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Abstract

This paper describes a new method for creating polynomial regression models. The

new method is compared with stepwise regression and symbolic regression using three

example problems. The first example is a polynomial equation. The two examples that

follow are real-world problems, approximating the Colebrook–White equation and

rainfall-runoff modelling. The three example problems illustrate the advantages of the

new method.
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1. Introduction

This paper describes a new regression method for creating polynomial

models. The new technique, referred to as the hybrid method, combines the

parameter optimisation of numerical regression methods with the evolutionary

search of symbolic regression. The hybrid method is compared with two es-

tablished regression methods, symbolic regression and stepwise regression in
three example problems.
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1.1. Modifications to symbolic regression

The new regression method includes changes to the basic genetic pro-

gramming algorithm first proposed by Koza [1]. There are several difficulties
with symbolic regression based on genetic programming. The original tech-

nique makes use of non-adjustable constants, referred to as ephemeral random

constants. The constants do not necessarily assume optimal values as in nu-

merical regression methods. The use of non-adjustable constants contributes to

the complexity of expressions as well as the inaccuracy. Previous research has

proposed methods to improve on ephemeral random constants. McKay et al.

[2] included two adjustable parameters in each expression and Watson and

Parmee [3] used micro-evolution to evolve constant values within expressions.
The algorithm described in this paper uses the method of least squares to

obtain parameter values.

Another problem with symbolic regression is ‘‘bloat’’ that results from

the inclusion of non-functional code, or introns, within expressions (see

Refs. [4,5]). Code bloat causes the genetic programming search process to

become ineffective after approximately 50 generations. (The limit of 50 gen-

erations is a crude generalisation. For more information on introns and

code bloat, see Ref. [4].) Smith [5] describes categories of introns and explains
why bloat occurs. Smith [5] also describes a variety of approaches to con-

trolling code growth including the prevention and removal of introns, parsi-

mony pressure in the fitness function, restricting crossover, and the use of

alternative selection schemes. Babovic and Keijzer [6] and Keijzer and Babovic

[7] have developed a method that improves on symbolic regression by evalu-

ating the dimensions or units of the resulting output value. The method re-

quires solution equations to approximate the dimensions as well as the values

of target data. The method also includes a technique that fine tunes constant
values. Although the method is specifically aimed at producing mathematical

models that are more logical and coherent, the approach reduces the com-

plexity of resulting expressions and the problems associated with code bloat as

a side effect.

In addition to non-adjustable constants and code bloat, the original sym-

bolic regression method can produce expressions with hidden complexity.

Due to the property of distribution of multiplication into addition, expres-

sions created by symbolic regression can undergo a combinatorial explosion
in the number of terms in the expression when expanded algebraically.

The combinatorial explosion can be so severe that the number of parameters

in regression equations produced by the algebraic expansion of these expres-

sions can greatly exceed the number of observations in large data sets. A

method that uses adjustable parameters in place of ephemeral random con-

stants runs the risk of producing underdetermined functions due to this

problem.
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2. Methods

2.1. The hybrid method

The new method described in this paper, referred to as the hybrid method,

overcomes the problems of non-adjustable parameters, code bloat and the

creation of underdetermined functions. However, the new approach restricts

the wide range of operators normally used in symbolic regression to a subset

consisting only of addition, multiplication and non-negative integer powers.

The expressions that result from the limited set of operators are forms of

polynomials. A rule-based program consisting of 56 rules algebraically trans-

forms all expressions produced through the evolutionary process to the form of
the right hand side of Eq. (1):

ŷyi ¼
Xn

i¼1

aizij ð1Þ

where ŷyi is the value returned by the expression for the jth observation with

independent variables xj ¼ hx1jx2j . . . xdji; ai is an adjustable parameter for the

ith term in the expression; zij is a transformed variable, a unique product of the

independent predictor variables xj ¼ hx1jx2j . . . xdji raised to non-negative in-

teger powers; n is the number of terms in the expression; and d is the number of

independent predictor variables.

In addition to transforming all expressions to the polynomial form of Eq. (1)

the rule-based program eliminates all non-functional code (introns) produced
by evolutionary operations. Non-functional code includes expressions such as

terms formed by the product of zero and other coefficients. The rule base

simplifies expressions by evaluating terms and coefficients that consist entirely

of constants and replaces them with a single constant where possible. Once the

rule base has transformed the expressions to the required polynomial form the

program computes the optimal value for constants in the expression (adjust-

able parameters ai in Eq. (1)) by the method of least squares. Davidson et al. [8]

provides a description of the rule-based program and methods for optimising
adjustable constants.

