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Abstract

One of the major challenges in medical domain is the extraction of comprehensible knowledge

from medical diagnosis data. In this paper, a two-phase hybrid evolutionary classification technique is

proposed to extract classification rules that can be used in clinical practice for better understanding

and prevention of unwanted medical events. In the first phase, a hybrid evolutionary algorithm (EA) is

utilized to confine the search space by evolving a pool of good candidate rules, e.g. genetic

programming (GP) is applied to evolve nominal attributes for free structured rules and genetic

algorithm (GA) is used to optimize the numeric attributes for concise classification rules without the

need of discretization. These candidate rules are then used in the second phase to optimize the order

and number of rules in the evolution for forming accurate and comprehensible rule sets. The proposed

evolutionary classifier (EvoC) is validated upon hepatitis and breast cancer datasets obtained from the

UCI machine-learning repository. Simulation results show that the evolutionary classifier produces

comprehensible rules and good classification accuracy for the medical datasets. Results obtained

from t-tests further justify its robustness and invariance to random partition of datasets.

# 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Clinical medicine is facing a challenge of knowledge discovery from the growing

volume of data. Nowadays enormous amounts of information are collected continuously by

monitoring physiological parameters of patients. The growing amounts of data has made
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manual analysis by medical experts a tedious task and sometimes impossible. Many

hidden and potentially useful relationships may not be recognized by the analyst. The

explosive growth of data requires an automated way to extract useful knowledge. One

of the possible approaches to this problem is by means of data mining or knowledge

discovery from databases (KDD) [1,3]. Through data mining, interesting knowledge

and regularities can be extracted and the discovered knowledge can be applied in the

corresponding field to increase the working efficiency and to improve the quality of

decision making.

An important task in knowledge discovery is to extract comprehensible classification

rules from the data. Classification rules are typically useful for medical problems which

have been massively applied particularly in the area of medical diagnosis [10,27]. Such

rules can be verified by medical experts and may provide better understanding of the

problem in-hand. Numerous techniques have been applied to classification in data mining

over the past few decades, such as expert systems, artificial neural networks, linear pro-

gramming, database systems, and evolutionary algorithms [4,6,21,36,40,42]. Among these

approaches, evolutionary algorithms have been emerged as a promising technique in

dealing with the increasing challenge of data mining in medical domain [27]. The

evolutionary algorithm (EA) is a class of computational techniques inspired by the natural

evolution process that imitates the mechanism of natural selection and survival-of-the-

fittest in solving real life problems [24,35].

The genetic programming (GP) [20] and genetic algorithms [12] are two popular

approaches in evolutionary algorithms. Although, GP and GA are based on the same

evolution principle, they often adopt a different chromosome representation, e.g. GA uses a

fixed-length chromosome structure while GP applies a tree-based chromosome repre-

sentation. Recently, GA has been utilized at different stages of knowledge discovery

process in medical data mining applications. Kim and Han [18] and Liu et al. [22] applied

GA at the pre-processing stage to reduce the dimension/difficulty of the problem

and to increase the learning efficiency in data mining. Komosinski and Krawiec [19]

proposed an evolutionary algorithm for feature weighting that gives quantitative infor-

mation about the relative importance of the features. Hruschka and Ebecken [14] and

Meesad and Yen [23] used GA at the post-processing stage to extract rules from a neural

network. Other GA approaches for generating classification rules in data mining include

[7,8,38].

Brameier and Banzhaf [3] proposed a linear genetic programming (LGP) classification

approach for data mining in medical domain, but the issue of comprehensibility of the

classification rules has not been addressed. Wong and Leung [41] proposed a grammar-

based GP for constructing the classification rules. However, the grammar is domain

specific such that a new grammar has to be provided for each new problem, and the use

of grammar also reduces the autonomy of GP in discovering novel knowledge. To address

the issue of comprehensibility of classification rules, Bojarczuk et al. [2] proposed a

non-standard tree structure GP where functions are constructed via Boolean operators and

terminal sets are chosen based on Booleanized attributes. However, the numeric attributes

in this approach need to be discretized into nominal boundaries a priori in order to use the

Booleanized attributes. This restricts the search capability of GP, i.e. the classification

accuracy depends a lot on how well the boundaries were defined.
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One possible approach of handling both nominal and numeric attributes in evolutionary

data classification is through the hybridization of GA and GP. Howard and D’Angelo [13]

proposed a hybrid GA and GP called genetic algorithm-program (GA-P), which has been

applied to evolve expressions for symbolic regression problems. In their approach, GP

was used to construct expression tree and GA was applied to find numeric constant and

coefficient of nominal attributes in the expression. Although the GA-P utilized the

concept of GA and GP hybridization, it was designed for the regression application that

is different from the problem of data classification addressed in this paper. Unlike GA-P,

a two-phase evolutionary process is adopted in our approach, i.e. the hybrid evolutionary

algorithm is applied to generate good rules in the first phase, which are then used to evolve

comprehensible rule sets in the second phase.

Besides evolutionary algorithm-based approaches, a number of algorithms based on

artificial neural networks have also been applied to solve the classification problem in

medical diagnosis. However, one common problem of artificial neural networks is that they

are essentially a ‘‘black-box’’ system. Although good predictive accuracy can often be

achieved, the user is prevented from knowing what is going on inside the ‘‘black-box’’.

