in the solution of the problem.
Potts and Van Wassenhove [6] have constructed an algo-
rithm that is able to find optimal solutions for this problem
within acceptable computational times even for very large
instances. This algorithm allows the realistic evaluation of
the performance of the GP method introduced in this paper.
However, while Potts and Van Wassenhove’s algorithm is
problem-dependent and has no other known applicability,
the method described in the following sections can be used
— in principle — for the solution of any other one-machine
scheduling problem.

2. Minimising total tardiness in a single-machine
environment

One of the main objectives of the scheduling procedure is
the completion of all jobs before their agreed due dates.
Failure to keep up this promise has negative effects on the
credibility of the company.

If the lateness of job i is defined as the difference between
its completion time C; and the corresponding due date d,
then the tardiness is calculated using the following formula:

T; = max(0,C; — d))

In other words, tardiness represents the positive lateness
of a job. In a single machine environment, the total tardiness
problem is defined as follows:

A number of jobs Ji,J/,,...,J, are to be processed in a
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single facility. Each job is available for processing at time
zero, and is completely identified by its processing time p;
and its due date d;. The aim is to find the processing
sequence that minimises the sum of tardiness of all jobs:

i max(0, C; — d,) (1)
i=1

where C;is the completion time of job i. If for each job there
is an associated weight (penalty) w;, then Eq. (1) becomes

n

> wilmax(0, C; — d))} 2)

i=1

The objective of the weighted total tardiness problem is
the minimisation of expression (2). If Eq. (1) or (2) is
divided by the number of jobs n, the objective becomes
the minimisation of mean tardiness. However, since a divi-
sion by a constant does not alter the nature of the objective,
the problems are essentially the same.

The total tardiness problem is a special case of the
weighted total tardiness problem. Both problems are not
easy to solve, especially for large values of n. The complex-
ity of the weighted total tardiness problem was established
by Lawer [7]. He proved that the associated decision
problem is NP-complete by reduction from the three-
partition problem. An alternative proof was given by
Lenstra et al. [8] the same year. The complexity of the
unweighted total tardiness problem remained unestablished
until 1989, when Du and Leng [9] proved that the associated
decision problem is NP-complete by reduction from a
restricted version of the Even—Odd Partition problem.

The research for the solution of both versions of the one-
machine total tardiness problem spans a period of four
decades. From the early stages it became apparent that
complete enumeration of all permutations of jobs was
inefficient, since the total number of all possible schedules
is (n!), where n is the total number of jobs in the problem.
Two main lines of research were followed during these 40
years. In the early stages researchers focused on the devel-
opment of efficient implicit enumeration algorithms, mainly
dynamic programming [7,10], and branch and bound [11-
13]. Dynamic programming, a powerful optimisation
method introduced by Bellman and Dreyfus [14], is much
faster than complete enumeration. However, it has obvious
limitations in terms of memory requirements. Branch and
bound methods are quite unpredictable in their computa-
tional requirements. Their success depends heavily on the
calculation of sharp lower bounds, which result in the quick
elimination of subtrees, speeding up the procedure
considerably.

In recent years, especially after Potts and Van
Wassenhove [6] presented a quite efficient algorithm for
the optimal solution of very large problem instances,
researchers have focused on the development of fast and
efficient heuristic algorithms [15-18]. While these algo-
rithms perform much better than implicit enumeration tech-

niques in terms of computational requirements, the
optimality of their solutions is not guaranteed.

3. Brief introduction to genetic programming

Genetic Programming belongs to the family of evolution-
ary computation methods. During the 1980s a number of
researchers investigated the use of evolutionary com-
putation for program induction [19,20]. Koza [21] used
the term ‘Genetic Programming’ to describe his search
method that combined efficiently the concepts of evolu-
tionary computation and automatic programming.

