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Abstract

This paper presents an algorithm which is able to extract discriminant rules from oligopeptides for protease proteolytic cleavage
activity prediction. The algorithm is developed using genetic programming. Three important components in the algorithm are a
min-max scoring function, the reverse Polish notation (RPN) and the use of minimum description length. The min-max scoring
function is developed using amino acid similarity matrices for measuring the similarity between an oligopeptide and a rule, which
is a complex algebraic equation of amino acids rather than a simple pattern sequence. The Fisher ratio is then calculated on
the scoring values using the class label associated with the oligopeptides. The discriminant ability of each rule can therefore be
evaluated. The use of RPN makes the evolutionary operations simpler and therefore reduces the computational cost. To prevent
overfitting, the concept of minimum description length is used to penalize over-complicated rules. A fitness function is therefore
composed of the Fisher ratio and the use of minimum description length for an efficient evolutionary process. In the application
to four protease datasets (Trypsin, Factor Xa, Hepatitis C Virus and HIV protease cleavage site prediction), our algorithm is
superior to C5, a conventional method for deriving decision trees.
© 2003 Elsevier Ireland Ltd. All rights reserved.

Keywords:Amino acid similarity matrix; Genetic programming; The reverse Polish notation; Proteolytic cleavage analysis

1. Introduction

Evolutionary algorithms (EAs) are inspired by
Darwin’s theory about evolution:survival of the
fittest. The basic principle of EAs is to solve compli-
cated problems by mimicking a natural evolutionary
process: selecting against the worst solutions and

∗ Corresponding author.
E-mail address:z.r.yang@ex.ac.uk (Z.R. Yang).

keeping the remaining solutions(Fogel et al., 1966;
Holland, 1975; Goldberg, 1989). In genetic algo-
rithms (GAs), a form of EA, each solution is encoded
by a binary string called a chromosome. A pool of
chromosomes are then used to represent a popula-
tion of possible solutions to a problem. The artificial
evolutionary operations such as copy, mutation, and
crossover are then used to eliminate the worst solu-
tions and promote the best solutions. Generation by
generation, GA will end up with a number of optimal
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or approximate optimal solutions to the system under
investigation. The most useful characteristics of all
EAs are that the objective function does not need to
be differentiable and multiple solutions can be found.
Because of this, EAs can be used for the optimization
of many complicated problems covering many areas.

Genetic programming (GP), another form of EA,
can be used to evolve programs to perform certain
tasks(Koza, 1992). In GP, a binary chromosome is
replaced by a complicated tree structure, in which a
solution is an algebraic equation of the input vari-
ables. GP has also been applied to many areas, for
instance, chemical process modeling(Gao and Loney,
2001; McKay et al., 1997)and superplastic-damage
(Lin et al., 2002). GP has advantages over GA for some
specific tasks, such as the use of variable data struc-
tures. The most important reason for using GP is that
complicated algebraic equations of amino acids, which
are non-numerical variables in protein sequences, can
be handled without much computational cost.

Proteases are widely distributed in nature, where
they perform a variety of different functions. Bacteria
produce proteases to degrade extracellular proteins.
Viral proteases are essential to the life cycle of many
viruses by cleaving the precursor molecules of their
coat proteins. Higher organisms use proteases for food
digestion, cleavage of signal peptides. Proteases are
also used in protein chemistry, proteomics research,
and biopharmaceutical manufacture, for tasks such
as protein identification by peptide mass fingerprint-
ing, protein fragmentation, protein domain separation
and analysis, and identification of protease activity
type (Cheronis and Repine, 1993). Prediction and
characterization of proteolytic cleavage sites are of
great importance, both for research into the action of
naturally-occurring proteases and to help practical re-
search techniques. There have been intensive studies
in this area using different techniques. As reviewed
by Chou (1996). However, “protein fingerprint” pre-
dictions produced from cleavage site rules and regular
expressions can often be ambiguous because of their
low accuracy. As one of the most important application
areas, analyzing biological sequences (particularly the
analysis of proteolytic cleavage activity) is still chal-
lenging for GP because of the non-numerical attributes
in oligopeptides and lack of previous related research.

