N,
i

st

ELSEVIER

Pattern Recognition
Letters

Pattern Recognition Letters 23 (2002) 14391448 = —

www.elsevier.com/locate/patrec

Character preclassification based on genetic programming

C. De Stefano ®, A. Della Cioppa °, A. Marcelli **

% Dipartimento di Automazione, Elettromagnetismo, Ingegneria dell’ Informazione e Matematica Industriale, Universita di Cassino,
Via Marconi, 10, 03043 Cassino (FR), Italy
® Dipartimento di Ingegneria dell’ Informazione ed Ingegneria Elettrica, Universita di Salerno, Via Ponte don Melillo, 84084
Fisciano (SA), Italy

Abstract

This paper presents a learning system that uses genetic programming as a tool for automatically inferring the set
of classification rules to be used during a preclassification stage by a hierarchical handwritten character recognition
system. Starting from a structural description of the character shape, the aim of the learning system is that of producing
a set of classification rules able to capture the similarities among those shapes, independently of whether they represent
characters belonging to the same class or to different ones. In particular, the paper illustrates the structure of the
classification rules, the grammar used to generate them and the genetic operators devised to manipulate the set of rules,
as well as the fitness function used to drive the inference process. The experimental results obtained by using a set of
10,000 digits extracted from the NIST database show that the proposed preclassification is efficient and accurate,
because it provides at most 6 classes for more than 87% of the samples, and the error rate almost equals the intrinsic

confusion found in the data set. © 2002 Published by Elsevier Science B.V.

Keywords: Character recognition; Preclassification; Genetic programming

1. Introduction

The recognition of handwritten characters in-
volves identifying a correspondence between the
pixels of the image representing the sample to be
recognized and the abstract definitions of char-
acters (models or prototypes). The prevalent
approach to solve the problem is that of imple-
menting a bottom—up process for extracting and
combining many pieces of information (features)
that are eventually used to build up the models for
each class. During the classification, such models

* Corresponding author.

are compared with the input sample according to
the adopted classification method for deciding to
which class the sample belongs. Due to the ex-
treme variability exhibited by samples produced by
a large population of writers, pursuing such an
approach often requires the use of a large number
of prototypes for each class, in order to capture the
distinctive features of different writing styles,
and rather complex classification algorithms. The
combination of complex classification methods
with a large set of prototypes has a dramatic effect
on the classifier: a larger number of prototypes
requires a higher discriminating power, which, in
turn, requires more sophisticated methods and
algorithms to perform the classification.

0167-8655/02/$ - see front matter © 2002 Published by Elsevier Science B.V.

PII: S0167-8655(02)00104-6

1440 C. De Stefano et al. | Pattern Recognition Letters 23 (2002) 1439-1448

For this reason, we have investigated the pos-
sibility of using a preclassification technique whose
main purpose is that of reducing the number of
classes to be considered when classifying an input
sample. Such a reduction affects both the perfor-
mance of the classifier and its computational cost.
As with respect to the performance, lowering the
number of classes leads to a simpler classification
problem, thus reducing the risk of confusing the
right class with a wrong one. The reduction of
the computational cost follows immediately
from the reduction of the number of prototypes,
although it is counterbalanced by the cost involved
by the preclassification itself. The general problem
of reducing a classifier computational cost has
been faced since the 70’s in the framework of
statistical pattern recognition (Fukunaga and
Narendra, 1975) and, more recently, within shape-
based methods for character recognition (Marcelli
and Pavlidis, 1994; Marcelli et al., 1997). The large
majority of the preclassification methods for
character recognition proposed in the literature
belongs to one of two categories, depending on
whether they adopt a different set of features or
a different classification strategy, with respect to
those adopted during the classification (Mori et al.,
1984).