The concept of Darwinian strife for survival is the driving
force of the GP algorithm. A potential solution of an opti-
misation problem is appropriately coded into a chromo-
some, and a population of these solutions is employed for
the evolution of optimal or near optimal solutions through
successive generations. Each new generation is created by
probabilistically selecting individuals from the old genera-
tion according to their fitness. These individuals either
survive intact to the new generation or they are genetically
modified through a number of operators. In conventional
EAs, solutions are usually represented by fixed-size strings
of problem parameters. In contrast, GP evolves computer
programs of variable size, i.e. representations that can be
translated by a computer either as they have been evolved or
with slight modifications. In that sense GP is a form of
automatic programming (a method of teaching the compu-
ters how to program themselves). The intuition behind GP is
that a solution of an optimisation problem can often be
represented by a computer program [21]. The program
takes a number of inputs (terminals) that are relevant to
the problem considered, manipulates them through a
number of functions and produces the required outputs.
Genetic programs are usually illustrated as collections of
function and terminal nodes in the form of a parse tree. A
parse tree structure is interpreted in a depth-first, left to right
way as depicted in Fig. 1.

This type of representation is dominant in the GP field,
since Koza adopted it in his pioneering works. However, a
number of alternative program representations have also
been proposed [22,23].

The functions and terminals used during the evolutionary
procedure should be able to represent a solution of the
problem (sufficiency property). In addition, any function
should be able to accept any other function or terminal as
its input, without bringing the system to a halt (closure
property).

Like in most EAs, crossover and mutation are the two
major operators that are employed for the genetic modifica-
tion of tree structures. The application of these operators is
quite simple. For the crossover operator two individual
programs are probabilistically selected from the population
according to their fitness. A crossover point is selected
randomly at each tree, and the subtrees defined by these
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output =z*x - x + X -2

Fig. 1. An example of a GP parse tree and its interpretation.

points exchange their positions at the genetic programs.
Mutation operates as follows: a genetic program is probabil-
istically selected from the population based on its fitness,
and a cut-off point is chosen randomly. The subtree defined
by this cut-off point is deleted, and a new subtree randomly
created takes its place in the program, subject to the size
constraints defined by the user. Traditionally, subtree cross-
over is considered to be a significant element of GP. Koza
applies it to individual programs with a probability of 90%.
However, some researchers have argued that the success of
the crossover operator might be problem-dependent, since
studies have shown that most of crossover operations that
take place in an independent GP-run produce a negative
effect on the fitness of the solutions (see Banzhaf et al.
[24] for an in-depth analysis on the subject of GP-crossover
and its implications). Other recent studies have indicated
that the significance of the mutation operator in GP is
more important than originally thought [24].

4. A GP-heuristic for the solution of the one-machine
total tardiness problem

4.1. Solution representation

A natural representation for the solution of the one-
machine total tardiness problem is a permutation of all
jobs to be scheduled. Evolutionary computation researchers
have extensively used permutation representations for flow-
shop and one-machine scheduling problems like the one
discussed in this paper. Specially designed genetic operators
(originally created for the solution of the Travelling Sales-
man problem) ensure the feasibility of solutions throughout
the evolutionary procedure. The representation of a permu-
tation within a conventional GP framework is not straight-
forward, since genetic programs are structures of variable
length while a permutation has a predefined length size.
Instead, in this paper, GP is employed for the evolution
a new dispatching rule that will be responsible for the
sequencing of jobs.

A dispatching or priority rule is a method of determining
the next job to be scheduled out of a set of unscheduled jobs.

The decision is based on certain job characteristics like
processing times, due dates, etc. There is a wide variety of
dispatching rules available, especially for dynamic schedul-
ing problems [25,26]. A number of dispatching rules have
been associated with the solution of the one-machine total
tardiness problem:

The earliest due date rule (EDD) sequences jobs in non-
decreasing order of their due date. The shortest processing
time rule (SPT) sequences jobs in non-decreasing order of
their processing time. Both these rules are known to perform
optimally or near-optimally in specific cases: the SPT rule
produces an optimal schedule when no job can be completed
on time, while the EDD rule schedules optimally when at
most one job in the problem is tardy. More general cases for
the optimality of EDD and SPT scheduling are given by
Emmons [27]. Based on these theorems, SPT is expected
to perform better on problems with high levels of tardiness,
and EDD is expected to be ideal for the inverse case. The
Montagne (MON) rule was originally introduced by
Montagne [28] for the solution of the weighted total tardi-
ness problem. This rule sequences jobs in non-decreasing
order of the following ratio:

i 1
Py

" (1 - di/ipi)
i=1

where p; is the processing time of job i, d; is the due date of
job i and w; is the associated penalty for job i.

