
Applied Soft Computing 1 (2002) 257–269

Discovering interesting classification rules
with genetic programming

I. De Falcoa,∗, A. Della Cioppab, E. Tarantinoa
a ISPAIM, National Research Council of Italy, Via Patacca 85, I-80056 Ercolano (NA), Italy

b Department of Computer Science and Electrical Engineering, University of Salerno,
Via Ponte Don Melillo 1, Salerno, I-84084 Fisciano (SA), Italy

Received 7 December 2000; received in revised form 23 October 2001; accepted 30 October 2001

Abstract

Data mining deals with the problem of discovering novel and interesting knowledge from large amount of data. This
problem is often performed heuristically when the extraction of patterns is difficult using standard query mechanisms or
classical statistical methods. In this paper a genetic programming framework, capable of performing an automatic discovery
of classification rules easily comprehensible by humans, is presented. A comparison with the results achieved by other
techniques on a classical benchmark set is carried out. Furthermore, some of the obtained rules are shown and the most
discriminating variables are evidenced. © 2002 Elsevier Science B.V. All rights reserved.

Keywords:Data mining; Classification; Genetic programming

1. Introduction

In the last years information collection has become
easier, but the effort required to retrieve relevant pieces
of it has become significantly greater, especially in
large-scale databases. As a consequence, there has
been a growing interest in powerful tools capable of
facilitating the discovering of interesting and useful
information within such a huge amount of data.

The process of knowledge discovery, known as
data mining [6], brings together the latest research in
statistics, databases, machine learning and artificial
intelligence. The core of this process is the application
of machine learning-based algorithms to databases.
There are two basic ways of performing data mining:

∗ Corresponding author. Tel.:+39-081-5608330;
fax: +39-081-6139219.
E-mail address:i.defalco@ispaim.na.cnr.it (I. De Falco).

the supervised and the unsupervised learning. The
former exploits known cases that show or imply well-
defined patterns to find new patterns by means of
which generalizations are formed. Experts lead search
towards some features which are supposed to be of
preminent interest, and the relationships between those
features and the remaining ones are sought. In the
unsupervised learning, instead, data patterns are found
starting from some logical characterization of the reg-
ularities in a set of data. In this case, no preassump-
tions are made about the forms of relations among
attributes.

Data classification represents perhaps the most
commonly applied supervised data mining technique.
It consists in generating from a set of class-labeled
training examples a set of grouping rules which can
be used to classify future patterns.

There are many methods used to face the classifica-
tion task. They include decision-tree methods which

1568-4946/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S1568-4946(01)00024-2

258 I. De Falco et al. / Applied Soft Computing 1 (2002) 257–269

operate performing a successive partitioning of cases
until all subsets belong to a single class [25,26], and
statistical and rough sets approaches [6,33]. Though
these classification tools are algorithmically reliable,
they require significant expertise to work effectively
and do not provide intelligible rules. Also neural net-
works [13,27], widely applied within the classification
task, suffer from the latter drawback.

The classification problem becomes very hard
when the number of possible different combinations
of parameters is high. Hence, heuristics which effec-
tively explore large solution spaces without perform-
ing exhaustive searches and, in some cases, provide
intelligible classification rules are very appealing.
Most data mining-related genetic algorithms (GAs)
[11] proposed in the literature address the task of
rule extraction in propositional and first-order logic
[1,2,10,21]. Further interesting GA-based methods
for choosing appropriate sets of fuzzy if-then rules
for classification problems can be found in [14,22].
Hybrid classification learning systems involve a com-
bination of artificial neural networks with evolution-
ary techniques [32] and with linear discriminating
models [7,9], and an integration of rule induction
and lazy learning [17]. Finally, genetic program-
ming (GP) [16] frameworks for discovering compre-
hensible classification rules have been investigated
[3,8,15,20].

In this work the aim is to exploit the effectiveness
of a GP framework to find as-compact-as-possible ex-
plicit classification rules for real-world problems mak-
ing up the PROBEN1 benchmark set [24]. The hope
is that GP detects for any problem rules containing the
most discriminating attributes only. These attributes
combined with the user knowledge allow to make
a well-informed decision, rather than blindly trust-
ing in the incomprehensible output of a ‘black box’
system.

The paper is organized as follows: in Section 2 our
GP-based classification system is outlined together
with its implementation details. In Section 3 the test
problems are briefly described and some related work
is reported. In Section 4 the performance of our sys-
tem compared with that achieved by other tools is
discussed, some of the achieved rules are reported
and several discriminating variables are identified. The
last section illustrates our final remarks and future
work.

2. The genetic programming system

The aim is the implementation of a genetic system
able to automatically extract an intelligible classifica-
tion rule for each class in a database, given the values
of some attributes, called predicting attributes. Each
rule is constituted by a logical combination of these
attributes. This combination determines a class de-
scription which is used to construct the classification
rule.

Once defined a fitness function, the classification
problem becomes a search problem of the best descrip-
tion in the search space of all the possible solutions,
that is to say an optimization of the fitness function
for which optimization techniques can be used. It is
comprehensible that the optimal search of a classifi-
cation rule includes two tightly coupled subproblems:
the search of the most discriminating attributes and
the search of the variation interval within the domains
of these attributes.

Given a number of attributes describing each object
and their related domains, it is easily understandable
that for complex classification problems the number
of possible descriptions is enormous. An exhaustive
search by enumerating all the possible descriptions is
computationally impracticable. Hence, we appeal to
GP which is a powerful search method inspired by nat-
ural selection. It does not guarantee to find the global
optimum, nonetheless it usually allows to retrieve a
suboptimal solution in a reasonable computation time.