Experience has shown that the methods for generating starting solutions

normally used in genetic programming, such as ‘‘ramped half’’ (see Ref. [1]),

occasionally produce solution equations that have an extremely large number

of terms when expanded algebraically due to the combinatorial problem ex-

plained previously. To avoid the problem a new method for generating starting

solutions creates short, two-term expressions in the form of Eq. (1). With

successive generations the equations grow to a maximum length specified
by the user in advance. The hybrid regression method also uses modified

operations of crossover and mutation rather than the conventional genetic
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programming operations. The new crossover operation cannot operate at any

location in the parse tree of an expression. Instead the new operation divides

expressions between terms in the summation and cannot operate within indi-

vidual terms. New mutation operations act to modify power values within
terms and occasionally create entirely new terms at random. The new evolu-

tionary operations avoid the problem of creating excessively large expressions

after algebraic expansion by the rule base. Solutions produced by the new

operators exhibit greater similarity to their parent solutions. The new crossover

operation produces child solutions that are a sum of terms found in either of

the two parents. The new crossover operator can also impose limits on the

number of terms that appear in child solutions and thereby restrict the maxi-

mum size of expressions, controlling the rate by which the length of expressions
grows.

As mentioned previously the expressions in the starting population consist

of only two terms. As the search progresses the maximum number of terms

gradually increases causing the length of expressions to increase to a specified

maximum number of terms. Expressions are assessed on the basis of mean

square error (MSE). The program retains the best expression found for each

length from the best two term expression up to the best expression with the

maximum number of terms specified by the user. Accuracy of the best solu-
tions, as measured by MSE, improves with increasing length. This set of best

solutions represents the trade-off between accuracy and complexity (or com-

putational effort).

2.2. Stepwise regression

Stepwise regression is a popular and highly effective method for building

regression models. Draper and Smith [9] describe the stepwise regression al-

gorithm in greater detail and regard it as ‘‘one of the best variable selection

procedures.’’ The stepwise regression algorithm constructs the model through a

series of iterations. Each iteration consists of one of two procedures that either

adds a term to the model (referred to here as the selection procedure) or re-

moves a term (elimination). After a term is added or removed stepwise re-

gression optimises the values of coefficients (represented as ai in Eq. (1)) using
the method of least squares similar to the hybrid regression method described

in the previous section. The user of stepwise regression must specify a list of

transformed variables (vectors zi of which the terms zij in Eq. (1) are members)

that the procedure uses in creating the regression model. The transformed

variable added by the selection procedure is the term from the list that pro-

duces the model with the lowest MSE. Stepwise regression can be used to

construct expressions similar to Eq. (1) if the transformed variables in the list

consist of products of integer powers of the independent variables, xj. The use
of products of integer powers is not a necessary limitation of stepwise regres-
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sion. The transformed variables are restricted to integer powers for the ex-

amples presented in the paper to facilitate the comparison by restricting the

two methods to the same search space.

There are two approaches to stepwise regression, (1) stepwise selection and
(2) forward selection. Both methods begin by creating the best first-order linear

regression equation consisting of two terms, a single transformed variable and

a constant. As mentioned previously with each iteration the selection proce-

dure adds a term consisting of the product of a constant and a transformed

variable (aizij) to the model. The transformed variable selected is the one that

produces the greatest reduction in MSE.

Forward selection is the simpler form of stepwise regression. Both methods

add terms to the model from the list by iterations of the selection procedure.
Stepwise selection, the more complex procedure, can also remove terms on the

basis of t-statistics (or equivalent partial F-statistics) provided for each term by

the method of least squares (described in Ref. [9]). After each selection step the

elimination procedure of stepwise selection can remove the least significant

term from the regression model if one or more t-statistic falls below a minimum

level of significance specified by the user, usually corresponding to 95% or 99%

confidence. The algorithm then calculates a new set of coefficients and t-sta-

tistics and the elimination procedure repeats until all terms remaining in the
model exceed the minimum significance level. The forward selection method

also makes use of t-statistics. However, it examines only the most recent term

to enter the model. In the case of both methods if the most recently added term

falls below the minimum significance level the algorithm must terminate to

avoid cycling.

Stepwise selection is the more powerful of the two methods because the

significance of terms can change as new terms enter the model. A term that was

highly significant in a previous iteration can become superfluous as the model
grows. Forward selection is a simple best-first search or hill climbing technique.

Methods of this type are notorious for becoming trapped in local optima.

Although stepwise selection is able to undo selections made in previous iter-

ations it too can become trapped in a local optimum, as the first example

problem demonstrates.

2.3. Symbolic regression

The symbolic regression procedure is described in Ref. [1]. As mentioned

previously the method makes use of ephemeral random constants that have

values determined on initialisation, which can only be modified through mu-

tation. The method can make use of non-linear equation forms, a wide variety

of function types and even programming constructs such as ‘‘if-then’’ state-

ments. The commercial software package known as Discipulus Pro (Ref. [10])
was used to obtain the symbolic regression results for the first two example

J.W. Davidson et al. / Information Sciences 150 (2003) 95–117 99



problems in this paper. The third example used software developed by Poly-

honen and Savic [11]. Discipulus Pro implements the standard symbolic re-

gression algorithm with several enhancements including the ability to produce

code directly in machine language. Machine language expressions and the
absence of adjustable parameters result in very fast evaluation of expressions.

Execution times were a small fraction of those associated with stepwise re-

gression or the hybrid method. Searches conducted with symbolic regression

involved much larger populations and many more solution evaluations.

3. Example 1: a polynomial problem

This section of the paper compares the three methods using an example

problem for which the solution equation is known in advance. The data set for

a sample problem consists of three independent variables x1, x2 and x3 with

values selected randomly on an interval between 0 and 1, listed in Table 1. Eq.