Artificial neural networks (ANNs) are a class of
advanced computing algorithms capable of approxi-

mating universal non-linear functions and have been
widely used for analyzing oligopeptide data. Learning
algorithms in training ANNs for use with oligopep-
tide data have included back-propagation neural net-
works (BPNNs)(Rumelhart and McClelland, 1986),
self-organising maps (SOM)(Kohonen, 1989)and
recurrent neural networks (RNNs)(Elman, 1991;
Frasconi and Gori, 1996). Application of BPNNs to
human immunodeficiency virus (HIV) protease cleav-
age site prediction gave a prediction accuracy of ap-
proximately 92%(Cai and Chou, 1998; Yang, 2001;
Narayanan et al., 2002). BPNNs resulted in about
65–70% accuracy for secondary structure prediction
(Reczko, 1993; Baldi et al., 2000; Pollastri et al.,
2002) and RNNs have improved this prediction ac-
curacy to 75%(Baldi et al., 2000). A self-organising
map (SOM) has also been used to identify motifs
and families in the context of unsupervised learning
(Arrigo et al., 1991). The most common encoding of
amino acids is through the “distributed method”, in
which 20 binary bits are used to represent each amino
acid, with just one “bit” set to 1 and all others to 0
(Qian and Sejnowski, 1988). There are some problems
with this method, the most important of which is that
the use of Euclidean space has no theoretic basis in
biology or chemistry and may reduce model accuracy.
The distance between every pair of different amino
acids in this distributed method is

√
2. This conflicts

with biological differences between amino acids, for
which various distance matrices have been defined
and validated(Dayhoff et al., 1978; Johnson and
Overington, 1993).

We have therefore developed a new ANN learning
algorithm which is able to recognize amino acids di-
rectly using biological similarity measurements. The
algorithm is referred to as a “bio-basis function neu-
ral network” (BBFNN) (Thomson and Yang, 2002;
Thomson et al., 2003). The algorithm has improved
performance in both learning speed and prediction ro-
bustness for the analysis of protease oligopeptides.

Despite the initial success of the BBFNN, it was
not conducive to knowledge extraction. Moreover,
our early work with both HIV and Hepatitis C Virus
(HCV) showed that conventional decision tree meth-
ods do not outperform ANNs. The prediction accu-
racy from C5 (http://www.rulequest.com/) is much
lower than that from a neural net model(Narayanan
et al., 2002). This paper therefore aims to extract

http://www.rulequest.com/
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discriminant rules for protease cleavage site predic-
tion using GP(Koza, 1992; Banzhaf et al., 1998).
A discriminant rule is not necessarily a widely used
pattern sequence such asSFXXXXIT, whereX stands
for any amino acid. Instead, a discriminant rule is a
complicated algebraic equation of the amino acids oc-
curring at the different positions in oligopeptides. For
instance,bT = cK = +cR = + represents a specific
rule, whereb andc stand for the second (P2) and the
third position (P3) in an oligopeptide, respectively,T,
K andR are three amino acids (threonine, lysine, and
arginine),= and+ denoteequalityandor operation,
respectively. The rule is interpreted as:P2 = T or
P3 = K or P3 = R. An linguistic interpretation of
this rule is as follows:

if the second position in a sequence is threonine (T)
or the third position is lysine (K) or the third position
is arginine (R), then. . . .

Using this kind of representation for rules will make
evolutionary operations convenient, which will be ex-
plained inSection 2.3.

We have applied this algorithm to four datasets:
Trypsin, Factor Xa, HCV and HIV protease cleavage
site prediction, with success. The next section will
discuss the method and the third section will describe
the simulation results.