By setting all weights to one, the ratio used for the
unweighted version of the problem is obtained:

Pi

ZP:’ —d
i=1

(the summation term that is missing in the numerator of the
ratio has no effect on the operation of the rule). It can be said
that MON is a problem-specific dispatching rule since its
design has been based on the knowledge of the problem. If,
for example, a due date of a job is close to the sum of the
processing times of all jobs, then the ratio becomes larger,
thus the job is likely to be scheduled on a later stage.
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Conversely, jobs with early due dates are given extra prior-
ity. MON performs well on different types of one-machine
tardiness problems due to its unique design that takes in
account both the processing times and due dates of indivi-
dual jobs, as well as the sum of the processing times of all
jobs. However, the possibility that there exists another
formula — perhaps more complex — that utilises a priori
knowledge of the problem in a more efficient way, cannot be
ruled out. In this paper the possibility of evolving a
dispatching rule formula through a GP-framework for the
solution of the one-machine total tardiness problem is inves-
tigated. The algorithm is supplied with problem-specific
information and trained on various sets of tardiness
problems, aiming to evolve a dispatching rule that will
perform at least as good as the dispatching rules produced
by human intuition.

The algorithm employs the same procedure for the
generation of job schedules as the one used by dispatching
rules designed by human intuition. Evolved dispatching
rules comprise combinations of variables and constants
that provide scheduling information. For each job in the
system, the respective scheduling data are fed in the formula
of the dispatching rule, which calculates an urgency value.
When all jobs have been considered, the job schedule is
generated by ordering jobs in a non-decreasing order of
their urgency values. Note that since the formula of the
dispatching rule is not predefined, the choice of increasing
or decreasing order of the urgency values is purely an issue
of designer’s choice and does not affect the operation of the
algorithm.

These dispatching rules, once evolved, act as independent
scheduling policies for the problem considered. Their appli-
cation does not require a repeat run of the GP algorithm. The
intuition behind this approach is that the evolved formula of
the dispatching rule would have captured enough informa-
tion during its training to consider any previously unseen
instance of the one-machine total tardiness problem. A
successful dispatching rule should be able to produce tardi-
ness levels that are at least as good as the ones produced by
man-made dispatching rules on the entire range of valida-
tion problems.

The proposed methodology considers the general case of

Table 1
Training sets for the evolution of dispatching rules

the one-machine total tardiness problem and attempts to
extract theoretical information for the problem considered
from a set of training cases. The solution methodologies
described in Section 2 [15-18], require a repeat run of the
algorithm for each instance of the problem considered.
While, as expected, they exhibit better performance than
man-made or artificial dispatching rules on individual
problems, their application is limited to the one-machine
total tardiness problem, since their operation is based on
this specific problem. Instead, the proposed approach can
be used to evolve dispatching rules for any other scheduling
problem, as long as relevant information is provided for the
training of the rule. In addition, the computational efficiency
of dispatching rules decreases much slower with the size of
the problem, in comparison with typical heuristic optimisa-
tion algorithms. The authors have proposed a combined
application of GP with local search algorithms for the
generation of near-optimal schedules in individual problem
instances. Experimental results of this approach and
comparisons with one of the leading one-machine total
tardiness heuristics according to published results (M-
NBR, [17]) are presented in Ref. [29].

4.2. Design of the algorithm

The main parameters that need to be defined in the design
of the GP algorithm are the following:

Function set. The function set comprises of the four main
mathematical operations: addition, subtraction, multiplica-
tion and division (+, —, X, %). The ‘%’ symbol corre-
sponds to the protected division function that returns the
value of ‘1’ when the value of the denominator is equal to
‘0.