(2) is the equation used to calculate the values of the dependent variable, y.

y ¼ 3x31x
2
2x3 þ 4x21x

2
2x3 þ 2x1x32x

2
3 ð2Þ

Table 1

Data points for example 1

x1 x2 x3 y

0.003198 0.050759 0.713179 5.01E)07
1.057343 0.026417 0.395321 0.002218

1.56941 1.752838 1.964279 194.6688

1.410636 1.121589 0.116711 2.459192

0.953305 0.017604 0.269427 0.000521

0.143245 1.561776 1.727959 3.641707

0.113425 1.345502 0.84109 0.475935

1.832543 1.701547 1.999461 256.8236

0.134863 1.506071 1.524166 2.4175

1.827083 1.728888 1.992118 263.406

1.425313 1.185431 0.265792 6.615073

0.19024 1.805963 1.820947 8.413532

1.955725 0.632706 0.933749 14.97103

0.514412 1.441612 1.255968 8.691103

1.539753 1.651683 1.954597 161.9761

0.873072 0.126997 1.450225 0.125535

0.627877 0.954501 0.016725 0.035649

1.977713 0.337065 1.970665 9.286923

1.736231 1.985806 0.219122 25.29245

1.199153 0.30488 1.997693 2.299873
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3.1. Combinatorics of the polynomial problem

The number of transformed variable terms available to stepwise regression

and the hybrid regression method depends on a maximum power value spec-
ified by the user. For this demonstration a maximum power value of 6 is ar-

bitrarily selected for both stepwise regression and the hybrid method. The

number of candidate transformed variables (342) is ðmþ 1Þd � 1 where m is the

maximum power value and d is the number of independent predictor variables.

For the first example problem it is possible to calculate the probability of

generating the correct solution at random. If an expression contains all of the

key terms least-squares optimisation reduces the coefficients of any other terms

to zero. It should be noted that superfluous coefficients are reduced to zero
only if the data do not contain random noise, the target function is polynomial

and all the key terms are included in the equation. When n is greater than the

length of the solution expression there are many possible expressions that

represent optimal solutions. The formula for the number of optimal expres-

sions, N0, with maximum length n is:

N0 ¼
Xn

i¼nt

ðmþ 1Þd � k � 1

i� k � 1

� �
ð3Þ

where k is the number of key terms; and nt is the length of the target expression.
The number of unique expression forms N with maximum length n is given

by:

N ¼
Xn

i¼2

ðmþ 1Þd � 1

i� 1

� �
ð4Þ

The probability of generating the optimal equation at random is represented

by N0=N . The probability improves with larger equations.

3.2. Results of the hybrid method

Three different values of maximum length of expressions were used with the
hybrid regression method. The values consisted of maximum lengths of 5, 7

and 14 terms. Table 2 lists the number of solutions required to produce the

optimal solution with each trial. The hybrid regression method was able to find

the correct solution by generating relatively few solutions. The rows at the

bottom of Table 2 list the mean, maximum and minimum number of solutions

generated for each of the three maximum lengths. The bottom row lists the

ratio of non-optimal solutions to optimal solutions, which represents the in-

verse of the probability of producing the solution by random generation. As
the maximum length restriction increases the probability of generating the

optimal solution at random improves greatly although the mean number of
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solutions required to find the optimal solution remains relatively unaffected.

For a maximum length of five terms the probability of producing the optimal

solution at random is 1 in 1,666,895 and the hybrid method required an av-

erage of 3010 evaluations to find the correct form.

3.3. The results of stepwise regression

Table 3 shows the results of forward selection and stepwise selection. Both
methods use 95% as the minimum significance for terms. Both methods fail to

find the optimal solution to the problem. Stepwise selection terminates at an 11

term model. The next term to enter falls below the 95% minimum significance

level. Forward selection includes ‘‘significant’’ terms until it reaches the limits

imposed by 20 data points. Forward selection models can include terms that

are below the 95% significance level. However, terms that enter must be above

95% significance during the iteration in which they are included.

Fig. 1 shows the value of MSE for the iterations in which the two stepwise
regression methods, stepwise selection and forward selection, produce different

results. The horizontal axis of Fig. 1 represents the number of parameters (or

the number of terms) in the expression and the vertical axis is the MSE. The

solid line represents solutions created by stepwise selection and the dashed line

represents forward selection. As Table 3 and Fig. 1 show, stepwise selection

and forward selection produce the same solutions for the first eight iterations,

at which point the solution consists of nine terms. Two terms in the nine term

expression have t-statistics that fall below the minimum significance level. At
this point the two methods begin to produce different solutions. The forward