2. Method

2.1. Problem specification

For the task of proteolytic cleavage activity analy-
sis, each oligopeptide is denoted by a vectorx ∈ CD,
where C is a set of all the 20 amino acids (hence
|C| = 20) andD is the number of positions in the
oligopeptides for analysis. A dataset of oligopeptides
is denoted byΩ ⊂ {CD × {0,1}}, where{0,1} is a
target set containing class labels. The dataset can be
divided into two parts:ΩA andΩB for two classes.
For proteolytic cleavage activity prediction,ΩA con-
tains oligopeptides without cleavage sites whileΩB

cleaved oligopeptides.
A rule set is denoted byΓ , in which each rule is

a tree structure.Fig. 1 gives an example of a simple
structure, wherec and e are the third and the fifth
positions (P3 andP5) in an oligopeptide, respectively,
A andP are two amino acids (alanine and proline) and

*

= =

PeAc

Fig. 1. A simple rule in a tree structure, where “c” and “e” are
the third and the fifth positions in an oligopeptide, “A” and “P”
are two amino acids, “=” and “∗” mean theequality and and
operation. The rule is thereforePc = A andPe = P meaning that
two classes of oligopeptides can be well separated if the third
and the fifth positions are occupied by the amino acidsA and P,
respectively.

∗ is theandoperation. The rule is then expressed as

P3 = A and P5 = P (1)

A rule r ∈ Γ is defined as

r = [[xy =]z] (2)

where [a] means thata can be repeated at maximum
two times,x ∈ {a, b, c, . . . , z} indicates a position
in an oligopeptide,y ∈ C represents an amino acid
occurred at the positionx and z ∈ {+, ∗} denotes
an operator. Note that+ and ∗ are theor and and
operations.

2.2. Reverse Polish notation

A rule in the computer program is expressed using a
RPN in this study similar toKado et al. (1995). For in-
stance, the rule inFig. 1 is expressed ascA = eP= ∗.
A reason for the use of RPN is to increase the ease of
evolutionary reproduction operations. Without RPN,
real tree structure would be more expensive compu-
tationally. For instance, crossover (seeSection 2.3for
details) of two rulescA = eP= ∗aF = + andbF =
dW = +fY = ∗ at position of 7 produces two new
rulescA = eP= ∗ ⋃

fY =→ cA = eP= ∗fY = ∗ and
bF = dW= + ⋃

aF = + → bF = dW= +aF = +
with a little computational cost. We useL(r) to de-
note the length of a ruler ∈ Γ in a RPN andr[a : b]
the subset ofr from the positiona to the positionb in
a RPN of the ruler.
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Table 1
RPN for rule expression

Rules Expressions

(P1 = A or P6 = F or P5 = P)
and (P7 = Y )

aA = fF = +eP = +gY = ∗

(P1 = A or P6 = F ) and
(P5 = P or P7 = Y )

aA = fF = +eP = gY = +∗

(P1 = A andP6 = F )
or (P5 = P andP7 = Y )

aA = fF = ∗eP = gY = ∗+

The left column shows three possible rules while the right column
shows the corresponding RPN expressions.

In Table 1, there are some examples of using RPN
to express rules. Suppose we have a rule as follows:

(P1 = AorP6 = F orP5 = P) and P7 = Y (3)

a RPN for the rule is thenaA = fF = +eP= +gY=
∗. Using a stack, this RPN can be easily processed
(Fig. 2). The process is as inTable 2. For instance, the
first token in RPN (a) is pushed into a stack since it is
not an algebraic operator while the program pops two
elements (“A” and “a”) from the stack to form a rule,
and then pushes the formulated rule (“aA =”) into the
stack when scanning the third token (=). Finally, the

a

2: A

a
A

1: a 3: =

a=A

4: f

f
a=A

5: F
F
f

a=A a=A

6: = 7: +

a=A or f=F

8: e

a=A or f=F
e

9: P

a=A or f=F
e
P

10: =

a=A or f=F
e=P

11: +

a=A or f=F or e=P

12: g

g
a=A or f=F or e=P

13: Y
Y

a=A or f=F or e=P
g

a=A or f=F or e=P

14: =

g=Y

f=F

(a=A or f=F or e=P) and (g=Y)

15: *

Fig. 2. Transformation of a RPN to a rule. A stack is expressed as a list of three boxes. The number before “ :” is the step of scanning the
RPN. The token after “ :” is the token taken from the RPN. Whenever a token is taken from the RPN, a corresponding action is taken.
The actions are to push into, pop from the stack and form a rule.