Terminal set. The terminal set of the algorithm includes
the parameters from which the MON rule is formed (p;:
processing time of job i, d;: due date of job i, SP: sum of
the processing time of all jobs in the problem). The set is
completed by two additional parameters, SD, which corre-
sponds to the sum of the due dates of all jobs in the problem,
and n, which corresponds to the total number of jobs in the
problem. There is no a priori knowledge about the suitability
of the additional terminals for the evolution of an optimal

Name n Fitness cases
(problems) per set-up
SETUPI12 12 20
SETUP25 25 20
SETUP50 50 20
SETUP100 100 20
SETVARI SX(n=12)+5X(n=25)+5Xm=150)+ 5% (n=100)+ 20
SETVAR2 SX(n=12)+5X(n=25)+5Xm=50)+ 5% (n=100)+ 20
SETVAR3 SX(n=12)+5X(n=25)+5X(n=>50)+ 5% (n=100)+ 20
SETVAR4 S5X(n=12)+5X(n=25)+5Xm=50)+ 5% (n=100)+ 20
SETVARS SX(n=12)+5X(n=25)+5Xm=50)+ 5% (n=100)+ 20
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formula. In any case, the GP algorithm should be at least
able to converge to the formula of MON rule, since all its
elements are included in the function and terminal sets. crugTan e
Objective function. The objective of the algorithm is the - ARV A
minimisation of the sum of tardiness over the entire set of S TTRETSYAER
. . g\l
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Fig. 2. Dispatching rule evolved from set-up SETVAR3.

number of additional parameters need to be defined for a
valid run of the GP algorithm. The values of these para-
meters are included in the Koza table of Table 2. Note
that the term maximum depth for crossover indicates the
maximum allowable depth for the offspring resulting from
the crossover operation. If an offspring’s depth exceeds this
value, the operation is repeated with the same parents, until
an offspring that does not violate the constraint is produced.
The corresponding constraint for the mutation operation
indicates that any subtree randomly generated for this
purpose should not exceed the specified depth value. Both
these constraints aim to slow the uncontrollable growth of
genetic programs, a phenomenon known as bloat in genetic
programming terminology. The ramped half-and-half
method is an initialisation method for genetic programs
when parse tree solution representation is employed by
the designer of the algorithm. A discussion on GP initialisa-
tion methods can be found in Refs. [21,24].

5. Results

The GP framework evolved nine different dispatching
rules out of each individual training set. Individual and
cumulative performance for each of these rules is illustrated
in Table 3. The outlined cells in the table indicate the perfor-
mance of the corresponding dispatching rule on the set of
test problems that were used for its training. The rest of the
cells in the same column illustrate the performance of the
dispatching rule on the previously unseen test problems.

From Table 3 it can be concluded that in most cases the
algorithm was able to evolve dispatching rules that had
better overall performance than MON rule and much better
performance than the EDD and SPT rules. Most evolved
rules performed quite well in a very large set of previously
unseen problems (160 in total). Based on this observation it
is thought that these rules did not just fit the data of the
fitness cases but they extracted information that was rele-
vant to the solution of the problem considered. However, the
formulas of these dispatching rules were not as straightfor-
ward as the formula of the MON rule. Table B1 in Appendix
B presents the mathematical formulas of the nine rules
evolved.

In order to compare the performance of a GP-evolved rule
with all the traditional dispatching rules used in this report,
the rule evolved from the experimental set-up SETVAR3
(Fig. 2) was chosen. This rule produced the best overall
performance in terms of the total tardiness produced in all
training and validation problems. Note that the expression in
Figs. 2 and 3 have been cleared from introns (segments of
code that have no effect on the outcome of the problem) and
have also been simplified wherever that was possible.