Table 2

Number of solutions required by hybrid method for example 1

Trial Solutions required to find optimum

5 term maximum 7 term maximum 14 term maximum

1 1757 7052 2103

2 3502 5374 1617

3 3222 2183 1230

4 3558 1787 2058

5 1847 1782 2184

6 3011 2183 3213

7 2672 931 9879

8 1717 1064 1568

9 6697 1558 1789

10 2117 10,262 2294

Mean 3010 3417.6 2793.5

Maximum 6697 10,262 9879

Minimum 1717 931 1230

N=N0 1,666,895 333,414 23,325
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selection procedure continues to add terms to the expression as shown by the

dotted line in Fig. 1 because neither of the two insignificant terms was the last

to enter the model. Forward selection continues to add terms to the model until

the limit of 19 terms is reached without finding Eq. (2). Beyond this point the

value of MSE is undefined and beyond 20 terms the solution by least squares is

underdetermined, resulting in a singular matrix. Stepwise selection removes the

Table 3

Error and computational effort for stepwise regression in example 1

Iteration Forward selection Stepwise selection

Terms MSE Solutions Terms MSE Solutions

1 2 9.43321 342 2 9.43321 342

2 3 2.27646 683 3 2.27646 683

3 4 0.526472 1023 4 0.526472 1023

4 5 0.124819 1362 5 0.124819 1362

5 6 0.067219 1700 6 0.067219 1700

6 7 0.026446 2037 7 0.026446 2037

7 8 0.014747 2373 8 0.014747 2373

8 9 0.012181 2708 9 0.012181 2708

9 10 0.008397 3042 8 0.012016 3044

10 11 0.001344 3375 9 0.007634 3379

11 12 0.000442 3707 8 0.009168 3715

12 13 6.86E)05 4038 9 0.0012 4050

13 14 4.78E)05 4368 10 0.000521 4384

14 15 3.85E)05 4697 11 0.000473 4717

15 16 1.04E)05 5025

16 17 7.49E)06 5352

17 18 6.9E)07 5678

18 19 1.68E)08 6003

0

0.01

0.02

0.03

6 7 8 9 10 11 12 13 14

Parameters (p)

M
ea

n
Sq
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rr

or
(M

SE
)

Forward selection

Stepwise selection

Fig. 1. Stepwise regression solutions for example 1.
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least significant of the two terms in the nine term expression. In successive

iterations stepwise selection produces two alternative eight and nine term ex-

pressions with improved MSE values, then continues to add terms until it

creates an 11 term expression for which the last term to enter is an insignificant
term. To prevent cycling the algorithm must terminate at this point without

discovering the correct solution.

Fig. 1 shows that the best-first search strategy of forward selection overlooks

the better solutions that stepwise selection finds in the range between 8 and 11

terms. Through the process of eliminating insignificant terms stepwise selection

is able to explore more combinations of terms thereby producing better ex-

pressions without increasing the length of the expressions produced. However,

the process of exploring combinations of terms does not continue long enough
to discover the correct form of the equation. In contrast to the two stepwise

regression methods the evolution-based operations of crossover and mutation

used by symbolic regression and the hybrid method can explore combinations

of terms with a strategy that does not necessarily terminate at any time.

It is important to recognise that this example represents a relatively simple

problem for stepwise regression to solve. If all the three key terms in the target

expression are included in any of the expressions the coefficients of the non-

target terms will assume values of zero and be removed in the subsequent it-
erations of elimination that will follow. If two of the three terms in the target

expression are included in any expression the third term is guaranteed to be

included in the next iteration of the selection procedure. One of the three target

terms, x21x
2
2x3 is included from the first iteration. The stepwise regression pro-

cedure is only required to find one more target term before reaching the limits

on the length of expressions imposed by the number of data points or termi-

nating due to the significance of the last term included. Selecting terms at

random has a 9.18% chance of producing the correct equation.

3.4. The results of symbolic regression

The symbolic regression method required two separate data sets, a training

set and a validation set. The training set consisted of the same 20 data points

used by the hybrid method and stepwise regression. The validation set con-
sisted of an additional 20 points generated using Eq. (2). The results reported in

Table 4 are taken from the best-of-run solution with respect to the training

data.

Genetic programming software typically requires the user to specify a large

number of parameters. For this problem the Discipulus Pro software was used

with six different settings in 60 trials. In all 60 runs the population size was set

at 500 and the search consisted of 100,000 tournaments (equivalent to 200

generations). Thirty of the trials used a subset of the available operators
suitable for creating polynomials consisting of addition, subtraction, multi-
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plication and division. The columns in Table 4 designated �polynomial� refer to
trials using the subset of operators. For the remaining 30 trials, designated

�non-polynomial� in Table 4, the set of operators included all available math-

ematical functions including transcendental functions. For this problem per-

formance was not significantly affected by the choice of operators. The number

of constants in Table 4 refers to the number of unique ephemeral random

constants. The number of ephemeral random constants had little effect on the

error.
Symbolic regression did not find the target expression in any of the trials.

According to Table 4 all of the solutions produced by stepwise regression with

four or more terms were better than the best results obtained with symbolic

regression.