Fig. 3. Mutation operation in GP. The node marked by a filled circle
has changed its function from or operation to and operation after
mutation is applied. Through a mutation, an old rule (aF = cK = ∗)
has been used to reproduce a new rule (aF = dK = ∗).

expression of the rule is as follows:

(P1 = A or P6 = F or P5 = P) and P7 = Y (4)

2.3. Evolutionary operations

There are three common operators in GP: copy, mu-
tation, and crossover. Fig. 3 shows a mutation opera-
tion while Fig. 4 shows a crossover operation. Suppose
we have two rules rm and rf with their cutting points
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Table 2
RPN for rule recognition

Token Actions

a P(a)
A P(A)
= p(A) p(a) R(aA=) P(aA=)
f P(f)
F P(F)
= p(F) p(f) R(fF=) P(fF=)
+ p(fF=) p(aA=) R(aA = fF = +) P(aA = fF = +)
e P(e)
P P(P)
= p(P) p(e) R(eP=) P(eP=)
+ p(eP=) p(aA = fF = +) R(aA = fF = +eP = +) P(aA = fF = +eP = +)
g P(g)
Y P(Y)
= p(Y) p(g) R(gY=) P(gY=)
∗ p(gY=) p(aA = fF = +eP = +) R(gY = aA = fF = +eP = +∗) P(gY = aA = fF = +eP = +∗)

15 steps is needed since there are 15 tokens in this RPN. P(x) means that x is pushed into the stack. p(x) means that x is popped from
the stack. R(x) means that a new rule x is formulated.

Fig. 4. Crossover operation in GP. The sub-tree marked by the dark circles in left tree is exchanged with the sub-tree marked by the gray
circles in the right tree after the crossover operation. Through a crossover, two old rules (aF = cK = ∗ and bA = dT = +) have been used
to reproduce two new rules (aF = dT = ∗ and bA = cK = +).
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T = =R F =* fa c

b R = =d T c A +=d*=+ K

T = =R K = +* da c

b R = =d T c A =f*=+ F

*

*

Crossover at position 7 and 10

Fig. 5. Crossover operation on two RPNs, where the cutting points
are cm = 7 and cf = 10. Two old rules (aT = cR = ∗dK = +
and bR = dT = +cA = ∗fF = ∗) are used to reproduce two new
rules (aT = cR = ∗fF = ∗ and bR = dT = +cA = ∗dK = +).

in their RPNs (cm and cf ) for mating, the crossover
operation is defined as

rg = rm[1 : cm]rf [cf + 1 : L(rf )],

rb = rf [1 : cf ]rm[cm + 1 : L(rm)] (5)

where rg and rb are two newly reproduced rules. Sup-
pose we have two RPNs, aT = cR = ∗dK+ and bR =
dT = +cA ∗ dK+. Given two cutting points cm = 7
and cf = 10, two new RPNs will be aT = cR = ∗dK+
and bR = dT = +cA ∗ dK+. The process for this is
very simple and the time complexity is O(1). Fig. 5
shows this example.

Given a rule rm with a cutting point in its RPN (cm),
the mutation operation is defined as

rg = rm[1 : cm − 1]π(cm)rm[cm + 1 : L(rm)] (6)

where rg is a newly reproduced rule and π(·) is a
mutation function defined as

π(cm) =




x = R({a, b, c, . . . , z}),
if rm[cm : cm] ∈ {a, b, c, . . . , z}

y = R(C), if rm[cm : cm] ∈ C
z = R({+, ∗}), if rm[cm : cm] ∈ {+, ∗}

(7)

Fig. 6. Mutation operation on one RPN, where the cutting points
are cm = 7 and cm = 1. An old rule (bR = dT = +cA = ∗fF = ∗)
is used to reproduce two new rules (bR = dT = ∗cA = ∗fF = ∗
and xR = dT = +cA = ∗fF = ∗), where x means any amino acid.

where R(a) means a randomly selected element from
the set a. Suppose we have one RPN, bR = dT =
+cA = ∗fF = ∗. The new RPN can be bR = dT =
∗cA = ∗fF = ∗ if the cutting point is cm = 7 while
the new RPN is xR = dT = +cA = ∗fF = ∗, where x

means any position in a sequence if the cutting point
is cm = 1. Fig. 6 shows this example.