In this paper, developed within the framework
of an evolutionary approach to character recog-
nition (De Stefano et al., 1999), we present a novel
preclassification method that uses genetic pro-
gramming (GP) as a tool for learning a set of clas-
sification rules (prototypes) that describe specimen
belonging to one or more actual classes. To this
purpose, starting from a graph-based representa-
tion of the character shape, we compute a simpler
description in terms of a feature vector. Such a
vector is composed of as many elements as the
types of primitives and of spatial relationships
among them that can be used to describe a sample,
and each element of the feature vector counts the
occurrence of each feature found in the sample.
Consequently, a prototype is represented by a set
of assertions connected by Boolean operators,
each assertion specifying the constraints on the
occurrence of a feature. The proposed preclassifier
works in two different modes. During an off-line
unsupervised training phase, an initial population

of randomly generated prototypes is evolved ac-
cording to the GP paradigm in order to produce
the set of prototypes that achieves the maximum
coverage of the training set. At the end of the
training, to each prototype is associated the list of
the classes covered by that prototype. In such a list
are included all the classes whose samples satisfy
the constraints expressed by the prototype. At run
time, after the feature extraction, the feature vec-
tor is computed for a given sample and matched
against the prototypes. The desired preclassifica-
tion is thus obtained by assigning to the sample
the list of the classes associated to the simplest
matching prototype.

Let us remark that, due to the discrete nature of
our feature space and to the meaning of the fea-
tures, the distance between the points in this space
does not necessarily reflect the shape similarity.
Therefore, none of the methods based on distance
evaluation, such as principal component analysis,
K-means clustering and so on, can be used. An
approach similar to the one followed by us has
been very recently proposed (Teredesai et al.,
2001). In that study, developed on the basis of a
multi-level feature extraction method, GP is aimed
at selecting the optimal set of features, i.e. the
set of features able to maximize the separability
among the classes to be recognized. Our method,
on the contrary, uses GP at a coarser classification
level, to capture the similarities among character
shapes, independently of the classes the characters
belong to.

The paper is organized as follows. Section 2 il-
lustrates the character shape description scheme
and how it is reduced to a feature vector. In Section
3 we present our approach and its implementa-
tion, while Section 4 reports the experimental re-
sults. Concluding remarks are eventually left to
Section 5.

2. From character shape to feature vector

In the framework of structural methods for
pattern recognition, the most common approach is
based on the decomposition of an initial repre-
sentation of the sample into elementary parts, each
of which can be described in a simple manner. In

C. De Stefano et al. | Pattern Recognition Letters 23 (2002) 1439-1448 1441

this way a character is described in terms of a set
of parts interrelated by more or less complex links.
Such a structure is then described by a sentence of
a language or by a relational graph. Accordingly,
the classification is performed by parsing the sen-
tence, so as to establish its accordance with a given
grammar, or by a graph matching technique, in
order to decide which prototypical graph is the
most similar to the sample one. In our case, we
have opted for a graph-based description and the
actual procedure to compute it is articulated into
three main steps: skeletonization, decomposition
and description (Chianese et al., 1989). During the
first step, the character skeleton is computed by
means of a MAT-based algorithm, while in the
following one it is decomposed in parts, each one
corresponding to an arc of a circle which we have
selected as our primitive. Eventually, each arc
found within the character is described by the
following features:

e size, referred to the size of its bounding box;

e span, represented by the angle spanned by the
arc;

o direction, represented by the oriented direc-
tion of the normal to the chord subtended by
the arc.

The spatial relations among the arcs are com-
puted with reference to arc projections along both
the horizontal and vertical axis of the character
bounding box. In order to further reduce the
variability still present among samples belonging
to the same class, the descriptions of both the arcs
and the spatial relations are given in discrete form:

size: small, medium, large;

span: closed, medium, wide;

direction: N, NE, E, SE, S, SW, W, NW;
relation: over, below, to-the-right, superim-
posed, included.

Those descriptions are then encoded into a
feature vector of 76 elements. The first 63 elements
of the vector are used to count the occurrences of
the different arcs that can be found within a
character, the following 13 elements describe the
set of possible relations among them (Cordella

et al., 1995). It is worth noting that the adopted
description does not specify the way the arcs are
connected to each other, but only that a connec-
tion of a certain type exists. Therefore, characters
whose shapes can be decomposed in terms of the
same types and number of features will be encoded
into the same feature vector. This could happen,
for instance, in case of samples of digits ‘6’ and ‘9’
both described in terms of one loop and one
straight segment, lying one atop of the other.