The evolving population is constituted by individu-
als or ‘programs’ representing the classification rules
in the form of trees whose sizes are intrinsically vari-
able in length. Each rule is constituted by a number
of conditional clauses, in which conditions on or be-
tween certain attributes are set, and by a predictive
clause representing the class. A class together with
its description forms a classification rule of type ‘if
〈description〉 then〈class〉’. The conditional part of the
rule is formed by all the active conditional clauses.

A population composed by a set of these candidate
rules is maintained and gradually improved by con-
structing new fitter ones until rules of sufficient quality
are found or other stopping criteria are satisfied.

The system allows to attain rules covering the dif-
ferent classes by running the evolutionary algorithm
as many times as the number of the classes to predict.
In practice the system will analyze one class at a time.

I. De Falco et al. / Applied Soft Computing 1 (2002) 257–269 259

To construct the classification model, data is parti-
tioned into two sets: the training and the test sets. The
training set contains the known objects used during the
evolution process to find an explicit classification rule
able to separate an instance of a class from instances
of all other classes, while the test set is used to eval-
uate the generalization ability of the rule found. The
major steps of this genetic system can be formalized
as follows:

(1) generate at random an initial population of rules
representing potential solutions to the classifica-
tion problem for the class at hand;

(2) evaluate each rule on the training set by means of
a fitness function;

(3) select the rules to undergo the mechanism of re-
production;

(4) apply the genetic operatorscrossover, copy and
mutationto produce new rules;

(5) reinsert these offspring to create the new popula-
tion;

(6) repeat steps (3) to (6) until an acceptable classi-
fication rule is found or the specified maximum
number of generations has been reached;

(7) repeat steps (2) to (7) until one rule is determined
for each class in the database;

(8) assign each example in the training and in the test
sets to one and only one class.

The importance of step (8) is in that in all of the
previous steps we deal with one class at a time. As a
consequence of this, given a database withCl classes,
it may happen that some samples cannot be assigned
to one and only one class: they are called indetermi-
nate cases. This means they are either captured by
more than one rule (“yes” indeterminate case) or by
no rule (“no” indeterminate case).

Since in this paper we wish to make use of our
GP system to face several test sets taken from the
PROBEN1 repository, we must comply with the guide-
lines related to this benchmark. One of these guide-
lines is that any sample must be classified as belonging
to one and only one class, so we need to perform
a post-processing phase to eliminate the indetermi-
nate cases of both types. Since any rule represents in
PROBEN1 a subset in [0.0, 1.0]N with N denoting the
number of attributes, if the example does not satisfy
any of the found rules, it is assigned to the class from
the frontier of which it has the lowest distance. If the

Fig. 1. Examples of assignment of indeterminate cases to only one
class.

example satisfies more than one of the found rules, it
is assigned to the class from the frontier of which it
has the highest distance.

This can be intuitively explained by means of some
visual examples, at least for simple rules. Let us
suppose to be dealing with a two-class two-variable
database and that any variable can vary within
[0.0, 1.0]. In Fig. 1 we can see a graphical example
of how cases are assigned to classes. In it each rule is
graphically represented by the corresponding area.

The two rules are:

Rule1: IF ((0.2 ≤ A1 ≤ 0.7) AND (A2 ≤ 0.4))
THEN class1

Rule2: IF ((0.4 ≤ A1 ≤ 0.9) AND (0.1 ≤ A2 ≤ 0.7))
THEN class2

According to these two rules, the sampleS1 =
(0.3, 0.2) can be easily seen as belonging toclass1.
Likewise the sampleS2 = (0.8, 0.3) can be classified
in class2. As regards the sampleS3 = (0.6, 0.3), both
rules cover the point, i.e. the sample is a “yes” inde-
terminate case. Since, as we can visually evaluate,S3
is closer to the frontier ofRule1 than it is to the fron-
tier of Rule2, it is more internal toRule2, hence it
can be assigned toclass2 rather than toclass1.

Similarly, let us consider one more sampleS4 =
(0.4, 0.9). It is covered by no rule, so it is a “no”

260 I. De Falco et al. / Applied Soft Computing 1 (2002) 257–269

indeterminate case. Nonetheless, it is closer to the
frontier of Rule2 than it is to the frontier ofRule1,
so it can be seen as “missed” byRule2 by a smaller
quantity than it is “missed” byRule1. Therefore,S4
is assigned toclass2.

Things are similar when an OR clause is present in
a rule. As an example, let us consider the two follow-
ing rules:

Rule1: IF ((A1 ≤ 0.3) OR (A2 ≤ 0.3))
THEN class1

Rule2: IF ((0.6 ≤ A1 ≤ 0.9) OR (0.8 ≤ A2))
THEN class2

If we take a look at Fig. 2 we can see that sample
S1 = (0.4, 0.1) belongs toclass1, and that sample
S2 = (0.8, 0.9) belongs toclass2. As regardsS3 =
(0.5, 0.7), it is a “no” indeterminate case. It is clear
thatS3 is closer to the frontier ofRule2, so it can be
classified as belonging toclass2. The sampleS4 =
(0.1, 0.9) in the same figure, instead, is covered by
both rules (“yes” indeterminate case), but it is closer
to the frontier ofRule2, so it is better covered byRule
1, resulting in its assignment toclass1.

For more complicate cases, where the rules are com-
posed by several ANDs, ORs and NOTs, organized
in a hierarchical way, a procedure has been devised

Fig. 2. More examples of assignment of indeterminate cases to
only one class.

which computes the distance of a sample from the
frontier of the rule.