3.5. Random error and overfitting

This section examines the effects of random error in the response variable

and the related problem of overfitting. The tests in this section demonstrate

how error resulting from overfitting can be avoided when using the hybrid

method. The two test cases are based on Eq. (2) with varying degrees of ran-

dom error applied to the response variable, y.
In the first case the random error is relatively small and the onset of over-

fitting is easily identified from a graph of the trade-off curve between MSE and

the number of parameters. Fig. 2 is a graph similar to Fig. 1. In this test Eq. (2)
was used to create the response value, y, for 200 data points. Normally dis-

tributed random deviates with a variance, r2, equal to 2.589 were added to the

response variable to simulate random noise. The standard deviation of the

error, 1.609, corresponds to approximately 5% of the mean response value, �yy.
The solutions in Table 5 and the trade-off curve in Fig. 2 were found after 4000

evaluations at which point the MSE values of the best solutions appeared to

have stabilised with no appreciable improvement. The program used the fol-

lowing configuration parameters: a maximum power value of 6, a maximum
expression length of eight terms, and a maximum population size of 40.

Table 4

MSE of symbolic regression models for example 1 (60 trials)

3 constants 6 constants 12 constants

Polynomial Non-poly-

nomial

Polynomial Non-poly-

nomial

Polynomial Non-poly-

nomial

Maximum 13.2000 5.3142 5.7642 4.4838 19.8708 6.0032

Minimum 2.6170 1.5281 1.4198 0.9313 1.3570 1.5604

Mean 6.5474 3.0950 3.0883 2.6609 5.6587 3.0419
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In Fig. 2 a horizontal segment appears in the trade-off curve at p > 4. MSE

values to the right of p ¼ 4 have approximately the same MSE value, which is

slightly lower than 2.589, the variance of the random error, shown as the

dashed line. Although the total sum of squared errors (RSS) for the best so-

lutions decreases monotonically with p for models with p > 4 the MSE value

tends to remain nearly constant at a value near the variance of the random

error, r2. A horizontal segment on the right side of the trade-off curve is one

indication of the onset of overfitting. Another indication is the fact that all the
models with p > 4 contain the same three key terms found in the four term

model. Simple observations of this type work in the case where the underlying

trend is polynomial and the error is relatively small. A more rigorous approach

is required when the error is large or the trend is transcendental. Either con-

dition can create a smooth transition to overfitting where the best model is not

obvious from the trade-off curve. The next example illustrates the use of the Chp

statistic. Chp is derived from Mallows�s Cp statistic, which is a method for

comparing different sized models on the basis of relative prediction error
(Table 6).
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Fig. 2. MSE and number of parameters with 5% random error.

Table 5

Best solutions with 5% error

P MSE Chp

2 16.244 1009.678

3 4.613 158.130

4 2.524 10.805

5 2.508 15.459

6 2.480 19.208

7 2.432 21.532

8 2.425 26.831
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The solutions in Fig. 3 and Table 7 are derived from the same data set as

Fig. 2 except that the standard deviation has been increased to 4.827, ap-

proximately 15% of the mean response. In Fig. 3 a similar transition to a

horizontal line appears at the three term model and the MSE value of this
model is nearly equal to the variance of the random error, 23.302, shown as the

Table 6

Error in four sets of validation data for 5% error

P RSS

Trial 1 Trial 2 Trial 3 Trial 4

2 3198.16 3595.13 3388.33 3717.98

3 779.00 829.86 786.91 901.04

4 377.50 392.80 383.43 548.41

5 385.14 395.57 391.29 542.50

6 391.09 404.71 396.13 548.01

7 410.89 440.45 413.63 633.67

8 393.78 418.74 397.95 596.65
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Fig. 3. MSE and number of parameters with 15% random error.

Table 7

Best solutions with 15% error

P MSE Chp

2 32.224 80.618

3 23.517 14.145

4 22.399 10.687

5 22.095 13.974

6 21.872 17.949

7 21.588 21.444

8 21.536 26.831
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dashed line in Fig. 3. Given the previous conclusions, the graph in Fig. 3 ap-

pears to indicate that the three term model is optimal and that models with

four or more terms are overfit. However, on the basis of four trials with val-

idation data (see Table 8) the four term model consistently provides the best

predictions. Simple observations of the MSE values are not the best method for

selecting the optimal model.

The Mallows�s Cp statistic represents a method to select the model with the

lowest prediction error. Overfitting will produce increased prediction error as
will lack of fit (bias error). The model with the lowest prediction error will

represent the best trade-off between the elimination of bias error and com-

plexity. Eq. (5) is the formula for Cp:

Cp ¼
RSSp

MSE� � nþ 2p ð5Þ

where RSSp is the residual sum of squares for the expression with p terms;

MSE� is an estimate of the variance of the random error, r2; n is the number of

data points in the data set; and p is the number of adjustable parameters in the

model.

Previous work undertaken on the Cp statistic (Refs. [12–15]) has considered

first order models. These studies enumerate and compare all possible first order

models including one model, a complete model that contains all variables. To
calculate Cp, MSE� is normally the MSE of the complete model. For the hybrid

method a complete model consisting of all possible transformed variables is

likely to be underdetermined, so MSE� is assumed to be the MSE value of the

largest model, MSEpmax
, where pmax is the number of terms in the largest ex-

pression.