This particular rule is constructed from three main terms.
The first and the third term operate more or less in favour of
EDD and SPT scheduling, respectively. The second term
acts as a control segment that shifts the operation of the
rule towards EDD or SPT scheduling according to the
values of the parameters of the problem. For example,
when the due date of a job is small in comparison with
the sum of the processing times, the second term produces

3 2 2
n-p -\\n”-SP|+n-p JJ+|d -| SD -n +p +

l l

d

2 i

. SD -

I 1

Fig. 3. Dispatching rule evolved from set-up SETVAR2.
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Table 4
Comparative performance of SETVARS3 for all test problems

OPT EDD SPT MON SETVAR3
Total tardiness (units) 2 430 198 3 817 435 3444772 2 942 848 2712 420
MADO (units) 7706.872 5636.522 2848.056 1567.9
Optimal solutions 39 0 4 25

a significant negative result, which decreases the value of
the ratio and therefore assigns urgency to the job. In the
inverse case the value of the term becomes less significant
thus the two big positive terms control the ratio.

Table 3 illustrates that SETVAR3 was not only able to
perform well on the set of training problems, but it was also
able to perform better than man-made dispatching rules on
the considerable number of validation problems. In that
sense, it can be concluded that the generalisation of the
dispatching rule is satisfactory.

In Table 4 the performance of the dispatching rule
SETVAR3 is compared with those of the classic EDD,
SPT and MON rules in all test problems (both training
and validation sets).

The improvement in overall performance by using
SETVAR3 was significant. MON imposed 81% higher
penalties in terms of MADO (mean absolute deviation
from optimal), while the z-test on the penalties rejected
the null hypothesis with a very high probability (r = 5.62,
p <349X% 10_8). In addition, SETVAR3 consistently
outperformed all the other rules in terms of non-dominated
solutions. In all cases, at least 77% of the solutions produced
by SETVAR3 were better or equal than those produced by
the alternative man-made dispatching rules (Table 5).

As expected, EDD performed well in the set of problems
identified by small levels of tardiness and not too tight due
dates. However, when the scheduling problems in the plant
were evenly distributed in terms of T and R, EDD schedul-
ing produced the worse performance over the available
dispatching rules.

It will be interesting to take a closer look at the dispatch-
ing rule evolved using the experimental set-up SETVAR2
(Fig. 3), that performed almost identical to the previous rule.
While there were terms with similar operation between the
two rules (one favouring EDD scheduling and one favouring
SPT scheduling), there were no other easily observed simi-
larities. In the case of SETVAR?2 it is interesting to note the
control nature of the SD value in the second term. When the

Table 5
Performance of SETVAR3 of non-dominated solutions (all test problems)

Number of times
SETVAR3 was

Number of times
SETVAR3 was

Number of times
SETVAR3 was

better worse equal
EDD 115 40 25
SPT 164 8 8
MON 147 30 3

sum of due dates is large in comparison with the sum of the
processing times, it is quite likely that that the scheduling
problem is not too tardy, thus EDD scheduling is favoured.
In the inverse case, the first term becomes more significant,
and SPT scheduling is favoured.

The GP algorithm had difficulties in converging to the
same solution in each training set. The rules described in
Table 3 were the ones that produced the best overall perfor-
mance for each training set, and occurred only once in 20
independent runs. One of the reasons for that phenomenon
was the difficulty imposed on the algorithm by the training
sets. The variety in problem parameters within the same
training set created a considerable number of local-optima.
The use of small-sized populations of genetic programs due
to the limited computational resources also made the
convergence of the algorithm to a single solution more diffi-
cult. However, the rules evolved in all other runs were not
significantly worse in terms of total tardiness.

6. Conclusions

In this paper the potential use of genetic programming for
the solution of the one-machine total tardiness problem was
investigated. This problem has been the subject of academic
research for almost four decades. To the best of the authors’
knowledge, no previous effort has been made to solve static
scheduling problems in a GP-framework, in contrast with
other evolutionary computation techniques that have been
extensively used for this scope. It is difficult to evolve a
permutation representation without producing infeasible
solutions when subtree crossover and mutation are utilised.
A traditional GP-framework was employed as a basis for
evolving a formula of a dispatching rule that will act as a
general scheduling policy for the solution of the one
machine total tardiness problem. Nine dispatching rules
were evolved during the experimental phase of the algo-
rithm. A number of these rules generalised quite well, i.e.
they were able to produce tardiness level that were at least as
good as the ones produced by man-made dispatching rules
not only on the training problems, but on a considerable
number of validation problems as well.