2.4. Min-max scoring function

In order to evaluate a rule in terms of its ability to
discriminate in an evolutionary process, the Fisher ra-
tio was used. However, all the attributes in an oligopep-
tide are amino acids, which are non-numerical at-
tributes. There is no direct way to measure the sim-
ilarity between an oligopeptide and a rule, which is
a complex algebraic equation of amino acids rather
than a pattern sequence, for which a homology align-
ment can be applied without difficulty. As used in
our previous study of BBFNN (Thomson and Yang,
2002; Thomson et al., 2003), the amino acid sim-
ilarity matrices (Dayhoff et al., 1978; Johnson and
Overington, 1993) are the solution. A min-max func-
tion is developed here to measure the similarity be-
tween an oligopeptide and a rule using amino acid
similarity matrices in this study. The min-max func-
tion is as follows:
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1. and operation:

s(xn ∈ Ω, rm ∈ Γ)

= min{g(xn(Pi), rm(Pi)), g(xn(Pj), rm(Pj))}
(8)

2. or operation:

s(xn ∈ Ω, rm ∈ Γ)

= max{g(xn(Pi), rm(Pi)), g(xn(Pj), rm(Pj))}
(9)

where g(·) performs a similarity measurement on
a specific pair of amino acids (each from either
an oligopeptide or a rule) using amino acid sim-
ilarity matrix (Dayhoff et al., 1978; Johnson and
Overington, 1993) while s(·) measures the similar-
ity between the oligopeptide xn and the discriminant
rule rm.

2.5. Fitness function

The fitness function is composed of two parts: dis-
criminant ability and rule complexity. The discrimi-
nant ability is quantified using the Fisher ratio:

J(rm) = |uA
m − uB

m|√
(σA

m)2 + (σB
m)2

(10)

where

uA
m = 〈s(x, rm)|x ∈ ΩA〉

uB
m = 〈s(x, rm)|x ∈ ΩB〉

(σA
m)2 = 〈(s(x, rm) − uA

m)2|x ∈ ΩA〉, and

(σB
m)2 = 〈(s(x, rm) − uB

m)2|x ∈ ΩB〉
where 〈·〉 means an expectation operation. Rule com-
plexity is measured by minimum description length
(Rissanen, 1978) and is defined as

L̂(rm) = L(rm)

max{L(rk)|(rk) ∈ Γ } (11)

where L(rm) is the equivalent length of the rule rm.
The equivalent length is calculated by the recogni-
tion of the non-overlapped positions in a RPN. For in-
stance, a RPN expressed as aT = bK = bR = + has
the equivalent length as 2 since only two positions in
an oligopeptide are involved in decision-making. The

fitness function is then defined as

F(rm) = 1

1 + exp(−J(rm) − (1 − L̂(rm))
(12)

2.6. Evolutionary algorithm

Consider a space of M possible rules. In each evo-
lutionary cycle, the best M/2 rules with the lowest
fitness functions will be selected against with the re-
mainder used for reproduction. Crossover and muta-
tion operations were used to reproduce another M/2
new rules.

Step 1. Generate M rules, each of which has ran-
domly selected positions and amino acids as well
as the operators.
Step 2. Calculate the fitness function using Eq. (12).
If the highest fitness function value is greater than
a pre-determined threshold, goto Step 7, otherwise
goto the next step.
Step 3. Sort all the rules in terms of their fitness
function values from the highest to the lowest.
Step 4. Copy the top scoring M/2 rules to the next
generation (the (t + 1)th generation).
Step 5. Randomly select an operation type: mutation
or crossover:

Mutation. Randomly select a rule and a cutting
point from the (t + 1)th generation;

If a token at the cutting point is a position
token, mutate the position,
If a token at the cutting point is an amino acid
token, mutate the amino acid,
If a token at the cutting point is an operator,
mutate the operator,
Insert this new produced rule to the (t + 1)th
generation,

Crossover. Randomly select a pair of rules called
chromosome A and chromosome B from the
(t + 1)th generation;

Randomly select two cutting points from two
rules,
Merge the left part of the cutting point of A
and the right part of the cutting point of B to
produce a new chromosome (rule) X,
Merge the left part of the cutting point of B
and the right part of the cutting point of A to
produce a new chromosome (rule) Y,
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Insert these two new rules (X and Y) to the
(t + 1)th generation.