To obtain an accurate estimate of r2, the best model with pmax terms can be

an overfit model, but all bias error should be removed. Experience has shown

that the MSE of overfit unbiased models produced by the hybrid method tends
to slightly underestimate r2, as the graphs in Figs. 2 and 3 indicate the un-

Table 8

Error in four sets of validation data for 15% error

P RSS

Trial 1 Trial 2 Trial 3 Trial 4

2 5575.54 6695.12 6087.47 7996.50

3 3868.09 4068.26 3890.25 5084.15

4 3457.45 3715.03 3616.88 5069.48

5 3523.22 3733.50 3691.15 5096.91

6 3563.78 3827.19 3678.92 5319.79

7 3655.05 3763.02 3839.30 5164.24

8 3617.64 3822.53 3830.48 5325.88
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derestimation is not due to the process of overfitting itself, but rather it is due

to the ability of the evolutionary search method to find better than average

patterns in noise. The calculation of Cp is sensitive to any underestimation of

r2. Central to the derivation of the Cp statistic is the concept that the total
squared error, RSSp, is expected to decrease by r2 with every term added to an

unbiased model. It is true for overfit models selected at random that the mean

reduction in RSSp is r2 with each new term added. However, the hybrid

method does not produce models by random selection and the models selected

to form the trade-off curve have the lowest MSE value encountered, not the

mean MSE value. Therefore, the reduction in RSSp per term is substantially

greater than r2. The new statistic, Chp, is derived by estimating Cp for the worst

case scenario in which the reduction in RSSp expected for an already overfit
model is hr2 per new term added, where h is substantially greater than 1.

Chp ¼
RSSp

n�pmax

n�hpmax

� �
MSEpmax

� nþ 2hp ð6Þ

The value of h is derived empirically by measuring the ability of the hybrid

method to find false trends in random noise typical of that contained in the

data set. The first step in estimating h is to extract the residual error, ei, of the
best model with pmax terms. Eq. (7) is the formula for the residual error, ei:

ei ¼ yi � ŷyi ð7Þ

where yi is the response for the ith observation; and ŷyi is the predicted response

for the ith observation (predicted using the best model with pmax terms).

A new set of models is created with the same predictor variable values in the

data set and program configuration parameters. However, the response vari-
able in the new data set consists of the residual error extracted from the model

with pmax terms. The residual errors are shuffled randomly so that individual

errors, ei, are not reassigned to predictor variables xjk where j is equal to i. The
random shuffling ensures that any remaining bias error that may have been

missed does not influence the fit of the next set of models and thereby ensures

that the new response values consist of pure random error. The procedure of

fitting models to pure random noise is repeated several times using different

random orderings of the residual. The highest value of h encountered during
this process is then used to calculate the Chp values for the original models

according to Eq. (6).

Fig. 4 represents one example of the trade-off curve produced when fitting

shuffled residual error. The dashed line is the initial mean square error of the

residual, MSE0, calculated by Eq. (8).

MSE0 ¼
Pn

i e
2
i

n
ð8Þ
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Table 9 lists the MSE values from six trials with two different random order-

ings of the residual from the eight term model in Fig. 3. Column 2 lists the

MSE values in Fig. 4. For each row in Table 9 the lowest MSE value is used to

calculate h values in column 8 of Table 9. The MSE0 for Table 9 is 20.675

shown as the dashed line in Fig. 4. Eq. (9) is the formula for h.

h ¼ n
p
�MSEpðn� pÞ

MSE0p
ð9Þ

The highest h value, 3.35, is used in Eq. (6) calculate the Chp values in col-

umn 3 of Table 7. The low Chp value of the four term model indicates that it is

likely to produce better predictions than either the three and five term models.

To confirm that Chp selects the correct model, four new data sets were created

for validation. In the new data sets different normal random deviates with the

same variance, r2 ¼ 23:302, have been applied to the response value. Table 8
lists the total squared error (RSS) for each of the four validation trials, in
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Fig. 4. MSE and number of parameters with pure error.

Table 9

Six trials with shuffled residual error

P MSE hmax

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6

2 20.665 20.665 20.665 20.184 20.187 20.196 3.354

3 20.364 20.313 20.326 20.177 20.171 20.096 2.841

4 20.261 20.307 20.261 20.123 20.019 20.133 2.556

5 20.191 20.313 20.179 20.028 19.965 19.925 2.415

6 20.270 20.036 20.231 19.897 19.888 19.684 2.550

7 20.207 20.046 20.191 19.912 19.894 19.736 2.252

8 20.205 20.086 20.018 19.934 19.847 19.652 2.188
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which the models from Table 7 and Fig. 3 were used to predict the response

with the new data sets. Table 8 confirms that the four term model consistently

produced the best predictions.

The procedure used to calculate Chp is performed on the first example in Fig.
2. For consistency the same h value, 3.35, is used again. The Chp values are

listed in column 3 of Table 5. The four term expression in Table 5 has the

lowest Chp value. The validation tests in Table 6 show that the four term ex-

pression produced better predictions that the five term expression with one

exception, trial 4.