Setiono [31,32] proposed the approach of NeuralRule for rule extraction from artificial

neural networks, which attempts to extract comprehensible information while preserves

high accuracy of the network. Although the rule extraction algorithm is capable of

obtaining compact rule sets, it often needs an independent process of network training/

pruning and rules extraction in data mining. Taha and Gosh [34] proposed a BIO-RE

algorithm for extracting rules from artificial neural networks, but the approach can only be

applied to data with binary attributes. Peña-Reyes and Sipper [26] proposed the method

of fuzzy-genetic approach (GA) by applying genetic algorithm to generate fuzzy classi-

fication rules, which has reported good results on Wisconsin diagnostic breast cancer

(WDBC) dataset [33].

This paper proposes a two-phase hybrid evolutionary rule extraction algorithm that

incorporates both GA and GP to discover comprehensible classification rules for data

mining in medical applications. The paper is organized as follows: Section 2 gives an

overview of classification rule-learning in medical diagnostic problem. Section 3 describes

the proposed two-phase hybrid evolutionary classifier (EvoC) in detailed. The hepatitis and

breast cancer datasets are described in Section 4, and the classification results of the

proposed evolutionary classifier are compared with existing approaches. Conclusions are

drawn in Section 5.

2. Decision rules in classification

Given a set of labeled instances, the objective of classification is to discover the hidden

relations or regulations between attributes and classes. The classification rules are

extracted in the hope that they can be used to automate classification of future instances.

In the classification task, the discovered knowledge is usually represented in the form of

decision trees or IF–THEN classification rules, which has the advantage of being a high-

level and symbolic knowledge representation that contributes to the comprehensibility of

the discovered knowledge. In this paper, the knowledge is presented as multiple IF–THEN
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rules in a decision rule list or rule set. Such rules state that the presence of one or more

items (antecedents) implies or predicts the presence of other items (consequences). A

typical rule has the form of

rule : IF X1 and X2 and . . . Xn THEN Y

where Xi, 8i 2 f1; 2; . . . ; ng is the antecedent that leads to a prediction of Y, the

consequence. Each of the IF–THEN rules can be viewed as an independent piece of

knowledge. New rules can be added to an existing rule set without disturbing those already

there, and multiple rules can be combined together to form a set of decision rules. The basic

structure of the decision rule list could be built as follows:

IF antecedent1 THEN class1

ELSE IF antecedent2 THEN class2

..

.

ELSE classdefault

Such format of rule list plays an important role in medical applications, especially for

medical diagnosis where the classification task is to determine the type of disease in the

diagnostic problem for a given set of attributes of patients. When the rule list is evaluated or

used to classify a new instance, the first rule (topmost) will be considered first. If the rule

does not match the instance (i.e. not able to classify the instance), the next rule will be

considered. The matching process is repeated until a corresponding rule is found. In the

case where none of the rules in the rule list matches the new instance, the new instance

will be classified as the default class, which is usually the largest class in the dataset. In our

approach, the default class is evolved concurrently with the rule sets to promote the

flexibility and possibility of producing good rule sets.

3. A two-phase hybrid evolutionary classifier

In this paper, the classification task is formulated as a complex search optimization

problem, where hidden relationships of the attributes to class are targeted knowledge to be

discovered. The candidate solution that is in the form of a comprehensible Boolean rule set

is obtained through a two-phase evolution mechanism as shown in Fig. 1. The first phase

searches for a pool of good candidate rules using Michigan coding approach [24], while the

second phase finds the best Boolean rule set by evolving and forming rule sets from the

pool of rules. Since rule sets with different number of rules are targeted in the second phase,

Pittsburgh coding approach [24] is used to encode the individuals. In the proposed

evolutionary classifier, the optimal number of rules in a rule set is decided automatically

in the second phase, which is advantageous to many approaches where the number of rules

in a rule set often needs to be determined a priori [17,26,28].

The proposed two-phase evolutionary classifier also confines the usually large classi-

fication search space and consequently requires a smaller population and generation size.

In this way, the inherent problem of Pittsburgh’s coding method in finding the usually large

combination of classification rules is greatly reduced, e.g. it is relatively easy to find good
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Fig. 1. Overview of the two-phase hybrid evolutionary classifier.
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combination of rules in the second phase since the number of rules obtained in the first

phase is confined and essential to the problem. For example, the population and generation

size was set as 200 and 2500, respectively, in [26]. In our approach, the population size is

set as 100 in the first phase and 50 in the second phase, and the generation size is set as 100

and 50 in the first and second phase, respectively.

3.1. Phase 1: the hybrid GA–GP

The evolutionary classifier, namely EvoC, has been implemented by the authors and

integrated into the Java-based public domain data mining package ‘WEKA’ [11,40]. Fig. 2

shows the phase 1 of the program flowchart of EvoC, where the initial population is created

from the training set. The attributes in the training set are built into nominal and numeric

table for GP and GA, respectively. Each individual encodes a single rule and the population

is structured such that all individuals are associated to the same class. This structure avoids

the need of encoding the class values, i.e. the THEN part of the rules is encoded implicitly

in the individuals.