3. Learning explicit classification rules

As mentioned in the introduction, the proto-
types to be used for the preclassification are given
in terms of classification rules. Since classification
rules may be thought of as computer programs, a
natural way for introducing them into our learning
system is that of adopting the GP paradigm (Koza,
1992, 1994). Such a paradigm combines genetic
algorithms and programming languages in order
to evolve computer programs of dynamically
varying complexity (size and shape) according
to a given defined behavior. According to this
paradigm, populations of computer programs are
evolved by using the Darwin’s principle that
evolution by natural selection occurs when the
replicating entities in the population possess the
heritability characteristic and are subject to genetic
variation and struggle to survive.

Typically, GP starts with an initial population
of randomly generated programs composed of
functionals and terminals especially tailored to
deal with the problem at hand. The performance
of each program in the population is measured by
means of a fitness function, whose form also de-
pends on the problem. After the fitness of each
program has been evaluated, a new population is
generated by selection, recombination and muta-
tion of the current programs, and replaces the old
one. Then, the whole process is repeated until a
termination criterion is satisfied.

In order to implement such a paradigm, the
following steps have to be executed:

e definition of the structures to be evolved;
e choice of the fitness function;

1442 C. De Stefano et al. | Pattern Recognition Letters 23 (2002) 1439-1448

e choice of the selection method and definition of
the genetic operators.

3.1. Structure definition

The implementation requires a program gener-
ator, providing syntactically correct programs,
and an interpreter, for executing them.

The program generator is based on a grammar
written for S-expressions. A grammar ¥ is a qua-
druple ¥ =(7,7",S,%), where J and 7 are
disjoint finite alphabets. 7 is the terminal alpha-
bet, v" is the non-terminal alphabet, S is the start
symbol, and 2 is the set of production rules used
to define the strings belonging to the language,
usually written as v — w where v is a string on
(7 U¥") containing at least one non-terminal
symbol, and w is an element of (7 U ¥")". For the
problem at hand, the set of terminals is the fol-
lowing:

T ={ay,az,...,a16,0,1,...,9,(,), A\, V,~, <, <,
=>, =1}

and the set 7~ is composed as follows:

v ={4,X,I,M,C,B},

where a; is a variable atom denoting the ith ele-
ment in the feature vector, and the digits 0,1,...,9
are constant atoms used to represent the value of
each element in the feature vector. It should be
noted that the above sets satisfy the requirements
of closure and sufficiency (Koza, 1992). The
adopted set of production rules is given in Table 1.

Each prototype in the initial population is
generated starting with the symbol S that, ac-

Table 1

The grammar for the random rules generator
Production Production rule Probability
rule no.
1 S—4 1.0
2 A — CBC|(CBC)|(IMX) 0.25/0.25|0.5
3 I —ay|---|az Uniform
4 X —0[1]---19 Uniform
5 M-<|<|=]2|> Uniform
6 C—A|~A4 Uniform
7 B — V|A Uniform

cording to the above grammar, can be replaced
only by the symbol 4 (rule 1). The symbol A can
be replaced by any recursive combination of logi-
cal expressions whose arguments are the occur-
rences of the elements in the feature vector.
Therefore, each prototype corresponds to a binary
tree where the leaves correspond to IMX clauses,
while nodes correspond to Boolean operators. The
data structure used by GP to encode the tree is a
string. An example of a prototype and its internal
representation is shown in Fig. 1. It is worth not-
ing that, in order to avoid the generation of very
long individuals, the probability of selecting the
clause /M X is higher than the probability of se-
lecting any other clause that appears in the second
production rule listed in Table 1.

Finally, the interpreter is implemented by an
automaton that computes Boolean functions, i.e.
an acceptor. Such an automaton computes the
truth value of the rules in the population with re-
spect to the samples.

3.2. Fitness function
The next step to accomplish is the definition of

a fitness function to measure the performance of
the prototypes. To this purpose, it should be noted

(a3 >=3) V ((ag =4) A ~(ay<2)

Fig. 1. An example of a prototype: the tree and the corre-
sponding string.