Because all of the overfit models in Table 5 (Fig. 2) are supersets of the four

term model it is possible to examine whether the backward elimination pro-

cedure could identify and correct overfit models. The four term expression
from Table 5 which has the same form as Eq. (2) although there is some error

in estimating the parameter values and an intercept term. The five term ex-

pression contains the additional term x1x62x
3
3. The t-statistic for the term is 1.484

which has a corresponding p-value of 0.140. Using 95% confidence test this

overfit term would be removed by backward elimination. The six term

model has two additional terms, x61x
2
2x

6
3 and x41x

5
2x

5
3, which have t-statistics of

)2.26 and 2.27 respectively. The p-values are 0.0248 and 0.0241. The terms

would not be removed at the 95% confidence level but would be removed at the
99% level.

There are three additional terms in the seven term model but all appear

statistically significant although the model is clearly overfit. The term with the

lowest t-statistic and therefore highest p-value is x1x32x
2
3 which is one of the key

terms in the original expression. The t-statistic was 5.483446 and the corre-

sponding p-value was 1.3E)07. For the larger models overfit models t-statistics

alone cannot be relied on to identify overfitting when the hybrid method is used.

Gorman and Toman [12] have examined the mathematical relationship
between the partial F and t-statistics and Mallows�s Cp. In the case where the

inclusion of one additional term is considered. Mallows�s Cp is less restrictive

than 95% confidence. Table 10 lists the relationship between the various tests

and selection criteria including Chp for the value of h used in the two examples,

3.35. (The number of degrees of freedom in Table 10 is arbitrarily chosen as

200.) It should be noted that unlike t and F-statistics, Cp and Chp do not require

the residual error to be normally distributed with a constant variance.

Table 10

Relationship between F , t, Cp and Chp

Acceptance criterion F � t� Percent confidence

MSEp > MSEpþ1 1 1 68.15

Cp > Cpþ1 2 1.41 84.11

95% confidence 3.89 1.97 95.00

Chp > Chpþ1 (h ¼ 3:35) 6.7 2.59 98.97
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4. Example 2: The Colebrook–White formula

This section of the paper compares the effectiveness of the three methods on

a non-polynomial problem. The Colebrook–White formula, Eq. (10), calcu-
lates f , the friction factor for turbulent fluid flowing through a pipe:

1ffiffiffi
f

p ¼ �2 log
2:51

Re
ffiffiffi
f

p
�

þ k
3:7D

�
ð10Þ

where Re is the Reynolds number; k is the wall roughness; and D is the diameter

of the pipe.

The formula is often used in pipe network simulation software. It has an

implicit form in which the value of f appears on both sides of the equation.

Obtaining an accurate solution for f can be very time consuming, requiring

many iterations. An approximate equation for f that does not require iteration

can be used to improve the speed of simulation software.

The three methods were used to derive explicit approximators to the Cole-
brook–White formula for a range of Reynolds numbers and relative roughness

values (k=D) where the surface of the response variable f is known to be highly

non-linear. The data set consists of a two dimensional grid of 220 data points,

created from twenty Reynolds values selected in equal increments of 100,000

on the interval of 100,000 to 2,000,000, and 11 relative roughness values se-

lected in equal increments of 0.0005 on the interval of 0 to 0.005. The target

values, y, for the 220 points are f values obtained using the Colebook–White

formula (Eq. (10)) scaled to fit on an interval between 0 and 10 using Eq. (11).

y ¼ f � 0:010373

0:020933
ð11Þ

The set of transformed variables used by the stepwise regression method and

the hybrid method consist of 48 terms resulting from a maximum power value

of 6. The maximum length was 25 terms and the minimum significance was

95%.

Fig. 5 summarises the results obtained from the three methods. MSE values

in Fig. 5 and Table 11 are based on the scaled y values of Eq. (11) and not the f
values of Eq. (10). As in Fig. 1 the graph of stepwise selection solutions shows

evidence of improvements created by the elimination of insignificant terms.

The thin line represents the solutions generated by stepwise selection. The

dotted line in Fig. 5 represents the path of solutions generated by forward

selection after it diverges from stepwise selection. The bold line represents the

best solutions obtained using the hybrid method. The dashed horizontal line at

the bottom of the figure represents the best result obtained using symbolic

regression. A horizontal line is used because the number of parameters does
not directly apply to symbolic regression solutions.
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As in the first example symbolic regression solutions were obtained from 60

trials using Discipulus with different parameter settings following the same

pattern as the first example. Table 5 shows the results of 60 trials in which 30

used transcendental functions and 30 did not. The MSE for the expressions

that used transcendental functions were generally an order of magnitude more
accurate than those that did not. The best MSE obtained from trials with

transcendental functions is 0.0041 compared with 0.1633 for non-transcen-

dental forms. Mean MSE values were 0.0651 for transcendental trials and

0.4545 for non-transcendental.

Fig. 5 shows that the best results obtained through symbolic regression are

competitive with those produced by other methods in terms of accuracy.

However, the best solutions generated by symbolic regression were very

complex and included so many transcendental function calls that the compu-
tational effort was comparable to or greater than the Colebrook–White for-

mula itself. In contrast even the largest polynomial models involve less

computational effort than solutions with a single transcendental function call.
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Fig. 5. Accuracy and complexity of solutions for example 2.