Step 6. Goto Step 2.
Step 7. Stop.

3. Results and analysis

3.1. Trypsin protease cleavage site prediction

Trypsin as a serine protease, is the most commonly
used proteolytic enzyme in proteomics research.
For example, it has been used to generate peptides
from proteins for peptide mass fingerprinting, protein
domain activity structural analysis, and for protein
truncation in biopharmaceutical manufacture. Studies
have shown that only the positions close to the cleav-
age site a significant influence on cleavage (Chou,
1996). The four most critical positions are denoted
by P3, P2, P1, P1′ , corresponding to the positions
in trypsin S3, S2, S1, S1′ nomenclature (Schechter
and Berger, 1968). Cleavage occurs between P1
and P1′ .

Cleavage by trypsin occurs if a positively charged
amino acid (lysine or arginine) is present in posi-
tion P1. If arginine is in position P1, cleavage rates
are much higher than if lysine is in P1 (Wittinghofer
et al., 1980; Barret et al., 1998). The negative impact
of residues in positions P2 and P1′ was determined by
Keil (1992).

Trypsin cleavage data was obtained from the lit-
erature (McRae et al., 1981; Kawabata et al., 1988;
Pozsgay et al., 1981), and a set of non-cleaved
tetrapeptides was created using Keil’s rules (1992).
All non-cleaved tetrapeptides were four residues long,
including positions P3–P1′ , as position P1′ plays an
important role in cleavage inhibition. All cleaved
tetrapeptides obtained from papers showed positions
P3–P1 only, therefore we expanded these tetrapep-
tides to include a residue in position P1′ .

Four hundred and thirteen tetrapeptides were used
for training and testing. Among these tetrapeptides,
239 were cleaved tetrapeptides and the rest contained
no cleavage sites. 350 tetrapeptides were used for
training and the rest for testing. The population size
was set to 1000 and the evolutionary cycles was 100.
In each cycle, 50% offsprings were used for reproduc-
tion.

Table 3
Top 10 trypsin rules

No. Rule Fisher ratio Testing
accuracy (%)

1 bT = cK = +cR = + 2.5112 98
2 cK = cN = + 2.5013 98
3 bH = cF = ∗cR = + 2.5013 98
4 cA = dT = ∗cR = + 2.5013 98
5 dT = cA = ∗cR = + 2.5013 98
6 cF = bH = ∗cR = + 2.5013 98
7 cF = bT = ∗cR = + 2.4999 98
8 cF = aQ = ∗cR = + 2.4999 98
9 cK = bT = +cR = + 2.4997 98

10 cF = bQ = ∗cK = + 2.4997 98

We can see that P1 = R and P1 = K were the dominating
sub-rules.

Table 3 lists the top 10 rules, where a, b, c, and
d represent P3, P2, P1, and P1′ , respectively. It was
found that P1 = R and P1 = K were the dominating
sub-rules. The rule with the highest fitness value is
shown in Fig. 7. The Fisher ratio value and the testing
accuracy on unseen trypsin tetrapeptides for the first
rule were 2.0303 and 98%, respectively.

For the first rule r1, and an tetrapeptide x, a scor-
ing process using the min-max function is shown in
Table 4. For the third rule r3, and an tetrapeptide x, a
scoring process using the min-max function is shown
in Table 5. Note that x(Pi) means the ith position in x.

Table 6 shows the confusion matrix for the first rule.
It can be seen that the predictive powers were 97%
and 100% for the negavtive and positive classes. The
total prediction accuracy was 98% on the unseen data.
The false positive and false negative rates were 3%
and 0%, respectively.

+

T

= ==

b cKc R

Top Trypsin Rule: bT=cK=+cR=+

Fig. 7. The top scoring rule for the trypsin dataset. The rule was
P2 = T or P1 = K or P1 = R.
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Table 4
Interpreting the first rule for the trypsin case

Scanning Motif Action

x(P2) T Similarity g1 = s(x(P2), T)

x(P1) K Similarity g2 = s(x(P1),K)

x(P1) R Similarity g3 = s(x(P1), R)

Or s(x, r1) = max{g1, g2, g3}
For each sub-rule, such as bT=, a scanning process was needed
to find the amino acid at a specified position in an oligopeptide
(x) under investigation. Similarity was calculated using Dayhoff
matrix (Dayhoff et al., 1978).