C. De Stefano et al. | Pattern Recognition Letters 23 (2002) 1439-1448 1443

that, as already mentioned in the Introduction, we
are looking for a set of prototypes that, all to-
gether, achieve the highest covering rate on the
training set.

In order to allow the evolution to produce a set
of different partial solutions (niches) rather than a
single one, as it happens with canonical evolu-
tionary algorithms, some kind of niching must be
incorporated at different levels into the fitness
function (Deb and Goldberg, 1989; Mahfoud,
1995; Booker et al., 1989; Forrest et al., 1993;
Horn et al., 1994). In our case, we have adopted
a niching mechanism based on resource sharing
(Forrest et al., 1993; Horn et al., 1994). According
to resource sharing the cooperation and competi-
tion among the niches is obtained as follows: for
each sample s; of the training set a subset P of
prototypes from the current population is selected,
and each prototype in the subset P is matched
against the sample s;. In our case, a prototype p
matches a sample s if and only if p covers s, i.e. the
values of the elements of the feature vector repre-
senting the sample satisfy the constraints expressed
in the prototype. Note that, according to such a
definition of covering, a feature not mentioned in
the prototype cannot be present in any sample
covered by that prototype. If there is only one
prototype matching the sample, it receives a pay-
off. In case that two or more prototypes satisfy
the match, the prototypes whose genotype is the
shortest one is selected as winner and receives the
payoff. In the case of a tie, the winner is randomly
selected among the deserving prototypes. At the
end of the cycle, the fitness of each prototype ¢(p)
is computed by adding all payoffs earned:

m

o) = c-ulp.s)

i=1

where m is the number of samples in the training
set, u(p,s;) is a function that returns 1 if p is the
winner for the sample s; and 0 otherwise, and ¢ is
the payoff. The criterion of selecting as winner the
prototype whose genotype is the shortest one takes
into account two main aspects: (i) the purpose of
prototyping is that of capturing the distinctive
features while neglecting the irrelevant ones; it
is obvious that between two (or more) prototypes

covering a given sample, selecting the simplest one
ensures a higher level of distinctiveness; (ii) the
prototypes are inferred during an unsupervised
training whose purpose is that of maximizing the
coverage of the training set; therefore, longer pro-
totypes have higher probability of earning payoffs.
As a consequence, if not counterbalanced, the
learning would produce very long prototypes
covering many samples belonging to many differ-
ent classes, thus lacking in distinctiveness. These
two aspects recall the Occam’s razor principle of
simplicity closely related to Kolmogorov Com-
plexity definition (Li and Vitanyi, 1993; Conte
et al., 1997), i.e. ““if there are alternative explana-
tions for a phenomenon, then, all other things being
equal, we should select the simplest one”.

3.3. Selection and genetic operators

The selection mechanism is responsible for
choosing among the prototypes in the current
population the ones that undergo genetic manip-
ulation for producing the new population. In this
study we have used the Stochastic Universal
Sampling mechanism, in that it helps the mainte-
nance of the discovered niches (Baker, 1987).

As regards the mutation operator, we perform
both micro- and macro-mutation. The micro-
mutation is applied whenever the symbol selected
for mutation is any terminal but a bracket, and it
is responsible for changing the type of the feature,
its occurrence and its constraints, as well as the
Boolean operators. Therefore, it resembles closely
the classical point-mutation operator.

In order to show how the micro-mutation
works, let us consider the following string:

(a3 = 3) AN (N ((110 < 2) V (053 = 1))

and suppose that the symbol selected is a;o. Such
a symbol is replaced by the non-terminal symbol
I thus leading to the string:

(a3 Z3)AN(~ T <2)V(as3 = 1))

This string is then manipulated according to the
grammar to obtain the new string (in such a pro-
cess the probability of selecting the original symbol
has been set to zero):

1444 C. De Stefano et al. | Pattern Recognition Letters 23 (2002) 1439-1448

I—ay= (a3 =3)N(~(au <2)V(as3 = 1))

The same action is performed if the symbol se-
lected is a digit, a relation operator or one of the
Boolean operators A and V, and it replaces the
symbol with one of the non-terminal symbols X,
M or B, respectively. Finally, if the selected symbol
is the ~ operator, it is simply deleted.