2.1. Encoding

The individuals are rules encoded as tree struc-
tures for which limits on the tree depth can be speci-
fied. The tree nodes are either functions or terminals.
The function set consists of the logical connectives
{AND,OR,NOT}, of the relational operators{<, ≤,

=, ≥, >} and of two operators IN and OUT. The two
latter are conceived to efficiently treat an internal and
an external interval within the domain of the predict-
ing attributesAi , respectively. They have arity 3, to
denote an attributeAi and the two constants indicat-
ing the extremes of the related interval. The terminals
are simplyAi or values in the domain ofAi .

The individuals in the initial population are rando-
mly created by selecting from the function or terminal
sets. Even though the selection is random, during the
tree construction some restrictions have been imposed.
In particular, the root node can be only a relational
operator with a higher probability for AND and OR
and with a lower probability for NOT. The internal
nodes can be any function. However, if the function is
a relation operator, its first son is always an attribute
Ai while the other is with equal probability either an
attribute or a constant.

Moreover, a so-called half-and-half method has
been chosen to create these random initial struc-
tures. This is a compromise between the full and the
grow methods which are chosen 50% of times each.
The full method generates only full trees, that is the
tree path length from any terminal node to the root of
the tree is the same. The grow, starting from a node
chosen as root, recursively calls itself to produce child
trees for any node which needs them. Naturally when
the initial structures reach the maximum allowed
depth all further nodes are restricted to be terminals.
This method has been made because it allows to cre-
ate unbalanced trees with a variety of their shapes and
sizes.

2.2. Genetic operators

The new elements in the population are generated
by means of three operators:crossover, copy and
mutation.

I. De Falco et al. / Applied Soft Computing 1 (2002) 257–269 261

2.2.1. Crossover
Two parent individuals are selected and a subtree is

picked on each one. Then crossover swaps the nodes
and their relative subtrees from one parent to the other.
This operator must ensure the respect of the depth
limits. If a condition is violated the too-large offspring
is simply replaced by one of the parents. There are
other parameters that specify the frequency with which
internal or external points are selected as crossover
points.

2.2.2. Copy
The copy operator simply chooses an individual in

the current population and copies it without changes
into the new population.

2.2.3. Mutation
The mutation operator can be applied to either a

function node or a terminal node. A node in the tree
is randomly selected. If the chosen node is a termi-
nal it is simply replaced by another terminal. If it is
a function andpoint mutationis to be performed, it
is replaced by a new function with the same arity.
If, instead,tree mutationis to be carried out, a new
function node (not necessarily with the same arity) is
chosen, and the original node together with its relative
subtree is substituted by a new randomly generated
subtree. A depth ramp is used to set bounds on size
when generating the replacement subtree. Naturally it
is to check that this replacement does not violate the
depth limit. If this happens mutation just reproduces
the original tree into the new generation. Further para-
meters specify the probability with which internal or
external points are selected as mutation points.

2.3. Fitness function

The population is constituted by the possible class
descriptions, that is to say sets of conditions on at-
tributes of the objects to classify. In these cases it is
possible to use statistical fitness functions [12,23]. Let
us introduce some definitions to formalize the fitness
functionfc which assigns a numerical value indicating
its correctness to any descriptiond in the description
spaceD.

To each descriptiond in D it corresponds a subset
of the training setS denoted withσD(S), i.e. the set of
points where the conditions of a rule are satisfied. The

correctness depends on the size ofσD(S), covered by
the description, the size of the classC representing the
points where the prediction of the rule is true and the
size of their overlapping regionσD(S)∩C. Moreover,
if we denote withσD′(S) the set of the points in the
database in which the conditions are not satisfied and
C′ the set of the points in which the prediction of
the rule is false, the simplest fitness function can be
devised as follows:

fc = |σD(S) ∩ C| + |σD′(S) ∩ C′|
−(|σD′(S) ∩ C| + |σD(S) ∩ C′|) (1)

This function can be explained as the difference be-
tween the actual number of examples for which the
rule classifies properly the belonging or not belong-
ing to the class and the number of examples for which
there is an incorrect classification whether the condi-
tions or the prediction are not satisfied.

Besides these statistical factors, the fitness function
fc also contains a further term which takes into ac-
count in some way the simplicity of the description.
This term is conceived taking in mind Occam’s razor
[5] “the simpler a description, the more likely it is that
it describes some really existing relationships in the
database”. This concept is incorporated in the function
fs and it is related to the number of nodes (Nnodes) and
the tree depth (depth) of the encoded rules. Namely,
this topological term is:

fs = Nnodes+ depth

The total fitness functionF considered is:

F = (S tr − fc) + αfs (2)

whereS tr is the number of samples in the training
set andα varies in [0.0, 1.0]. The choice of its value
affects the form of the rules: the closer this value to
1the lower the depth tree and the number of nodes.

3. The database and related work

3.1. The databases

All the problems faced are intended as tests to
evaluate the effectiveness of the approach proposed.
Experiments have been performed on the PROBEN1
benchmark set of real-world problems [24] originated
from the UCI Machine Learning Repository [19].

262 I. De Falco et al. / Applied Soft Computing 1 (2002) 257–269

The first database, known ascancer, addresses a
very important problem in the medical domain, the
breast cancer diagnosis. The purpose is to find in-
telligible rules to classify a tumor as either benign
or malignant. It is constituted by 699 examples of
which 458 are benign and 241 are malignant examples.
Each instance contains 10 integer-valued attributes
of which the first is the diagnosis class, while the
other nine attributes are related to cell descriptions
gathered by microscopic examination [31]. All these
attributes have the same range(1, 10) in the original
database, but they have been normalized in(0.1, 1)

in PROBEN1 [24].
The second database, denoted asdiabetes, is related

to diagnosis of diabetes of the Pima Indians popula-
tion. It contains 768 instances of which 500 are tested
as negative for diabetes and 268 as positive to diabetes.
Each example is composed of eight real-valued at-
tributes some representing personal data and others the
results of medical examination in addition to the class.