Table 5
Interpreting the third rule for the trypsin case

Scanning Motif Action

x(P2) H Similarity g1 = s(x(P2),H)

x(P1) F Similarity g2 = s(x(P1), F)

And g3 = min{g1, g2}
x(P1) R Similarity g4 = s(x(P1), R)

Or s(x, r3) = max{g3, g4}

It should be noted that the function of a discriminant
rule was to separate the cleaved and the non-cleaved
tetrapeptides. In other words, when the scoring values
from two classes showed two well-separated distribu-
tions, the rule was regarded as having a good discrim-
inant ability. For instance, the sub-rule P1 = R had
a higher scoring values from the cleaved tetrapep-
tides than those from the non-cleaved tetrapeptides,
while the sub-rule P1 = A had a higher scoring value
from the non-cleaved tetrapeptides than those from
the cleaved tetrapeptides. The reason was that few
Arginine (R) residues occurred in the non-cleaved
tetrapeptides while no Alanine (A) residues occurred

Table 6
The confusion matrix of the best trypsin rule

Negative Positive Percent (%)

Negative 31 1 97
Positive 0 31 100

Predictive power (%) 100 97 98

It can be seen that the predictive powers were 97% and 100%
for the negative and positive classes. The total prediction accuracy
was 98% on the unseen data. The false positive and false negative
rates are 3% and 0%, respectively.

Table 7
An examination of the sub-rules in the trypsin case

Sub-rules Non-cleaved Cleaved

P1 = K 8 178
P1 = R 174 239
P1 = F 10 0
P1 = A 13 0
P1 = N 6 0
P2 = H 7 6
P1′ = T 13 16
P2 = T 11 11

Each number represents the times that a specific amino acid in a
specific position occurs in the oligopeptides.

in the cleaved tetrapeptides in the collected data.
Table 7 shows these statistics.

By way of a comparison, C5 produced two differ-
ent rules with different prediction accuracies. One of
them, which had the highest accuracy (90%), is as fol-
lows:

if P1 = K then cleave, otherwise not (13)

The second rule had an accuracy of 88% and is for-
mulated as

if P1 = R then cleave, otherwise not (14)

3.2. Factor Xa protease cleavage site prediction

Factor Xa is a serine protease. Earlier studies have
shown that the positions close to the scissile bond
have significant contribution to the cleavage activity.
P2, and P1 and P1′ are the most critical positions,
with some influence shown at P4 and P3 positions
(Bianchini et al., 2002). Cleavage is almost entirely
dependent upon the presence of a positively charged
residue arginine in the P1 position (Harris et al.,
2000). Most selection occurs at the P2 position where
there is strong preference for small non-polar amino
acids such as glycine, or aromatic amino acids such
as phenylalanine (McRae et al., 1981; Bianchini et al.,
2002). Hydrophilic amino acids seem to be preferred
at the P3 position, and there is a minor preference
for aliphatic P4 and small P1′ residues (McRae et al.,
1981; Bianchini et al., 2002). Evidence suggests that
cleavage is inhibited by the presence of a cysteine or
proline residue at the P1 and P2 positions (Bianchini
et al., 2002), or by the by the presence of bulky
residues (valine, leucine, isoleucine, phenylalanine,
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tryptophan, tyrosine or histidine) at the P1′ position
(Harris et al., 2000). Factor Xa is integral to the clot-
ting cascade in mammalian cells. Its presence in re-
combinant host-cells such as Chinese hamster ovary,
however, has proven problematic to the biopharmaceu-
tical industry. Proteolytic degradation of biopharma-
ceuticals before their recovery from the host-cell pre-
vents their use as therapeutics (Murby et al., 1996). Lo-
cating cleavage sites within oligopeptides could enable
improved stability via protein engineering (Flaschel
and Friehs, 1993). To date, the PeptideCutter algorithm
at ExPASy (http://www.expasy.ch) is the only tool
available publicly for use in prediction of Factor Xa
cleavage sites in proteins. This algorithm is based on
sequence searches for matches to regular expressions
for a vague primary sequence cleavage site motif of
four amino acids, representing the P1 to P4 residues,
with no consideration for effects of the P1′ position.
The data used to generate the regular expressions was
collected from a limited number of substrates. These
regular expressions prove inaccurate, predicting cleav-
age sites matching a vague motif that would not be
cleaved, and also failing to locate cleavage motifs that
exist outside of the motif. Such a tool can therefore
not be used to predict Factor Xa cleavage sites for bio-
pharmaceutical design with sufficient accuracy. These
algorithms also give no indication as to the predicted
rate of cleavage, enabling no analysis of which sites
will be cleaved primarily when more than one cleavage
motif is located in a protein. In this study 260 molec-
ular oligopeptides, representing P4 to P1′ residues of
known substrate cleavage sites, were used as a positive
dataset to train, validate and test. A negative dataset of