The macro-mutation is activated when the
symbol to be mutated is a bracket. In this case, the
relative subtree is selected and one of the following
mutually exclusive operations is performed:

o substitution: performed with probability p;, sub-
stitutes the selected subtree with another one
randomly generated according to the grammar
described in Section 3.1,

o insertion: performed with probability p;, allows
a new randomly generated subtree to be in-
serted in the selected one. To be accomplished,
it requires the selection of a Boolean operator
(A or V) for connecting a node of the selected
subtree and the newly generated one.

o deletion: performed with probability py, deletes
the selected subtree. It should be noted that
usually insertions and deletions are mutually
chosen with the same probability.

Obviously, such mutations are implemented in
a way that ensures the syntactic correctness of the
newly generated prototypes. It follows from the
above that the macro-mutation is responsible for
modifying the structure of the decision tree cor-
responding to each prototype in the same general
way as that implemented by the classical tree-
crossover operator. For this reason this operator is
not used here.

To illustrate how the macro-mutation operator
works, let us consider the string

((az < 3) A ((ag1 =4)V ~ (az1 < 2))) V(as; = 1)

and suppose that the symbol selected for mutation
is the first bold bracket and that the operation
selected is the substitution of the relative subtree.
Such a subtree is then replaced by the non-termi-
nal symbol A4, thus leading to the string:

((a3 <3)NA)V (as3 = 1)

Finally, such a string is modified according to
the grammar as follows:

A— (am > 2)
= ((a3 <3)A(ai0>2)) V(ass = 1)

If the operation selected is the insertion, the mac-
ro-mutation could generate the following string:

((a3 <3) A (AV ((ae1 =4V ~ (a3 < 2))))
Vi(ass = 1)

and, according to the grammar, the resulting string
may be the following:

A— (Cllo > 2) = ((a3 < 3) A (((110 > 2)\/
((ae1 =4)V ~ (a3 <2)))) V(a3 = 1)

Finally, if the operation selected is the deletion, the
macro-mutation generates the following string:

(a3 <)V (as3 = 1)

4. Experimental results

The ability of GP to generate classification rules
in very complex cases, like the one at hand, and the
preclassifier performance in terms of both effi-
ciency and accuracy have been evaluated through
a large set of experiments. The experiments were
performed on a data set of 10,000 digits extracted
from the NIST database and equally distributed
among the 10 classes. This data set was randomly
subdivided into a training and a test set, both in-
cluding 5,000 samples. Each character was de-
composed, described and eventually coded into a
feature vector of 76 clements, as reported in Sec-
tion 2.

It must be noted that the performance of a GP-
based system is heavily influenced by the values
of some parameters. We have divided this set of
parameters into external parameters, that mainly
affect the performance of the learning, and internal
parameters, that are responsible for the effective-
ness and efficiency of the search. As external pa-
rameters we have assumed the population size N,
the number of generations G and the maximum
depth D of the trees representing the rules in the
population. The internal parameters are the mu-

C. De Stefano et al. | Pattern Recognition Letters 23 (2002) 1439-1448 1445

tation probability p,, (for both micro- and macro-
mutation), the substitution probability p;, the in-
sertion probability p;, and the deletion probability
pa for macro-mutation, the number of rules n
competing for environmental resources in the re-
source sharing, and the maximum depth d of the
subtrees generated by the macro-mutation opera-
tor. The values for these parameters have been set
experimentally, and the results reported in the se-
quel have been obtained with N = 1000, G = 350,
D=10, p, =06, p,=08, pp=ps =02, n=N
and d = 3. We recall that the distributions used for
generating the random strings, both in the initial
population and in the mutation, are those reported
in Table 1.