The tournament selection scheme [1] with a tournament size of 2 is implemented in

EvoC. When a new population is formed, the token competition [41] is applied as a

covering algorithm to penalize redundant individuals as well as to retain individuals that

cover the problem space well [15]. The winners in the token competition will be added to a

pool of candidate rules and the pool is maintained such that no redundant rules may exist

and the previously encountered good rules are kept for subsequent competitions. All

individuals in the pool including the current population are participated in the token

competition in order to ensure that no redundant rules exist in the pool.

The evolutionary process in phase 1 is run for every class of dataset. For an n class

problem, there will be n evolutionary iterations. The pool of rules for every class is

combined into a global pool, which will be presented as the input to the second phase. Each

individual in the first phase contains two different chromosome structures, which are

treated separately in the evolution and assigned to handle the nominal and numeric

attributes. The chromosome structure, genetic operations and handling techniques of EvoC

in phase 1 are described in the following sections.

3.1.1. Chromosome structure and genetic operations

The weather dataset shown in Table 1 is used as an example to show how the proposed

hybrid GA–GP works on different types of attributes. The objective of the dataset is to learn

whether a specific game can be played on a given weather. Each of the columns in Table 1

represents an attribute. The last column is the class attribute to be learned. Each of the rows

represents an instance, and the collection of instances forms the dataset. For the weather

dataset, the ‘‘Outlook’’ and ‘‘Windy’’ are nominal attributes, while the ‘‘Temperature’’ and

‘‘Humidity’’ are numeric attributes.

The genetic programming tree-based chromosome representation has been used to

encode nominal attributes that are Booleanized, and many logical operators have been

applied to evolve highly flexible solutions in classification problems [2,36]. However, the

difficulty of integrating general arithmetic operators with Booleanized attributes in GP

limits the flexibility of handling real-world data that often consists of both the nominal and
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numeric attributes [15]. One passive approach is to discretize the numeric attributes into

boundaries at the expense of lower classification accuracy for the rules found. To address

this problem, the approach of having independent chromosomes to handle numeric

attributes in data classification is adopted in this paper. Since the representation of

fixed-length chromosome with numeric genes in genetic algorithms is well-suited for

Fig. 2. The program flowchart for the phase 1 of EvoC.
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numerical optimization [12], it is used in EvoC to deal with the numeric attributes in the

classification.

(A) GP chromosome structure: The selection of functions and terminals is the

preparatory step in genetic programming [20]. In EvoC, two Boolean operators

are adopted as functions, i.e. ‘AND’ and ‘NOT’. These two functions are sufficient to

build a basic classification rule in the form of ‘‘IF antecedent1 AND (NOT

antecedent2) AND . . . THEN consequence.’’ The classification rules that are built of

‘AND’ and ‘NOT’ can then be combined to form the decision rule set (the ‘OR’

effect). The terminal set contains all possible attribute–value pairs for a given

dataset. For example, the possible attribute–value pairs could be outlook—overcast,

outlook—sunny, outlook—rainy, windy—TRUE or windy—FALSE for the weather

dataset. To avoid redundant or conflicting nodes exist in the same tree, these

terminals are built into a table and only one attribute–value pair can be selected from

each attribute entry for a tree structure. The initial population in GP is created with

the approach of ‘ramped-half-and-half’ [20].

(B) GA chromosome structure: The fixed-length real-coding chromosome structure is

adopted in GA [12]. The range of each numeric attribute is represented by two

real-coded genes: one encodes the upper bound and the other the lower bound. As

depicted in Fig. 3, the Mth ðM � NÞ and ðM þ NÞth genes encode the range of

the Mth numeric attribute. In the initial population, the lower and upper bound of

each attribute is initialized as the corresponding minimum and maximum, respec-

tively. For example, in the weather problem, the minimum and maximum of the two

numeric attributes ‘‘Temperature’’ and ‘‘Humidity’’ is (64, 85) and (70, 96), respec-

tively. Therefore, the initialization of chromosomes is given as (64, 70, 85, 96).

Obviously, such an approach starts the evolution with generality and subsequently

searches for specificity. Since nominal attributes consist of a finite number of values,

their hidden relationships are often easier to be discovered. Based on this assumption,

Table 1

The weather dataset

Outlook Temperature Humidity Windy Play

Sunny 85 85 False No

Sunny 80 90 True No

Overcast 83 86 False Yes

Rainy 70 96 False Yes

Rainy 68 80 False Yes

Rainy 65 70 True No

Overcast 64 65 True Yes

Sunny 72 95 False No

Sunny 69 70 False Yes

Rainy 75 80 False Yes

Sunny 75 70 True Yes

Overcast 72 90 True Yes

Overcast 81 75 False Yes

Rainy 71 91 True No
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Fig. 3. The chromosome structure in GA.
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the above initialization is adopted to give nominal attributes a higher priority. As

the evolution process, the range of certain numeric attributes will shrink and the

corresponding nominal parts will improve accordingly to produce better classification

accuracy.

(C) Mutation and crossover: Since the GP in EvoC only deals with nominal attributes,

standard tree-based crossover and mutation operators are employed in the GP [20].