7. Recommendations for future work

There is a variety of ways in which this research can be
extended. The previous method can be tested for possible
generalisations on the weighted version of the one-machine
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total tardiness problem, as well as on any other sequencing Table A3

problem where dispatching rules can be applied, and the Configuration settings for SETVAR2

parameters are available a priori. GP as well as other evolu- R T n R T n
tionary algorithms are extremely parameter sensitive, espe-

cially when difficult experimental training sets like the ones 0.2 0.4 12 0.2 0.2 50
used in this paper are employed. A meta-level GA or any 82 82 }; 8; 8:21 ;g
other form of optimally controlling the parameters of the run 08 02 12 08 0.6 50
could significantly improve the performance of the algo- 1.0 0.4 12 1.0 0.4 50
rithm. Finally the existence of interesting similarities within 0.2 0.8 25 0.2 0.4 100
the formulas of dispatching rules can be investigated by 0.4 0.6 25 0.2 0.8 100
using any form of code-reutilisation technique like auto- 8'2 82 ;2 gg 8'2 }88
matic defined functions [30]. 08 04 25 10 0.6 100
Acknowledgements Table Ad

Configuration settings for SETVAR3

The authors would like to help the reviewers for their

helpful comments. The first author would like to thank R r n R r n

Greek State Fund (I.K.Y.) for its support. 0.4 0.4 12 0.2 0.8 50
0.4 0.6 12 0.4 0.4 50
0.4 0.8 12 0.6 0.6 50
0.6 0.2 12 0.6 0.8 50

Appendix A 0.8 0.2 12 0.8 0.4 50
0.2 0.2 25 0.2 0.4 100

Tables A1—AG6 illustrate the configuration of the training 0.4 0.6 25 0.4 0.6 100

sets in detail. 0.8 0.2 25 0.4 0.8 100
1.0 0.4 25 0.8 0.8 100
1.0 0.6 25 1.0 0.2 100

Table Al

Configuration settings for SETUP12, SETUP25, SETUP50, SETUP100
Table A5

(n=12, 25, 50, 100) . .
Configuration settings for SETVAR4

R T R T

R T n R T n
0.2 0.2 0.6 0.6
02 0.4 0.6 08 0.2 0.2 12 0.2 0.2 50
02 0.6 08 0.2 0.4 0.4 12 0.2 0.4 50
02 08 08 0.4 0.6 0.8 12 0.2 0.6 50
0.4 02 08 0.6 0.8 0.2 12 0.4 0.8 50
0.4 0.4 08 08 0.8 0.8 12 0.6 0.2 50
0.4 0.6 1.0 0.2 0.2 0.6 25 0.2 0.2 100
0.4 08 1.0 0.4 0.2 0.8 25 0.2 0.8 100
0.6 02 1.0 0.6 0.6 0.6 25 0.4 0.8 100
0.6 0.4 1.0 08 0.8 0.4 25 0.6 0.4 100

1.0 0.4 25 0.8 0.8 100
Table A2 Table A6
Configuration settings for SETVARI1 Configuration settings for SETVARS
R T n R T n R T n R T n
0.2 0.2 12 0.4 0.4 50 0.2 0.2 12 0.2 0.2 50
0.2 0.4 12 0.4 0.6 50 04 0.4 12 0.4 0.8 50
0.4 0.8 12 0.6 0.8 50 0.6 0.8 12 0.6 0.2 50
0.8 0.6 12 0.8 0.6 50 0.8 0.2 12 0.8 0.6 50
0.8 0.8 12 1.0 0.2 50 0.8 0.8 12 1.0 0.2 50
0.2 0.2 25 0.4 0.6 100 0.2 0.2 25 0.2 0.4 100
0.2 0.6 25 0.4 0.8 100 0.4 0.4 25 0.4 0.4 100
0.6 0.8 25 0.6 0.2 100 0.4 0.8 25 0.4 0.6 100
0.8 0.8 25 0.6 0.8 100 0.6 0.4 25 0.6 0.2 100

1.0 0.2 25 0.8 0.8 100 1.0 0.2 25 1.0 0.6 100
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Appendix B

Table B1 presents the mathematical formulas of the nine
rules evolved.