As mentioned before, the first experiment was
aimed at evaluating the capability of the GP to
deal with complex cases such as the one at hand.
For this purpose, we have monitored the covering
rate €, i.e. the percentage of the samples belonging
to the training set covered by the set of prototypes
produced by the system during the learning. Let us
recall now that, according to the ultimate aim of
our work, the purpose of the learning is that of
inferring prototypes able to capture the shape
similarity among characters described by the
adopted set of features, independently of the ac-
tual classes they belong to. Therefore, the most
natural way to achieve the goal has been that of
implementing an unsupervised learning mecha-
nism, by providing the system with the feature
vectors of the samples in the training set, and al-
lowing the system to evolve the set of prototypes
for achieving the highest covering rate. To this aim
we have decided to stop the learning when either a
covering rate equal to 100% has been reached, or
when the maximum number of generations have
been performed. Moreover, we have performed 10
runs in order to reduce the randomness introduced
by the generation of the initial population.

The best recognition rate was 91.38%, while the
worst was 83.08%. The recognition rate averaged
over all the 10 runs was equal to 88.93%. In the
best case, there were only 431 samples in the
training set for which the system was unable to
generate or to maintain a suitable set of proto-
types with the time limit of 350 generations. The
experimental results reported in the following will

refer to the set of prototypes obtained in the best
run.

A first experiment to evaluate the robustness of
such a set of prototypes to shape variations was
performed by matching the samples in the test set
against those prototypes. Only 440 samples were
not matched while all the others were correctly
classified, yielding a recognition rate of 91.20%.
This result is very meaningful in that we observe a
loss of only 0.18% with respect to the recognition
rate obtained on the training set.

A second experiment was carried out to evalu-
ate the performance of the preclassifier. To achieve
this, we preliminarily labeled the prototypes ob-
tained at the end of the learning phase. The la-
beling was such that each time a prototype
matched a sample of the training set, the label of
that sample was added to the list of labels for that
prototype. At the end of the labeling, thus, each
prototype had a list of labels of the classes it
covered, as well as the number of samples matched
in each class.

A detailed analysis of these lists showed that
most of the prototypes covered many samples
belonging to very few classes and very few samples
belonging to many different classes. This was due
to “confusing” samples, i.e. samples belonging to
different classes but having the same feature vec-
tor, thus being indistinguishable for the system. In
the majority of the cases, the “confusing” samples
occur very frequently in some classes, and there-
fore represent a “typical” shape for those classes,
while they are very infrequent in other classes,
therefore representing ‘“‘atypical” (distorted or
noisy) instances for those classes. To reduce this
effect, the labels corresponding to the classes
whose number of samples covered by the proto-
type was smaller than a given percentage © of the
total number of samples covered by that prototype
were removed from the list. Finally, a set of clas-
sification experiments on the test set was per-
formed for different values of =, yielding to the
results reported in Table 2. Each row in Table 2
reports the recognition rate R and the percentage
of recognition rate ascribable to prototypes whose
list contains 1 or 2 (1,2), 3 or 4 (3,4), 5 or 6 (5,6), or
more (>6) classes. Eventually, the last column re-
ports the error rate E, i.e. the percentage of samples

1446 C. De Stefano et al. | Pattern Recognition Letters 23 (2002) 1439-1448

Table 2

The experimental results obtained on the test set
T R (1,2) (3,4) (5,6) (>6) E
0 0.912 0.187 0.147 0.180 0.486 0.000
1 0.908 0.210 0.234 0.182 0.374 0.004
2 0.898 0.301 0.214 0.252 0.233 0.014
3 0.887 0.340 0.219 0.329 0.112 0.025
4 0.873 0.350 0.307 0.335 0.008 0.039
5 0.860 0.394 0.325 0.273 0.008 0.052
6 0.851 0.411 0.365 0.216 0.008 0.061
7 0.838 0.445 0.401 0.154 0.000 0.074
8 0.812 0.515 0.420 0.065 0.000 0.100
9 0.800 0.579 0.377 0.044 0.000 0.112
10 0.780 0.704 0.285 0.011 0.000 0.132

covered by prototypes that do not contain the
proper class in their lists. To emphasize the effi-
ciency of the preclassifier, Fig. 2 shows the plots of
the recognition rates as function of the threshold 7.