The third database, known asheartc, concerns with
heart disease. It is composed of 303 instances with
13 attributes related to personal data, subjective pa-
tient pain descriptions and results of various medical
examinations. The database has 45% patients without
disease and the remaining ones with disease.

The fourth dataset, indicated ashorse, predicts the
fate of a horse that has a colic. It contains 364 exam-
ples, three classes and 20 attributes denoting results of
veterinary examinations to forecast whether the horse
will survive, will die or will be euthanized. In 24% of
the examples it died, in 64% it survived.

The fifth database, designated asglass, classifies
glass types. It is constituted by 214 instances, 6 classes
and 9 attributes related to chemical analysis of glass
sprinters plus the refractive index. The classes repre-
sent different glass types and their sizes are 70, 76,
17, 13, 9 and 29 instances.

Finally, the sixth dataset, known ascard, predicts
the approval or non-approval of a credit card to a cus-
tomer. There are 15 attributes unexplained for confi-
dence reasons, 2 classes and 690 examples. The 44%
of the examples represent an approval.

In Table 1 an overview of the specific problems with
the number of attributes (Attr), the continuous (Cont)
and discrete (Dis) inputs, the number of classes (Cl),
the total number of examples (Sam) and their number
in the training (S tr) and test (S ts) sets is outlined.

Table 1
The complexity of the problems

Problem Attr Con Dis Cl Sam S tr S ts

Cancer 9 0 9 2 699 525 174
Diabetes 8 8 0 2 768 576 192
Heartc 13 6 29 2 303 227 76
Horse 20 14 44 3 364 273 91
Glass 9 9 0 6 214 161 53
Card 15 6 45 2 690 518 172

3.2. Related work

In [24] a neural network approach is followed on all
of the problems, and it shows very good results, but it
has the disadvantage of being lacking of explicit rules.

Sherrah et al. [28,29] propose a system which can
perform both feature selection and feature construc-
tion but they do not focus on the discovery of compre-
hensible rules. They apply it to some of the problems
making up the PROBEN1 benchmark set.

In [30] a tool composed by several artificial neural
networks, the outputs of which are combined either in
trimmed or in spread means, is evaluated on several
benchmarking testbeds. A preliminary phase of exper-
iments allowed to achieve the most suitable network
structure for any problem. Reported results are always
better than the ones by Prechelt [24] and Brameier and
Banzhaf [4] though in many cases improvements are
quite slight with respect to simple multi-layer percep-
trons or radial basis functions, at the cost of a more
complicate network structure. Also in this case no ex-
plicit rules are provided. The results are not shown
here due to incompleteness of their problem set.

In [4], instead, a GP method with individuals which
are programs represented as variable-length strings
composed of simple C instructions is presented. Good
results are claimed, comparable to those reported
in [24], however no easily interpretable rules are
reported.

4. The experimental results

4.1. Parameter setup and performance measures

To ensure the validity of the results and their
reproducibility, the standard PROBEN1 benchmark-
ing rules have been applied. The same operating way

I. De Falco et al. / Applied Soft Computing 1 (2002) 257–269 263

as regards the benchmarking testbeds and rules is
followed as in [4,24,28–30].

Each database has been subdivided as suggested in
[24] including the first 75% of the examples in the
training set and the remaining 25% in the test set.
Please note that in [24] one more possible subdivi-
sion of database instances is proposed, when three
partitions (train, validation and test) are generated.
Actually, results in that paper, and in [4] as well, make
reference to this latter choice. Based on [24], the two
subdivision choices can be compared, provided that re-
sults from test sets are taken into account in both cases.
For each experiment 30 runs have been performed
with the same initial configuration but with a different
random seed. The selection mechanism has been the
tournamentselection with a tournament sizeµ = 50.
For the generation method of the initial population a
ramp in the range 2–5 of initial depth values has been
chosen so as to produce trees with different depths. To
avoid wasting time with very large trees, the maximum
tree depth has been set equal to 7. Moreover, a depth
limit of 2 when generating the replacement subtree of
the mutation has been fixed. The fitness function cho-
sen has been the (2). The value ofα has been chosen
equal to 1.0. This imposes a strong constraint on tree
size, giving preference to simple rules. The simplicity
is at cost of penalizing larger, more complicate rules
even if they are capable of a better ‘raw’ classifica-
tion rate. This has been done to provide experts with
as short as possible rules which could be immediately
interpreted by them.

The evolutionary classification system requires that
further control parameters be specified. The common
parameter setting used for all the problems is listed in
Table 2. This setting does not result from a preliminary
tuning phase on any of the problems to be faced.

Regarding performance of the whole system made
up of as many rules as the number of classes, we recall
that the goal of our genetic tool is to predict whether or

Table 2
GP parameter settings

Parameter Setting

Population size 2000
Maximum number of generations 30
Crossover probability 0.8
Reproduction probability 0.1
Mutation probability 0.1

not an example belongs to the class under examination.
We indicate withCCandUC the total number of exam-
ples correctly and incorrectly classified, respectively.
As the classification performance is concerned, the
classification error(CE) denoting the percentage of
incorrectly classified examples is evaluated [24]. This
value is computed by means of the following formula:

CE = UC

CC+ UC
× 100

4.2. Findings

The results of our GP system together with those
achieved in [4,24] concerning the same PROBEN1
benchmark databases are shown in Table 3 in terms
of the classification errorCE. In particular, the table
reports for each problem the average result (Av) over
30 runs with the related standard deviation (Stdev).