Table B1
Evolved dispatching rules for each set of training problems

497

SETUPI12 (% —SP—SD—(nXSD>

i

Pi

d; x SP
X[((SD—SP)X(p,-+d,~))+ (SD><n

SD
+2*(2><n)*SD+dl-*p,-*(TX(pi7SP)>

)+(SPXd;XnX(n—pi+SP))]

SETUP25  ((p; +SD) —d; — (nXd;) + (3XSD) — n) X ((d; Xn) = (n X SD)) — (n X p;) + ((p; + n) X n X (SP + SD) X (SP — (2 X p; X n) — p;))

(pi — SP)

SETUP50
4+ pi— @xSP) + [sDx Li >
(4= o+ (spx (g

— (2Xp; XSP) = ((n + p;) X SP))

SETUP100 ((n> + p?) X ((p; X SP) + SD) X SP) — d; + ((SP + d;) X d; X SD)

))x(l +(2Xd) + (X SD)) X (3% SD) — SP — (n X p; X (9 + py))

SETVARL " ((SP + SD) x nx SD) + SD + SP) X ((n + (m))Xdi) + (2>< ((g) + SP)X”XP?)

(SP —n)

SETVAR2

Sp

n X SP

(SDxdix(SP—n))x(g-i——) _
SETVARS3 S (((4><SP) —@xd) - (ﬂ) —n)xdi) + (p X SP) + (1 — d) X (p; + (2X )

SETVAR4

A (n(SD — SP) X p; X d;
SP SD

Sp +(@2Xd)+ (p; Xn)

D
SETVARS  (gp2 % p) + (n X SP) — SD + (((SP - S—) Xp,-) + SD) x (
n

42

(d; + pi)

nXd;

i

d

(n><p,-><((n3><sp)+n—pi))+(di><(SD2—n))—(SPXn)+(SP><SD)+p,-2—SP+(2xP,-><SD2)—(4><SD2)—(7")

(SP + n)

) X (1 + p; + d) X d) + (o, X SP))

References

[1] Dimopoulos C, Zalzala AMS. Recent developments in evolution-

ary computation for manufacturing optimisation: problems, solu-

tions and comparisons. IEEE Trans Evol Comput 2000;4(2):93—

113.

Kirkpatrick S, Gelatt Jr, C D, Vecchi MP. Optimisation by simulated

annealing. Science 1985;220:671-9.

[3] Glover F. Tabu search: a tutorial. Interfaces 1990;20(3):74-94.

[4] Garces-Perez J, Schoenefeld DA, Wainwright RL. Solving facility
layout problems using genetic programming. In: Koza, Goldberg,
Fogel, Riolo, editors. Genetic Programming 1996: Proceedings of
the Ist Annual Conference. Cambridge, MA: MIT Press, 1996.
p. 182-90.

[2

[5]

[6

=

[7

—

[8

=

[9]

McKay BM, Willis MJ, Hiden HG, Montague GA, Barton GW. Iden-
tification of industrial processes using genetic programming In: Fris-
well, Mottershead, editors. Proceedings of the Conference on
Identification in Engineering Systems, University of Wales, Swansea,
UK, 1996. p. 510-9.

Potts CN, Van Wassenhove LN. A decomposition algorithm for the
single machine total tardiness problem. Oper Res Lett
1982;1(5):177-81.

Lawer EL. A pseudopolynomial algorithm for sequencing jobs to
minimise total tardiness. Ann Discrete Math 1997;1:331-42.
Lenstra JK, Rinnooy Kan AHG, Lageweg BJ. Complexity of machine
scheduling problems. Ann Discrete Math 1997;1:343-62.