The data reported in Table 2 confirm the
tradeoff between the accuracy (as measured by the
error rate) and the efficiency (as measured by the
number of possible classes provided for a sample)

of the preclassifier. The highest accuracy is reached
when 7 =0, since there are no errors, but the
efficiency of the preclassifier is very low, because
48.6% of the recognized samples are matched by
prototypes with more than 6 classes in their lists.
As far as m becomes larger, the efficiency of the
preclassifier improves at the expense of the accu-
racy: when passing from = = 0 to 4, the number of

80 -

Recognition rate

40

Threshold

Fig. 2. The recognition rates as function of the threshold =.

C. De Stefano et al. | Pattern Recognition Letters 23 (2002) 1439-1448 1447

samples matched by prototypes with more than 6
classes in their lists decreases from 48.6% to 0.8%,
but the error rate reaches 3.9%. If we assume as
measure of the efficiency of the preclassifier the
percentage of recognized samples covered by pro-
totypes whose lists contain at most 6 classes (i.e.
the preclassifier is efficient if it can screen out at
least 40% of the classes), the data in Table 2 show
that, roughly speaking, there is a 1:12 ratio be-
tween the loss in accuracy and the gain in effi-
ciency. They also show that when = passes from 0
to 4, the percentage of samples not actually pre-
classified (column 6) plus the error rate (column 7)
steadily decreases from 48.6% to 4.7%. On the
contrary, for n > 4 the efficiency gain a further
0.8%, but the error rate increases from 3.9% to
13.2%. Therefore, the measure obtained adding
columns 6 and 7 steadily increases from 6% to
13.2%. In other words, as it is even more evident in
Fig. 2, the value = =4 represents the best com-
promise between accuracy and efficiency.

5. Conclusions

In this paper we have presented a novel pre-
classification method that uses GP as a tool for
learning a set of prototypes able to capture the
similarities among character shapes even if the
characters belong to different classes. The pro-
posed method adopts a fine-to-coarse description
scheme, whose bottom level is a graph-based rep-
resentation of the character shape, while the top
level is a feature vector composed of as many el-
ements as the types of arcs and of spatial rela-
tionships that can be used to describe a character
shape. Since only the feature vector is used for the
preclassification, a prototype is represented by a
set of assertions, connected by Boolean operators,
each one specifying the constraints on the occur-
rence of a feature. The prototypes are obtained by
means of an unsupervised learning implemented
according to the genetic programming paradigm
and eventually labeled with the classes to which
the samples covered by that prototype belong.

The experimental results reported in the previ-
ous section allow for two concluding remarks. The
first one is that GP is very appealing in developing

hierarchical handwritten character recognition
systems, because it may produce prototypes at
different level of abstraction, depending on the
way the system is trained. The results of the first
experiment show that the system was not able to
achieve a covering rate of 100%, but this can be
explained by noticing that the feature vectors
representing the uncovered 431 samples corre-
sponded to “isolated” points in the feature space,
and therefore the niching mechanism was unable
to find enough resource to populate and maintain
the corresponding niches. An 100% covering rate
could be achieved by increasing the population size
and the number of generations, but such an in-
crease will, in turn, result in a higher computa-
tional cost of the learning. On the other hand, the
system in its current configuration already exploits
all the information available in the training set,
since, as it has been reported in the previous sec-
tion, the covering rate remains practically un-
changed when measured on the test set.

The second remark is that the learning system
developed by us, although it does not receive in-
formation on which nodes are connected by which
arcs in the original graph, therefore making use of
only a fraction of the information carried by the
character shape, is highly efficient and accurate.
Since the classification is performed by matching
the unknown sample against the whole prototype
set to determine the winner, reducing the number
of classes reduces the number of prototype to
consider, thus resulting in an overall reduction of
the classification time. It is also accurate, because
the highest efficiency is achieved with an error rate
of 13.22%, that almost equals the amount of
“confusing” samples of the training set, i.e. sam-
ples belonging to at least 5 different classes but
represented by the same feature vectors.