Before all it is to note that, differently from [30],
all of the three different PROBEN1 permutations of
each dataset are reported. These partitions differ only
in the ordering of the examples. The findings in the
table demonstrate the effectiveness of the approach
proposed. The comparison shows that our system has
in most cases a higherCE, nonetheless it is on average
more robust in terms of lower standard deviation.

The slightly worse results with respect to [4] are,
in our opinion, counterbalanced by the availability of
intelligible rules that once interpreted provide human
experts with a further investigation tool. Moreover,
the findings in [4] have been achieved by using a set
of functions which includes arithmetic operations as
well. By adding these functions to our set we might
have been able to improve our results. In fact 30 runs
on thecancer1 partition have yielded an average value
of CE = 2.00% on test set, lower than that by Banzhaf.
However, this operating way determines complex rela-
tionships among attributes. For instance the best rules
for thecancer1 have resulted:

IF ((A2 < 0.4) AND ((A1 + A6) < 0.5))

THENclass1

IF ((A1 ≥ (A6 × A9)) OR(A2 > 0.4))

THENclass2

As it can be seen, their interpretation can result dif-
ficult even for the experts. Therefore, we have decided

264 I. De Falco et al. / Applied Soft Computing 1 (2002) 257–269

Table 3
The results of our GP system on the training and on the test sets compared with the NN and the LGP findings taken from [24] and [4],
respectively

Problem Present work NN LGP

Training CE (%) TestCE (%) TestCE (%) TestCE (%)

Av Stdev Av Stdev Av Stdev Av Stdev

Cancer1 3.65 0.37 2.46 0.66 1.38 0.49 2.18 0.59
Cancer2 3.38 0.32 6.08 1.12 4.77 0.94 5.72 0.66
Cancer3 3.26 0.26 4.47 0.65 3.70 0.52 4.93 0.65
Diabetes1 23.41 1.43 24.84 1.30 24.10 1.91 23.96 1.41
Diabetes2 22.71 0.75 30.36 1.15 26.42 2.26 27.85 1.49
Diabetes3 24.30 1.01 26.09 0.29 22.59 2.23 23.09 1.27
Heartc1 13.59 2.03 21.99 2.61 20.82 1.47 21.12 2.02
Heartc2 18.59 1.37 7.19 2.96 5.13 1.63 7.31 3.31
Heartc3 14.90 0.77 15.19 1.90 15.40 3.20 13.98 2.03
Horse1 32.08 2.31 33.62 3.74 29.19 2.62 30.55 2.24
Horse2 28.71 2.54 40.87 2.12 35.86 2.46 36.12 1.95
Horse3 29.88 1.67 37.90 1.73 34.16 2.32 35.44 1.77
Glass1 38.25 2.73 40.92 2.81 32.70 5.34 – –
Glass2 36.63 3.25 43.39 4.26 55.57 3.70 – –
Glass3 35.39 3.28 42.63 5.42 58.40 7.82 – –
Card1 13.93 0.49 14.93 0.39 14.05 1.03 – –
Card2 12.35 0.0 20.81 0.36 18.91 0.86 – –
Card3 13.31 1.20 15.57 1.41 18.84 1.19 – –

not to make use of the arithmetic functions. Our re-
sults in Table 3 have been obtained without appealing
to these operators.

In the following some rules are shown with refer-
ence to the databases they are extracted from. As con-
cerns thecancerdataset we report the two rules ob-
tained in the best run for the first and the second class
for all of the three partitions, respectively:

IF (((A2 ≤ 0.5) AND (A6 ≤ 0.6)) AND ((A1 < 0.5)

OR(A6 = A9)))

THENclass1

IF ((A1 ≥ 0.6) OR(A2 > 0.3) OR(A6 > 0.6))

THENclass2

IF (((A1 ≤ 0.6) AND (A2 ≤ 0.6)) AND (A6 ≤ 0.5))

THENclass1

IF ((A2 > 0.3) OR(A6 > 0.5))

THENclass2

IF (((A2 ≤ 0.3) AND (A6 ≤ 0.2)) OR(A2 < 0.2))

THENclass1

IF ((A1 ≥ 0.7) OR(A2 ≥ 0.7) OR(A6 > 0.5))

THENclass2

It is to note that the same two attributesA2 (cell
size) andA6 (bare nuclei) are present in all of the six
rules. ForA6 a lower value is associated toclass1
and a higher one toclass2. Furthermore, the attribute
A1 (clump thickness) is present in four out of the
six rules. Therefore, they seem to be highly dis-
criminating for a successful diagnosis. Also in [29]
three parameters were indicated as measurements,
but it was not reported which those three parameters
were.

For the diabetes2 the rules for the first and the
second class are:

IF ((0.36596≤ A8 ≤ 0.59689) OR(A2 > 0.77046)

OR(A6 ≥ 0.70693))

THENclass1

IF ((0.31845≤ A2 ≤ 0.61811) OR((A2 < 0.77126)

AND (A6 < 0.44703)))

THENclass2

I. De Falco et al. / Applied Soft Computing 1 (2002) 257–269 265

Both rules make use of the IN operator showing its
usefulness. By considering also the best rules found
on diabetes1and diabetes3 (not reported) we have
ascertained that the parameterA2 (plasma glucose
concentration) is present in all of the six cases (lower
⇒ class2, higher ⇒ class1), while the parameter
A6 (body mass index) is present in five rules (lower
⇒ class2, higher⇒ class1). Thus, they look impor-
tant for a proper classification. The same parameters
have been found useful in [28]. This is a further hint
of the effectiveness of our system.