Du J, Leung JY-T. Minimising total tardiness on one machine is
NP-hard. Math Oper Res 1989;15(3):483-95.



498 C. Dimopoulos, A.M.S. Zalzala / Advances in Engineering Software 32 (2001) 489—-498

[10] Srinivasan V. A hybrid algorithm for the one machine sequencing
problem to minimize total tardiness. Naval Res Logistics Q
1971;18(3):317-27.

[11] Elmaghraby SE. The one machine sequencing problem with delay
costs. J Industrial Engng 1968;19(2):105-8.

[12] Baker KR, Schrage LE. Finding an optimal sequence by dynamic
programming: an extension to precedence-related tasks. Oper Res
1978;26(1):111-20.

[13] Schrage LE, Baker KR. Dynamic programming solution of sequen-
cing problems with precedence constraints. Oper Res
1978;26(3):444-9.

[14] Bellman RE, Dreyfus SE. Applied dynamic programming. Princeton,
NJ: Princeton University Press, 1962.

[15] Fry TD, Vicens L, Macleod K, Fernadez S. A heuristic solution
procedure to minimize total tardiness. J Oper Res Soc
1989;40:293-7.

[16] Holsenback JE, Russel RM. A heuristic algorithm for sequencing on
one machine to minimize total tardiness. J Oper Res Soc 1992;43:53—
62.

[17] Holsenback JE, Russel RM. Evaluation of greedy, myopic and less-
greedy heuristics for the single-machine, total tardiness problem.
J Oper Res Soc 1997;48:640-6.

[18] Panwalkar SS, Smith ML, Koulamas. A heuristic for the single
machine tardiness problem. Eur J Oper Res 1993;70:304-10.

[19] Cramer NL. A representation for the adaptive generation of simple
sequential programs. In: Grefenstette JJ, editor. Proceedings of the 1st
International Conference on Genetic Algorithms and their Applica-
tions. Hillsdale, NJ: Lawrence Erlbaum, 1998. p. 183-7.

[20] Fujiki C, Dickinson J. Using the genetic algorithm to generate LISP

source code to solve the prisoner’s dilemma. In: Grefenstette JJ,
editor. Proceedings of the 2nd International Conference on Genetic
Algorithms and their Applications. Hillsdale, NJ: Lawrence Erlbaum,
1987. p. 236-40.

[21] KozaJR. Genetic programming: on the programming of computers by
means of natural selection. Cambridge, MA: MIT Press, 1992.

[22] Nordin P. A compiling genetic programming system that directly
manipulates machine code. In: Kinnear Jr. KE, editor. Advances in
genetic programming, Cambridge, MA: MIT Press, 1994. p. 311-31.

[23] Teller A, Veloso M. PADO: a new learning architecture for object
recognition. In: Ikeuchi, Veloso, editors. Visual learning. Oxford:
Oxford University Press, 1996. p. 81-116.

[24] Banzhaf W, Nordin P, Keller RE, Francone FD. Genetic program-
ming: an introduction. San Francisco, CA: Morgan Kaufman, 1998.

[25] Blackstone JH, Philips DT, Hogg CL. A state of the art survey of
dispatching rules for manufacturing job shop operations. Int J Prod
Res 1982;20:27-45.

[26] Haupt R. A survey of priority rule-based scheduling. OR Spektrum
1989;11(1):3—16.

[27] Emmons H. One machine sequencing to minimise certain function of
job tardiness. Oper Res 1968;17(4):701-15.

[28] Montagne GR. Sequencing with time delay costs. Industrial Engineer-
ing Research Bulletin, Arizona State University, 1969; 5.

[29] Dimopoulos C, Zalzala AMS. A genetic programming heuristic for
the one-machine total tardiness problem, Proceedings of the Congress
on Evolutionary Computation (CEC’99), Washington, DC, vol. 3.
New York: IEEE Press, 1999. p. 2207-14.

[30] Koza JR. Genetic programming II: automatic discovery of reusable
programs. Cambridge, MA: MIT Press, 1994.