References

Baker, J.E., 1987. Reducing bias and inefficiency in the selection
algorithm. In: Grefenstette, J.J. (Ed.), Genetic algorithms
and their applications: Proc. Second Int. Conf. on Genetic
Algorithms. Lawrence Erlbaum Association, Hillsdale, NJ,
pp. 14-21.

Booker, L.B., Goldberg, D.E., Holland, J.H., 1989. Classifier
systems and genetic algorithms. Artificial Intell. 40, 235-
282.

1448 C. De Stefano et al. | Pattern Recognition Letters 23 (2002) 1439-1448

Chianese, A., Cordella, L.P., De Santo, M., Marcelli, A.,
Vento, M., 1989. A structural method for handprinted char-
acter recognition. Lecture Notes Comput. Sci. 399, 289-302.

Conte, M., Trautteur, G., De Falco, 1., Della Cioppa, A.,
Tarantino, E., 1997. Genetic programming estimates of
Kolmogorov complexity. In: Béack, T. (Ed.), Proc. Seventh
Int. Conf. on Genetic Algorithms. Morgan Kaufmann, San
Francisco, CA, pp. 743-750.

Cordella, L.P., De Stefano, C., Vento, M., 1995. Neural
network classifier for OCR using structural descriptions.
Machine Vis. Appl. 8 (5), 336-342.

Deb, K., Goldberg, D.E., 1989. An investigation of niche and
species formation in genetic function optimization. In:
Schaffer, J.D. (Ed.), Proc. Third Int. Conf. on Genetic
Algorithms. Morgan Kaufmann, San Mateo, CA, pp. 42-50.

De Stefano, C., Della Cioppa, A., Marcelli, A., 1999. Hand-
written numerals recognition by means of evolutionary
algorithms, Proc. 5th Int. Conf. on Document Analysis and
Recognition, Bangalore, India, pp. 804-807.

Forrest, S., Javornik, B., Smith, R.E., Perelson, A.S., 1993.
Using genetic algorithms to explore pattern recognition in
the immune system. Evolution. Computat. 1 (3), 191-211.

Fukunaga, K., Narendra, P.M., 1975. A branch and bound
algorithm for computing k-nearest neighbors. IEEE Trans.
Comput. C 24 (7), 750-753.

Horn, J., Goldberg, D.E., Deb, K., 1994. Implicit niching in a
learning classifier system: Nature’s way. Evolution. Com-
putat. 2 (1), 37-66.

Koza, J.R., 1992. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. MIT Press,
Cambridge, MA, USA.

Koza, J.R., 1994. Genetic Programming II: Automatic Dis-
covery of Reusable Programs. MIT Press, Cambridge,
MA.

Li, M., Vitdnyi, P., 1993. In: An Introduction to Kolmogorov
Complexity and Its Applications, Text and Monographs in
Computer Science. Springer-Verlag, Berlin.

Mahfoud, S.W., 1995. Populations size and genetic drift in
fitness sharing. In: Whitley, L.D., Vose, M.D. (Eds.),
Foundations of Genetic Algorithms 3. Morgan Kaufmann,
San Francisco, CA, pp. 185-223.

Marcelli, A., Likhareva, N., Pavlidis, T., 1997. Structural
indexing for character recognition. Comput. Vis. Image
Understanding: CVIU 66 (3), 330-346.

Marecelli, A., Pavlidis, T., 1994. Using projections for preclas-
sification of character shape, in: Vincent, L., Pavlidis, T.,
(Eds.), Proc. SPIE Conf.—Document Recognition, vol.
2181. Los Angeles CA, 1994. pp. 4-13.

Mori, S., Yamamoto, K., Yasuda, M., 1984. Research on
machine recognition of handprinted characters. IEEE
Trans. Pattern Anal. Machine Intell. 6, 386-405.

Teredesai, A., Park, J., Govindaraju, V., 2001. Active hand-
written character recognition using genetic programming.
In: Miller, J.F., Tomassini, M., Lanzi, P.L., Ryan, C.,
Tettamanzi, A.G.B., Langdon, W.B. (Eds.), Lecture Notes
Comput. Sci. 2048, pp. 371-379.