For theglass1 dataset very interesting rules have
emerged. The best rule for the first class is:

IF ((A3 ≥ 0.61695) AND (A4 ≤ 0.34491)

AND (A9 < A7))

THENclass1

As it can be seen the rule exploits first-order logic by
taking into account also a relation between attributes.
As a further example, for the second class we have
found a rule containing the operator OUT:

IF (OUT(A7, 0.26065, 0.65797)

AND (A7 ≥ 0.16718))

THENclass2

which shows the clear dependence of this class on
calcium. The above rule is equivalent to:

IF ((0.16718≤ A7 ≤ 0.26065) OR(A7 ≥ 0.65797))

THENclass2

which clearly demonstrates the system ability to
determine more than one significant interval for an
attribute.

Our results on the test set outperform those achieved
in [24] asglass2 andglass3 are concerned. In fact, the
reported values on the test set areAv = 55.57 with
Stdev = 3.70 onglass2 andAv = 58.40 with Stdev =
7, 82 onglass3.

For the databasecard2 we have on the test set bet-
ter results than those obtained in [29] both in terms
of raw CE and EPrepCE equal to 33.526 and 17.341,
respectively. The rules found for the first and the
second class are:

IF ((I9 = 1) OR(I42 = 1))

THENclass1

IF ((I42 ≤ I29) AND (I9 = 0))

THENclass2

whereIi , differently from the previous cases, repre-
sent the PROBEN1 database inputs derived from the
original problem attributes. By taking into account
the best rules for the three permutations of thecard
problem we note that the parametersI9 andI42 (cor-
responding to binary variables) are always present
and thus important for the discrimination.

Finally, on theheartcproblem we have found that
parameterA30 (number of major vessels colored by
fluoroscopy, lower⇒ class1, higher⇒ class2) always
appears, and parametersA32 (normal thal, lower ⇒
class2, higher⇒ class1) andA6 (asymptomatic chest
pain, lower ⇒ class1, higher⇒ class2) are present
in five out of the six best rules.

As regards the improvement over time of the rules
our system finds, as an example we show in Fig. 3 the
evolution for one run concerning the malignant cases
(class2) of cancer1 database. Namely, both the fitness
of the best rule (Fig. 3(a)) and the number of cases
correctly classified by it (Fig. 3(b)) are reported as a
function of the number of generations. Furthermore,
the corresponding rules are shown in Table 4. It can
be noted that most of the evolution takes place during
the first half of the allowed maximum number of gen-
erations. If we take into account that the number of
cases in the training set is 525 (see Table 1), it is clear
that the first generation already contains a quite sat-
isfactory rule capturing correctly most of cases (488,
i.e. 92.95%). This premature stagnation might be due
to two causes. The former is the high population
size chosen, yielding very good individuals in early
generations. By using a lower one, evolutions with a
higher number of improving generations have been
obtained. Final rules, nonetheless, are the same ob-
tained by using a wider population. The latter cause is
the constraint of rule compactness we have imposed.
In fact, by eliminating it, evolution more frequently
finds new improving solutions, though these become
larger and larger in size, so being not easily intelligi-
ble by humans. The evolution of the best rule shows
that the system takes into account many of the param-
eters, in fact onlyA5 andA7 never appear in Table 4.
It is to be noted that attributesA1 andA6 are shown
important since generation 0, and they take part in the
final rule; A1 momentarily disappears at generations

266 I. De Falco et al. / Applied Soft Computing 1 (2002) 257–269

Fig. 3. Evolution of the best rule for malignant cases (class2) in cancer1 database.

Table 4
The evolution of the best rule related to Fig. 3

Generation 0, best fitness= 88, correct cases= 488 IF (((A1 > 0.7) OR (A6 > 0.7)) AND (A1 > 0.2)) THEN class2
Generation 1, best fitness= 68, correct cases= 498 IF (((A2 > 0.3) OR (A6 > 0.4)) AND (A3 > 0.2)) THEN class2
Generation 2, best fitness= 62, correct cases= 501 IF (((A2 > 0.3) OR (A6 > 0.4)) AND (A3 > 0.1)) THEN class2
Generation 3, best fitness= 61, correct cases= 504 IF (((A1 > 0.7) OR (A2 > 0.3) OR (A6 > 0.7)) AND (A3 > 0.1))

THEN class2
Generation 7, best fitness= 60, correct cases= 507 IF (((A1 > 0.7) OR (A2 > 0.3) OR (A6 > 0.7) OR (A8 > 0.7))

AND (A3 > 0.1)) THEN class2
Generation 9, best fitness= 58, correct cases= 5087 IF (((A1 > 0.7) OR (A4 > 0.3) OR (A6 > 0.7) OR (A8 > 0.7))

AND (A3 > 0.1)) THEN class2
Generation 11, best fitness= 56, correct cases= 509 IF (((A1 > 0.7) OR (A4 > 0.3) OR (A6 > 0.5) OR (A8 > 0.7))

AND (A3 > 0.1)) THEN class2

Fig. 4. Another evolution of the best rule for malignant cases (class2) in cancer1 database.