However, a specialized mutation operator is used in GA in order to avoid annoyance

rules such as age � 45.23. The values of every numeric attributes of the dataset to be

learned are stored in a table, and the mutation is performed by fetching a random

corresponding value from the table and replaces the value of the attribute in the

chromosome. Standard single-point crossover where two parents exchange their

genes from a random position to reproduce the offspring is adopted in GA [12]. It

should be noted that these genetic operators utilized data in the available datasets for

the lower and upper bounds of the attributes, which not only makes the best use of

information in the datasets, but also guarantees the meaningfulness of the final rules

produced by EvoC.

3.1.2. Automatic attribute selection

Although a dataset often contains many attributes, it is common that only a fraction of

the attributes will appear in a single rule. For example, a rule for the weather dataset may be

in the form of ‘‘IF outlook ¼ sunny and humidity 
 83, THEN play ¼ no,’’ where only two

out of the five attributes are considered in this rule. This characteristic of rules seems to be

counterintuitive to the fixed-length chromosome structure of GA, where all numeric

attributes are considered in the evolution. If chromosomes in the GA are converted to rules

directly, all the numeric attributes will be included in the rules which may result in the

redundant rules. Such contradiction, however, could be overcome by studying the

characteristic of chromosomes in GA for succinct presentation of rules.

Suppose a candidate individual in the solution produces a rule in the form of ‘‘IF outlook

¼ sunny and 64 � temperature � 85 and 83 � humidity � 96, THEN play ¼ no.’’ Since

‘64’ and ‘85’ are the lower and upper limits of the temperature, it casts no restrictions on all

data samples and thus the temperature condition will be discarded from the rule. This

observation is also applicable to the humidity attribute. Since ‘96’ is the upper limit of

humidity, all the instances whose humidity are higher than ‘83’ will satisfy this condition.

Hence, ‘96’ is unnecessary and will also be excluded from the rule. After these operations,

the final concise rule becomes ‘‘IF outlook ¼ sunny and humidity 
 83, THEN play ¼ no.’’

3.1.3. Fitness function

When a rule or individual is used to classify a given training instance, one of the four

possible concepts can be observed: true positive (tp), false positive (fp), true negative (tn)

and false negative (fn). The true positive and true negative are correct classifications, while

false positive and false negative are incorrect classifications. For a two-class case, with class

‘yes’ and ‘no’, the four concepts can be easily understood with the following descriptions:

� true positive: the rule predicts that the class is ‘yes’ (positive) and the class of the given

instance is indeed ‘yes’ (true);
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� false positive: the rule predicts that the class is ‘yes’ (positive) but the class of the given

instance is in fact ‘no’ (false);

� true negative: the rule predicts that the class is ‘no’ (negative) and the class of the given

instance is indeed ‘no’ (false);

� false negative: the rule predicts that the class is ‘no’ (negative) but the class of the given

instance is in fact ‘yes’ (true).

Using these concepts, the fitness function used in the first phase of EvoC is defined as

fitness ¼ w � tp

tp þ fn
� 1 þ tn

tn þ fp

� �
(1)

with

w ¼ N

N þ fp
(2)

where N is the total number of instances in the training set and w a penalty factor. The value

of the fitness function is in the range of 0–2. The fitness value is 2 (the fittest) when all

instances are correctly classified by the rule, i.e. when fp and fn are 0. A penalty factor w

that tends to minimize fp is included in the fitness function to evaluate the quality of the

combined individuals in the rule set. This is because Boolean sequential rule list (where

rules are considered one after another) is very sensitive and tends to have a large number of

false positives (fp) due to the virtual ‘OR’ connections among the rules, e.g. when a rule

with large fp is considered first in a rule list, many of the instances will be classified

incorrectly.

3.1.4. The covering algorithm

The covering algorithm employs the token competition [41] to promote the diversity and

to evolve multiple rules in the first phase of EvoC. Multiple rules that cover the same

instances in the training set often increase the tendency of premature convergence in the

evolution. In most cases, only a few of these multiple rules are useful and cover most of the

instances while others are redundant. To achieve the optimal performance for the rule list

evolver in the second phase, all rules that are able to cover at least one instance in phase 1

will be retained in the pool of candidate rules, which are maintained by the covering

algorithm.

3.2. Phase 2: the rule set evolver

In the phase 1 of EvoC, the hybrid GA–GP approach is applied to find good classification

rules in a usually complex search space. The approach is a Michigan-style algorithm where

classification performance of the rule set is not needed for fitness evaluations. Although the

token competition can serve as a rule selection mechanism, e.g. rules that fail to seize any

token (a token represents an example in the dataset) will be eliminated, a Pittsburgh-like

approach is required in the second phase in order to find the optimal order and number

of rules in a rule set from the pool of candidate rules evolved in phase 1. To determine

the optimal number of rules in a rule set, the population in phase 2 is divided into several
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sub-populations, where each sub-population is dedicated to optimize the order of rules with

a given rule number. For example, if the number of rules in the candidate pool is n, then

there will be n sub-populations and the ith sub-population will be evolved to optimize the

rule set containing i rules.