Table 11

MSE of symbolic regression models for example 2 (60 trials)

3 constants 6 constants 12 constants

Polynomial Non-poly-

nomial

Polynomial Non-poly-

nomial

Polynomial Non-poly-

nomial

Maximum 0.7602 0.0895 0.6522 0.2915 0.6125 0.1204

Minimum 0.2485 0.0041 0.1799 0.0042 0.1633 0.0041

Mean 0.5804 0.0459 0.4566 0.0946 0.3264 0.0548
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The solutions produced by the hybrid method represent a better trade-off

between accuracy and computational effort than stepwise regression for ex-

pressions with 18 terms or less. Stepwise selection overtakes the hybrid method

for expressions with 19 terms or more. The computational effort required to
generate good solutions appears to be unaffected by the maximum length of the

expression for both stepwise regression methods while the performance of the

hybrid method appears to be adversely affected by the length of expressions.

5. Example 3: Rainfall runoff modelling

For this example problem stepwise regression and the hybrid method are

compared with a wider variety of modelling techniques. Savic et al. [16] have

reported the results of several modelling techniques to simulate rainfall runoff

in the Kirkton catchment in Scotland. The methods include the conceptual

model HYRROM and a more complex variation of the same program (Refs.

[17,18]), an artificial neural network (Ref. [19]), and symbolic regression using a
variation of the method that includes two adjustable parameters (Ref. [20]).

The data set consists of daily rainfall, daily stream flow and monthly Penman

open water evaporation from May 1984 to December 1988, a total of 1706

days.

The genetic programming model (Ref. [20]) and the artificial neural network

model (Ref. [19]) use a set of 10 input variables to predict daily stream flow.

The set of variables consists of rainfall, stream flow and evaporation for each

of the three days prior to the current day as well as rainfall on the current day.
The polynomial models reported in this paper use a subset of 6 of the 10

predictor variables consisting of rainfall for the current day and two previous

days and stream flow from the three previous days. The conceptual models use

rainfall and evaporation from the current day and create lagged inputs through

a complex arrangement of calibrated internal storages and delays.

For the hybrid method the maximum length of expressions was set at 8 and

the maximum power was set to 3. After the hybrid method generated 20,000

solutions the maximum length restriction was relaxed to 10 terms. Fig. 6 shows
the accuracy–complexity trade-off curve generated by the hybrid method after

60,000 solutions as a bold line. The thin line represents the best solutions

generated by both stepwise regression methods up to the generation of the first

10 term model. Forward selection and stepwise selection produce identical

results in this case. The dashed line represents symbolic regression, the best

of the four methods reported in Ref. [16]. Table 12 lists the MSE values for all

the methods reported in Ref. [16] along with the stepwise and hybrid solutions.

The 9 and 10 term polynomials produced by the hybrid method are the most
accurate.
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6. Conclusions

The paper has described a new regression method, the hybrid method, and

compared it with two established regression methods in example problems.

Combining numerical parameter optimisation with the evolutionary approach

of symbolic regression has required substantial modification to the original

symbolic regression algorithm including new operators of crossover and mu-

tation and a new method for generating starting populations. The first example

problem demonstrated that the new approach works effectively. The new
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Fig. 6. Accuracy and complexity of solutions for example 3.

Table 12

Rainfall-runoff models

Previous models MSE

Genetic program ([20]) 8.102

9 parameter conceptual model ([18]) 9.859

35 parameter conceptual model ([18]) 9.394

Artificial neural network ([19]) 8.712

Polynomial models

Terms Stepwise MSE Hybrid MSE

2 17.663 17.663

3 13.945 12.565

4 12.301 10.670

5 10.286 9.691

6 9.146 8.397

7 8.609 8.256

8 8.352 8.029

9 8.154 7.685

10 7.890 7.635
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algorithm consistently found the target expression in a very small fraction of

the number of solutions expected from least-squares optimisation of randomly

generated equation forms. Both the stepwise regression methods and symbolic

regression failed to find the target equation at all.
The first example problem illustrated the advantage of the extended ex-

ploration of new combinations of terms when comparing the effectiveness of

stepwise selection and forward selection. However, the extended exploration

offered by stepwise selection is relatively restricted. In contrast the evolutionary

approach used in symbolic regression and the hybrid method is interminable.

In practical terms, however, symbolic regression searches stagnate due to the

problem of code bloat. The hybrid method is the only approach of the three

capable of an efficient and interminable search of combinations of terms.
It is not surprising that symbolic regression produced the worst performance

of the three methods in first example since the other two methods were spe-

cifically designed for polynomial problems. The stepwise and hybrid methods

continued to outperform symbolic regression in the other two example prob-

lems using relatively small polynomial functions. Clearly for these two prob-

lems the cost of using non-adjustable parameters is greater than the benefits

resulting form the wide variety of operators and equation forms available to

symbolic regression.
In comparing the hybrid and stepwise regression methods, the hybrid method

produced more accurate models than stepwise regression for all sizes of ex-

pressions in the rainfall-runoff problem and for the shorter length expressions in

the Colebrook–White approximation problem. Computational effort associated

with the hybrid method appears to increase with increased expression length

unlike the stepwise regression methods, but the hybrid method does produce

more accurate short-length expressions. Future work will be directed at im-

proving the efficiency of search of the hybrid method for large expressions.
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