I. De Falco et al. / Applied Soft Computing 1 (2002) 257–269 267

Table 5
The evolution of the best rule related to Fig. 4

Generation 0, best fitness= 73, correct cases= 493 IF ((A2 > 0.2) AND (A3 > 0.2)) THEN class2
Generation 1, best fitness= 70, correct cases= 497 IF (((A1 > 0.6) OR (A3 > 0.3)) AND (A2 > 0.1)) THEN class2
Generation 2, best fitness= 66, correct cases= 499 IF (((A5 > 0.1) OR (A6 > 0.1)) AND (A3 > 0.1)) THEN class2
Generation 3, best fitness= 64, correct cases= 500 IF (((A1 > 0.6) OR (A3 > 0.3)) AND (A7 > 0.2)) THEN class2
Generation 4, best fitness= 60, correct cases= 502 IF (((A5 > 0.3) OR (A6 > 0.2)) AND (A3 > 0.2)) THEN class2
Generation 6, best fitness= 58, correct cases= 508 IF ((((A2 > 0.3) OR ((A3 > 0.2) AND (A6 > 0.2))) OR

(A1 > 0.6)) AND (A7 > 0.2)) THEN class2
Generation 8, best fitness= 57, correct cases= 508 IF ((((A2 > 0.3) OR (A1 > 0.6)) OR ((A3 > 0.2) AND

(A6 > 0.2))) AND (A7 > 0.2)) THEN class2
Generation 9, best fitness= 56, correct cases= 506 IF (((A1 > 0.5) OR (A3 > 0.2)) AND ((A2 > 0.3) OR

(A6 > 0.2))) THEN class2

1 and 2, whereasA6 is always present in the rules.
Furthermore, already at generation 1 the system finds
out the importance of attributeA3, which is highly
discriminant in the final rule found in this run.

Another interesting situation related to rule evolu-
tion is shown in Fig. 4. In it we make reference to
another run oncancer1 database. Also in this case the

Fig. 5. Example of the topological term effect on the best rule evolution.

search for the bestclass2 (malignant) rule is involved
and, as in the previous example, both the fitness of
the best individual (Fig. 4(a)) and the number of cases
correctly classified by it (Fig. 4(b)) are sketched as a
function of the number of generations. We can see two
interesting transitions in Table 5, where the best rules
found during the evolution are depicted. The first takes

268 I. De Falco et al. / Applied Soft Computing 1 (2002) 257–269

place at generation 8: a new best rule is found which
results in the same rule as the previous best-so-far
found at generation 6, so there is no difference between
them from the point of view of classification qual-
ity. Nonetheless the new related tree is more compact,
because it has the same number of nodes distributed
over four levels (see Fig. 5(a)), rather than over five
as it is the case for the previous best rule (Fig. 5(b)).
This new individual has been achieved by means of
a crossover operation performed on two copies of the
same best-so-far tree, resulting in the two subtrees
drawn in grey in Fig. 5(a) being swapped. The sec-
ond situation of interest can be noted at generation 9,
when the fitness of the best rule improves to the detri-
ment of the number of correctly classified cases. This
is due to the fact that a slightly worse-classifying, yet
more compact rule emerges. What is happened is that,
due to the value of 1.0 used forα, the topological fea-
ture has outperformed the raw classification capabil-
ity: in fact, the former best rule has 19 nodes and 4
levels, whereas the latter has only 15 nodes arranged
over 3 levels (see Fig. 5(c)). This results in a topolog-
ical term better by 5, while the classification term is
worse by only 4. The fitness value for the rule at gen-
eration 8 is then 525− 508+ 17+ (1.0 × 23) = 57,
while at generation 9 the rule has a fitness equal to
525− 506+ 19+ (1.0 × 18) = 56.

5. Conclusions and future works

In this paper we have presented a GP tool for explicit
rule extraction. The system has been tested on pub-
licly available databases. We have compared our sys-
tem with neural network-based approaches and with
other GP-based techniques. Experimental results have
demonstrated the effectiveness of the approach pro-
posed in providing the user with compact and com-
prehensible classification rules, and its robustness in
terms of low standard deviation.

Future work will include the application of the sys-
tem proposed to other real-world datasets in order to
further validate the promising results reported in the
present paper, as for example in computational archae-
ology. Moreover, another interesting task to face will
be the unsupervised data mining in which the goal is
to discover rules that predict a value of a goal attribute
which, unlike classification, is not chosen a priori. To

this aim evolutionary techniques exploiting niching
methods [18] able to maintain different rules (niches)
at the same time are to be analyzed.

Acknowledgements

The authors wish to thank Mr. Simone Guarino for
drawing some of the figures present in this paper.

References

[1] C. Anglano, A. Giordana, G. Lo Bello, L. Saitta, A network
genetic algorithm for concept learning, in: Proceedings of
the ICGA’97, Morgan Kaufmann, San Francisco, 1997,
pp. 434–441.

[2] S. Augier, G. Venturini, Y. Kodratoff, Learning first order
logic rules with a genetic algorithm, in: Proceedings of the
First International Conference on Knowledge Discovery &
Data Mining, AAAI Press, Menlo Park, CA, 1995, pp. 21–26.

[3] C.C. Bojarczuk, H.S. Lopes, A.A. Freitas, Discovering
comprehensible classification rules using genetic programm-
ing: a case study in a medical domain, in: Proceedings of
the GECCO’99, Morgan Kaufmann, San Francisco, 1999,
pp. 953–958.

[4] M. Brameier, W. Banzhaf, A comparison of linear
genetic programming and neural networks, IEEE Trans. on
Evolutionary Computation 5 (1) (2001) 17–26.

[5] W. Derkse, On simplicity and Elegance, Eburon, Delft, 1993.
[6] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smith, From data

mining to knowledge discovery: an overview, in: U.M.
Fayyad, et al. (Eds.), Advances in Knowledge Discovery and
Data Mining, AAAI/MIT Press, 1996, pp. 1–34.

[7] D.B. Fogel, E.C. Wasson, E.M. Boughton, V.W. Porto, P.J.
Angeline, Linear and neural models for classifying breast
masses, IEEE Trans. on Medical Imaging 17 (3) (1998) 485–
488.

[8] A.A. Freitas, A genetic programming framework for two data
mining tasks: classification and generalized rule induction,
in: Proceedings of the Second Annual Conference on Genetic
Programming, Morgan Kaufmann, San Francisco, 1997,
pp. 96–101.