After the initialization, each sub-population will be evolved independently and there is

no interaction among the sub-populations. At the end of the evolution, each sub-population

outputs its ‘best’ candidate rule set, which will compete (based on the classification

accuracy) with the ‘best’ rule sets generated by other sub-populations to obtain the final

optimal rule set. In this approach, the order and number of rules in the rule sets can be

optimized and determined simultaneously. To retain concise rule sets in the classification, a

shorter rule set is preferable to a longer one even if both achieved the same classification

accuracy. All rules obtained in the first phase of EvoC are given an index and these rules

will be selected randomly to build up the rule sets. Fig. 4 depicts the initialization of two

chromosomes having three rules set and six rules set, respectively. Similar to the GA in

phase 1 of EvoC, standard single-point crossover and tournament selection schemes are

adopted in phase 2. The mutation operation is performed by randomly selecting a rule from

the pool of candidate rules to replace the rule for mutation. In phase 2, the fitness function

considers the classification accuracy on the training set as given by,

fitness ¼ tp þ tn

N
(3)

where N is the total number of instances in the training set.

4. Evolutionary knowledge discovery in medical diagnosis

4.1. The medical diagnosis datasets

The medical diagnosis datasets used in this study are the hepatitis dataset and breast cancer

diagnosis databases obtained from University of California, Irvine (UCI) machine-learning

Fig. 4. Example of chromosomes initialization in the phase 2 of EvoC.
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repository at http://www.ics.uci.edu/
mlearn/MLRepository.html. The hepatitis dataset

was collected at Carnegie-Mellon University [5] and donated to UCI ML repository in

1988. The two breast cancer diagnosis datasets, i.e. Wisconsin breast cancer database

(WBCD) and Wisconsin diagnostic breast cancer (WDBC), were collected at different

periods of time with different attributes recorded [33]. The former was donated to UCI ML

repository in 1991, while the latter was in 1995 for public access. For both breast cancer

datasets, the classification task is to determine case of benign or malignant from the

physical attributes of cell given in the datasets. The characteristics of these datasets are

briefly described as follows:

(A) The hepatitis dataset (HEPA): The hepatitis dataset is summarized in Table 2, which

consists of 155 instances. Each instance consists of 19 attributes, namely age, sex,

steroid, antivirals, fatigue, malaise, anorexia, liver big, liver firm, spleen palpable,

spiders, ascites, varices, bilirubin, alk phosphate, SGOT, albumin, protime and

histology. This problem includes both nominal and numeric attributes, which is

particularly suitable for verifying the performance of EvoC. The HEPA is a complex

and noisy dataset since it contains a large number of missing data. The class is

distributed with 32 (20.65%) DIE samples and 123 (79.35%) LIVE samples. The

classification task is to predict whether a patient with hepatitis will live or die.

(B) The Wisconsin diagnostic breast cancer (WDBC): The WDBC dataset is summarized

in Table 3 and consists of 569 instances. Each instance consists of 10 real-valued

attributes of the nuclear for the cancer cell, namely radius, texture, perimeter,

area, smoothness, compactness, concavity, concave points, symmetry and fractal

Table 2

Summary of the HEPA dataset

Attribute Possible values

Age Integer 1–80

Sex Male, female

Steroid No, yes

Antivirals No, yes

Fatigue No, yes

Malaise No, yes

Anorexia No, yes

Liver big No, yes

Liver firm No, yes

Spleen palpable No, yes

Spiders No, yes

Ascites No, yes

Varices No, yes

Bilirubin 0.39, 0.80, 1.20, 2.00, 3.00, 4.00

Alk phosphate 33, 80, 120, 160, 200, 250

SGOT 13, 100, 200, 300, 400, 500

Albumin 2.1, 3.0, 3.8, 4.5, 5.0, 6.0

Protime 10, 20, 30, 40, 50, 60, 70, 80, 90

Histology No, yes

Class DIE (20.65%), LIVE (79.35%)
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dimension. These attributes are modeled such that higher values are typically

associated with malignancy. The mean, worst (mean of the three largest values), and

standard error of each attribute were computed for the original dataset, resulting in a

total of 30 attributes. In this study, however, only the mean values were considered in

the rule extraction process. Detailed description of these 10 attributes is available

from [33]. All the instances have been properly recorded and there is no missing

value in this dataset. The diagnosis class is distributed with 357 (62.7%) benign

samples and 212 (37.3%) malignant samples.

(C) The Wisconsin breast cancer database (WBCD): The WBCD dataset is summarized

in Table 4 and consists of 699 instances taken from fine needle aspirates (FNA) of

human breast tissue. Each instance consists of nine measurements (without

considering the sample’s code number), namely clump thickness, uniformity of cell

size, uniformity of cell shape, marginal adhesion, single epithelial cell size, bare

nuclei, bland chromatin, normal nucleoli, and mitoses. The measurements are

assigned an integer value between 1 and 10, with 1 being the closest to benign and 10

Table 3

Summary of the WDBC dataset

Attribute Possible values Description

Radius Real Mean of distances from center to points on perimeter

Texture Real Standard deviation of gray-scale values

Perimeter Real –

Area Real –

Smoothness Real Local variation in radius lengths

Compactness Real Perimeter2/area � 1.0

Concavity Real Severity of concave portions of the contour

Concave points Real Number of concave portions of the contour

Symmetry Real –

Fractal dimension Real ‘‘Coastline approximation’’ � 1.0

Diagnosis Benign (62.7%),

malignant (37.3%)

–

Table 4

Summary of the WBCD dataset

Attribute Possible values

Clump thickness Integer 1–10

Uniformity of cell size Integer 1–10

Uniformity of cell shape Integer 1–10

Marginal adhesion Integer 1–10

Single epithelial cell size Integer 1–10

Bare nuclei Integer 1–10

Bland chromatin Integer 1–10

Normal nucleoli Integer 1–10

Mitoses Integer 1–10

Class Benign (65.5%), malignant (34.5%)
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the most anaplastic. Associated with each sample is its class label, which is either

benign or malignant. This dataset contains 16 instances with missing attributes’

values. Since many classification algorithms have discarded these data samples, for

the ease of comparison, the same way is followed and the remaining 683 samples are

taken for use. Therefore, the class is distributed with 444 (65.0%) benign samples

and 239 (35.0%) malignant samples.

4.2. Simulation settings

The EvoC was implemented in Java programming based on the Java Developers Kit

(JDK 1.3.1) from Sun Microsystems. The simulations were performed using an Intel

Pentium III 933 MHz processor with 512 MB SDRAM. To ensure the validity and

replicability of the results, all experiments were designed carefully and all datasets used

by the EvoC were partitioned into two sets: a training set and a testing set (or validation

set). As indicated by Prechelt [29], the fuzzy specification of the partitioning of training

versus testing data is a big obstacle to reproduce or compare published machine-learning

results. It is insufficient to only indicate the number of examples for each set in the partition

since the experimental results may vary significantly for different partitions even if the

numbers in each set are the same [43]. In this work, a total of 100 simulation runs were

performed for each of the three medical datasets, and a random seed1 that is similar to the

number of runs (i.e. the 50th simulation run uses a random seed of 50) was used to

randomize the orders of data in the datasets. Each randomized dataset was then partitioned

into 66% of training data and 34% of testing data as follows:

� for the hepatitis dataset, the first 102 examples are used for the training set and the

remaining 53 examples for the testing set;

� for the WDBC dataset, the first 376 examples are used for the training set and the

remaining 193 examples for the testing set;

� for the WBCD dataset, the first 451 examples are used for the training set and the

remaining 232 examples for the testing set.

Table 5 lists the parameter settings of EvoC used in the simulations. The maximum

initial depth and maximum crossover depth are GP specified control parameters, which are

used to control the complexity of GP trees during the evolution. The parameter settings in

Table 5 were applied to all experiments in this work, which should not be taken as the

optimal set of parameters for each problem, but rather a generalized one for which the

EvoC performs well over a number of different datasets.

4.3. Simulation results

Table 6 summarizes the classification results produced by EvoC over the 100 inde-

pendent simulation runs for both the training and testing datasets. To obtain a better

1 The random number generator used in the experiments is provided by Sun’s JDK 1.3.1 and the dataset

randomizer used is provided by WEKA. Different partitioning of datasets might be resulted under different

programming environments.
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understanding of the classification performances for the different simulations, the histo-

grams that summarize the experiment results of the three datasets are shown in Figs. 5–7.

For all the histograms, the classification performance axis indicates the classification

accuracy achieved by the different number of rule sets obtained over the 100 independent

simulation runs.

Tables 7–9 list the classification rules having the highest predictive accuracy (i.e. the

classification accuracy on the testing dataset) for the three medical datasets. Besides

the fitness value, support factor and confidence factor are also provided to measure the

performance of each rule. The support factor measures the coverage of a rule, which is

the ratio of the number of instances covered by the rule to the total number of instances.

The confidence factor measures the accuracy of a rule. For a rule ‘‘IF X THEN Y’’ and a

training set of N instances, the support factor and confidence factor are given as

support ¼ number of instances with both X and Y

N
(4)

confidence ¼ number of instances with both X and Y

number of instances with X
(5)

Table 5

The setting of parameters in EvoC

Parameters Parameter description Phase 1 Phase 2

MaxInitDepth The permitted depth of GP tree in initialization 6 –

MaxCrossoverDepth The permitted depth of GP tree after crossover 17 –

ReproductionProb The probability of an individual that will be copied

to the next generation without changes

0.1 –

MutationProb The probability of mutation 0.5 0.1

CrossoverProb The probability of crossover 0.9 0.8

MaxGeneration The generation number for the evolution 100 50

PopulationSize The population size for the evolution 100 50

Table 6

Summary of the results in EvoC over the 100 independent simulation runs

Classification accuracy HEPA WDBC WBCD

Training

Maximum (%) 90.20 96.28 99.33

Minimum (%) 79.41 91.22 96.23

Mean (%) 85.04 94.36 97.80

S.D. (%) 1.76 0.91 0.51

Testing

Maximum (%) 94.34 96.37 99.13

Minimum (%) 75.47 88.60 95.26

Mean (%) 83.92 93.04 97.57

S.D. (%) 4.03 1.47 0.85

Average number of rules 2.93 9.74 5.99
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Fig. 5. The performance of EvoC for the HEPA problem: (a) training; (b) testing.
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Fig. 6. The performance of EvoC for the WDBC problem: (a) training; (b) testing.
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Fig. 7. The performance of EvoC for the WBCD problem: (a) training; (b) testing.
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Table 7