[9] G. Fung, O.L. Mangasarian, Semi-supervised support vector
machines for unlabeled data classification, Technical Report,
Department of Computer Science, University of Wisconsin,
October 1999.

[10] A. Giordana, L. Saitta, F. Zini, Learning disjunctive concepts
by means of genetic algorithms, in: Proceedings of the
11th International Conference on Machine Learning, 1994,
pp. 96–104.

[11] D.E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley, Reading, MA, 1989.

[12] M. Holsheimer, A. Siebes, Data mining: the search for
knowledge in databases, Technical Report, CS-R9406, CWI,
Amsterdam, The Netherlands, 1994.

I. De Falco et al. / Applied Soft Computing 1 (2002) 257–269 269

[13] M.S. Hung, M. Hu, M. Shanker, Estimating breast cancer risks
using neural network, International Journal of Operational
Research 52 (2001) 1–10.

[14] H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka, Selecting
fuzzy if-then rules for classification problems using genetic
algorithms, IEEE Trans. Fuzzy Systems 3 (3) (1995) 260–
270.

[15] H.E. Johnson, R.J. Gilbert, M.K. Winson, R. Goodacre, A.R.
Smith, J.J. Rowland, M.A. Hall, D.B. Kell, Explanatory
analysis of the metabolome using genetic programming
of simple, interpretable rules, Genetic Programming and
Evolvable Machines 1 (3) (2000) 243–258.

[16] J.R. Koza, Genetic Programming: On Programming
Computers by means of Natural Selection and Genetics, MIT
Press, Cambridge, MA, 1992.

[17] C.H. Lee, D.G. Shin, A multistrategy approach to
classification learning in databases, Data Knowledge Eng. 31
(1999) 67–93.

[18] S.W. Mahfoud, Niching methods for genetic algorithms,
Doctoral Dissertation, Illinois Genetic Algorithms Lab.
Rep. 95001, University of Illinois, USA, 1995.

[19] P. Murphy, D.W. Aha, UCI repository of machine
learning databases [WWW page], Department of Information
and Computer Science, University of California, Irvine,
CA, 1992, Available from: http://www.ics.uci.edu/mlearn/
MLRepository.html.

[20] P.S. Ngan, M.L. Wong, K.S. Leung, Using grammar based
genetic programming for data mining of medical knowledge,
in: Proceedings of the 3rd Annual Conference on Genetic
Programming, Morgan Kaufmann, San Francisco, 1998,
pp. 304–312.

[21] E. Noda, A.A. Freitas, H.S. Lopes, Discovering interesting
prediction rules with a genetic algorithm, in: Proceedings
of the Congress on Evolutionary Computation, IEEE Press,
Piscataway, NJ, 1999.

[22] C.A. Peña, M. Sipper, Designing breast cancer diagnosis
systems via a hybrid fuzzy-genetic methodology, in:
Proceedings of the IEEE Int. Fuzzy Systems Conference,

Vol. 1, IEEE Press, Piscataway, NJ, 1999, pp. 135–
139.

[23] G. Piatesky-Shapiro, Discovery, analysis and presentation of
strong rules, in: G. Piatesky-Shapiro, W. Frawley (Eds.),
Knowledge Discovery in Databases, AAAI Press, Menlo Park,
CA, 1991.

[24] L. Prechelt, PROBEN1—a set of neural network benchmark
problems and benchmarking rules, Technical Report 21/94,
Fakultät für Informatik, Universität Karlsruhe, Germany,
1994.

[25] J.R. Quinlan, Induction of decision trees, Machine Learning
1 (1986) 81–106.

[26] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan
Kaufmann, San Francisco, 1993.

[27] R. Setiono, L.C.K. Hui, Use of a quasi-Newton method in
a feedforward neural networks construction algorithm, IEEE
Trans. Neural Networks 6 (1) (1995) 273–277.

[28] J. Sherrah, R.E. Bogner, A. Bouzerdoum, Automatic selection
of features for classification using genetic programming,
in: Proceedings of the IEEE Australian and New Zealand
Conference, IEEE Press, Piscataway, NJ, 1996.

[29] J. Sherrah, R.E. Bogner, A. Bouzerdoum, The evolutionary
pre-processor: automatic feature extraction for supervised
classification using genetic programming, in: Proceedings of
the 2nd Annual Genetic Programming Conference, Morgan
Kaufmann, San Francisco, 1997.

[30] K. Tumer, J. Ghosh, Classifier combining through trimmed
means and order statistics, in: Proceedings of the IEEE
International Conference on Neural Networks, IEEE Press,
Piscataway, NJ, 1998, pp. 757–762.

[31] W.H. Wolberg, O.L. Mangasarian, Multisurface method of
pattern separation for medical diagnosis applied to breast
cancer cytology, Proc. Natl. Acad. Sci. 87 (1990) 9193–9196.

[32] X. Yao, Y. Liu, A new evolutionary system for evolving
artificial neural networks, IEEE Trans. Neural Networks 8 (3)
(1997) 694–713.

[33] W. Ziarko, Rough Sets, Fuzzy Sets and Knowledge Discovery,
Springer, Berlin, 1994.

http://www.ics.uci.edu/mlearn/penalty -@M MLRepository.html

	Discovering interesting classification rules with genetic programming
	Introduction
	The genetic programming system
	Encoding
	Genetic operators
	Crossover
	Copy
	Mutation

	Fitness function

	The database and related work
	The databases
	Related work

	The experimental results
	Parameter setup and performance measures
	Findings

	Conclusions and future works
	Acknowledgements
	References