The best rule set of HEPA with an accuracy of 94.34%

No. Rule Fitness Support

factor

Confidence

factor

1 IF Fatigue ¼ yes 1.2338 0.1961 0.5128

AND Age 
 30.0

AND ALK phosphate � 280.0

AND Albumin � 4.3

AND Protime � 46.0

THEN Class ¼ DIE

2 IF Anorexia ¼ no 1.0912 0.5588 0.8636

AND Bilirubin � 1.8

AND SGOT � 420.0

THEN Class ¼ LIVE

3 IF Spiders ¼ yes 1.2989 0.1765 0.6667

AND Age 
 30.0

AND 62.0 � ALK phosphate � 175.0

AND Albumin � 4.3

AND Protime � 85.0

THEN Class ¼ DIE

4 ELSE Class ¼ LIVE

Table 8

The best rule set of WDBC with an accuracy of 96.37%

No. Rule Fitness Support

factor

Confidence

factor

1 IF Radius � 14.95 1.6774 0.5479 0.9763

AND Perimeter � 116.1

AND Concavity � 0.313

AND Concave points � 0.04908

THEN Diagnosis ¼ benign

2 IF Radius 
 13.0 1.5315 0.3032 0.8769

AND Texture 
 15.76

AND Perimeter 
 74.72

AND Area 
 572.6

AND Concavity 
 0.03885

AND Concave points 
 0.02402

THEN Diagnosis ¼ malignant

3 IF Radius � 17.01 1.5876 0.5931 0.8956

AND Perimeter � 116.1

AND Concavity � 0.1122

AND Concave points � 0.1265

THEN Diagnosis ¼ benign

4 ELSE Diagnosis ¼ malignant
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A careful examination of the relationship between the predictive accuracy of a rule set

and its number of rules reveals an interesting finding. The rule sets with a large number of

rules will not necessarily lead to high predictive accuracy, although they generally

provide good performances on the training sets. It can also be observed that the first few

rules in a rule set often cover a large portion of the samples and left relatively few samples

for the remaining rules. Therefore when the dataset is not noise-free, a large number of

rules may cause over-fitting and leads to poor generalization. For example, in the WBCD

problem, all of the best six rule sets that achieve a predictive accuracy of above 99%

only contain an average of four rules. However, the four largest rule sets (all of which

contain more than 15 rules) only produce an average accuracy of 97.75% on the testing

samples.

4.4. Performance comparisons

This section compares the performance of EvoC with three popular machine-learning

algorithms, i.e. C4.5, PARTand Naı̈ve Bayes. These algorithms are briefly described below:

� The C4.5 proposed by Quinlan [30] is a landmark decision tree program that has been

widely used in practice.

� The PART is a rule-learning scheme capable of generating classification rules [9].

� The Naı̈ve Bayes utilizes the Bayesian techniques, which has been studied by many

machine-learning researchers [16].

Table 9

The best rule set of WBCD with an accuracy of 99.13%

No. Rule Fitness Support

factor

Confidence

factor

1 IF Clump thickness � 8.0 1.8702 0.6186 0.9789

AND Uniformity of cell shape � 8.0

AND Marginal adhesion � 3.0

AND Bare nuclei � 5.0

AND Bland chromatin � 7.0

AND Normal nucleoli � 8.0

THEN Class ¼ benign

2 IF Uniformity of cell shape 
 3.0 1.739 0.3459 0.8571

AND Single epi cell size 
 2.0

AND Bland chromatin 
 2.0

THEN Class ¼ malignant

3 IF Clump thickness � 8.0 1.783 0.5898 0.9779

AND Uniformity of cell size � 4.0

AND Bland chromatin � 3.0

AND Normal nucleoli � 9.0

AND Mitoses � 1.0

THEN Class ¼ benign

4 ELSE Class ¼ malignant
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Besides comparing the average results and standard deviations of the algorithms over the

100 simulation runs, a paired t-test [25] has also been performed, since the comparison

results may be affected by the distribution, noise or partition of datasets. In addition, the

best results for the three datasets available in the literature2 according to the authors’ best

knowledge are also provided in the comparisons. Table 10 lists the P-values of the paired

t-tests against the algorithms of C4.5, PART and Naı̈ve Bayes for the three datasets. As can

be seen, the P-values are rather small showing that the EvoC has outperformed the

approaches of C4.5, PART and Naı̈ve Bayes with a great confidence.

(A) Comparison results for the HEPA dataset: Wang et al. [39] proposed an evolutionary

rule-learning algorithm, called GA-based fuzzy knowledge integration framework

(GA-based FKIF), which utilized genetic algorithms to generate an optimal or near-

optimal set of fuzzy rules and membership functions from the initial population of

knowledge. As shown in Table 11, only the best result produced by this algorithm is

compared with EvoC since the average performance of GA-based FKIF was not

provided in [39]. The P-values of the paired t-tests on HEPA dataset as listed

in Table 10 (EvoC versus C4.5: P ¼ 1:36 � 10�12; EvoC versus PART: P ¼
5:56 � 10�10; EvoC versus Naı̈ve Bayes: P ¼ 0:31) show that the EvoC outperforms

C4.5 and PART, and is comparable to Naı̈ve Bayes based on the average results over

the 100 simulation runs when the level of significance a is set as 0.005.

(B) Comparison results for the WDBC dataset: Table 12 compares the results from

EvoC, C4.5, PART, and Naı̈ve Bayes for the WDBC dataset. It can be seen that the

Table 10

The P-values of the paired t-tests against C4.5, PART and Naı̈ve Bayes

Algorithm HEPA WDBC WBCD

C4.5 [30] 1.362 � 10�12 3.545 � 10�2 1.607 � 10�32

PART [9] 5.565 � 10�10 2.364 � 10�3 2.990 � 10�30

Naı̈ve Bayes [16] 0.313 2.644 � 10�9 1.302 � 10�17

Table 11

The comparison results for the HEPA dataset

Algorithm Number

of rules

Time (s) Average

accuracy (%)

Best

accuracy (%)

S.D. (%)

EvoC 2.93 4.84 � 105 83.92 94.34 4.03

C4.5 [30] 5.85 <1 78.94 90.57 4.84

PART [9] 6.64 <1 80.02 94.34 4.98

Naı̈ve Bayes [16] – <1 83.62 94.34 4.90

GA-based FKIF [39] – – – 92.9 –

2 Recently, the WBCD dataset is widely adopted by many machine-learning algorithms in the medical

domain. Therefore comparisons between different algorithms based on this dataset are relatively more

comprehensive than the other two datasets studied in this paper.
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EvoC produces competitive classification accuracies, besides giving the smallest

standard deviation among all methods. In addition, the P-values of the paired t-tests

on WDBC dataset as listed in Table 10 (EvoC versus C4.5: P ¼ 3:54 � 10�2; EvoC

versus PART: P ¼ 2:36 � 10�3; EvoC versus Naı̈ve Bayes: P ¼ 2:64 � 10�9) show

that the EvoC outperforms the algorithms of C4.5, PART and Naı̈ve Bayes based on

the average results over the 100 simulation runs when the level of significance a is

set as 0.05.

(C) Comparison results for the WBCD dataset: Peña-Reyes and Sipper [26] proposed a

fuzzy-genetic approach by combining fuzzy logic and evolutionary algorithms to

form a diagnostic system. In the total of 120 evolutionary runs [26], 78 runs led to

fuzzy systems with accuracies exceed 96.5% and 8 runs with accuracies exceed

97.5%. As shown in Table 13, only the three best performances of fuzzy-genetic

approach are comparable to the average results of 97.57% by EvoC. Moreover, the

average performance of fuzzy-genetic approach over the 120 runs is 96.02%, which

is only slightly better than the worst rule sets (with a predictive accuracy of 95.26%)

generated by EvoC. If only the best results are considered, a four-rule fuzzy system

achieves the predictive accuracy of 98.24%, which is lower than the best predictive

accuracy of 99.13% by EvoC.

The EvoC has also been compared with the NeuralRule approach proposed by Setiono

[32], which is capable of extracting classification rules from trained neural networks.

Setiono [32] trained 200 neural networks in total and after pruning the network to 95 and

98% accuracies on the training set, an accuracy of 95.44 and 96.66% was achieved on the

testing set, respectively. In terms of the best results produced by the pruned networks,

Table 12

The comparison results for the WDBC dataset

Algorithm Number

of rules

Time (s) Average

accuracy (%)

Best

accuracy (%)

S.D. (%)

EvoC 9.74 4.50 � 105 93.04 96.37 1.47

C4.5 [30] 10.06 <1 92.61 97.93 1.98

PART [9] 6.23 <1 92.35 97.41 1.65

Naı̈ve Bayes [16] – <1 91.56 95.37 2.01

Table 13

The comparison results for the WBCD dataset

Algorithm Number

of rules

Time

(s)

Average

accuracy (%)

Best

accuracy (%)

S.D. (%)

EvoC 5.99 3.35 � 105 97.57 99.13 0.51

C4.5 [30] 8.99 <1 95.09 97.84 1.16

PART [9] 9.03 <1 95.33 98.28 1.16

Naı̈ve Bayes [16] – <1 96.37 98.28 0.89

NeuroRule—rule 3 [32] 5 – – 98.24 –

Fuzzy-GA4 [26] 4 – 96.02 98.24 –
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NeuralRule achieves an accuracy of 98.25% on the testing set, which is lower than the best

predictive accuracy of 99.13% by EvoC.

Although the EvoC is capable of evolving comprehensible classification rules with good

generalization performance, it often requires extensive computational effort as compared

to existing approaches. The EvoC is generally developed for off-line data classification,

which could be useful for many applications where the training time is less important

than the generalization in classification. To reduce the computational effort significantly,

the EvoC is currently being integrated into the ‘Paladin-DEC’ distributed evolutionary

computing framework [37], where multiple inter-communicating subpopulations will be

implemented to share and distribute the classification workload among multiple computers

over the Internet.

5. Conclusions

A two-phase hybrid evolutionary classifier capable of extracting comprehensible

classification rules with good accuracy in medical diagnosis has been proposed in this

paper. In the first phase, genetic programming has been applied to evolve nominal attributes

for free structured rules while genetic algorithms have been used to optimize the numeric

attributes for concise classification rules without the need of discretization. The second

phase then formulates accurate rule sets by optimizing the order and number of rules in the

evolution based upon the pool of confined candidate rules obtained in the phase 1. The

proposed evolutionary classifier has been validated upon one hepatitis and two breast

cancer datasets, which are representative real-world data collected to aid the prognosis and

diagnosis of disease. Simulation results show that the EvoC produces comprehensible and

good classification rules for the three medical datasets. Results obtained from the t-tests

further justify its robustness and invariance to random partition of datasets.
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