Table 8
Top 10 factor rules

No. Rule Fisher ratio Testing accuracy (%)

1 aVeS ∗ bE + eA + eT + dW ∗ aA + eA + dH∗ 1.4221 86
2 aVeS ∗ bE + bD + eA + eT + dW ∗ aA + dK∗ 1.3203 86
3 cGcY + eA + cY + aT + eT + dK ∗ dH∗ 1.3152 86
4 cGcY + eA + cY + aT + eT + dK ∗ dH∗ 1.3152 86
5 aVeS ∗ bE + eA + eT + dW ∗ aA + eA + dK∗ 1.2824 86
6 aVeS ∗ bE + eA + eT + dW ∗ aA + eA + dK∗ 1.2824 86
7 aVeS ∗ bE + bD + eA + eT + dW ∗ aA + eA + dK∗ 1.2707 86
8 cQcA ∗ bV ∗ cY + cL ∗ eT + cF ∗ eT + dK ∗ dH∗ 1.1969 81
9 cQcI ∗ bV ∗ cY + cL ∗ eT + cF ∗ eT + dK ∗ dH∗ 1.1969 81

10 cQcI ∗ bP ∗ cY + cL ∗ eT + cF ∗ eT + dK ∗ dH∗ 1.1969 81

We can see that P1 = K, P1 = W and P1 = H were the dominating sub-rules.

251 oligopeptides was collected from experimentally
verified non-cleavage sites, and expanded slightly
with molecular oligopeptides generated using regular
expressions from structurally accessible non-cleavage
areas of known non-substrates and substrates.

In total, there were 481 oligopeptides, of which 122
were positive (with cleavage sites) and the rest were
negative. 400 oligopeptides were for training and the
rest were used for testing. The population size was
set to 1000 and the evolutionary cycles was 100. Half
of the offsprings were used for reproduction in each
evolutionary iteration. Table 8 shows the top 10 rules,
where a, b, c, d, and e represent P4, P3, P2, P1, and
P1′ , respectively. Note that “=”s were omitted to save
space. It was found that P1 = K, P1 = W and P1 =
H were the dominating sub-rules. Fig. 8 shows the
rule with the highest fitness value. Table 9 shows the
confusion matrix for the factor dataset. It can be seen
that the predictive powers were 93% and 71%, respec-
tively. The total prediction accuracy on the unseen data
was 86%. The false positive and false negative rates
were 12% and 19%, respectively.

3.3. HCV protease cleavage site prediction

Identified by molecular cloning in 1989 (Choo
et al., 1989; Kuo et al., 1989), the Hepatitis C Virus
(HCV) is the major etiological agent of non-A and
non-B hepatitis. Infection by HCV causes chronic
liver disease, which is a serious health problem world-
wide (Jenny-Avital, 1998). HCV-related liver disease
may kill more people than AIDS (Cohen, 1999). There
is currently no vaccine or effective therapy against

http://www.expasy.ch
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Top Factor Xa Rule: aV=eS=*bE=+eA=+eT=+dW=*aA=+eA=+dH=*

Fig. 8. The top scoring rule for the Factor Xa dataset. The rule was ((((P4 = V and P1′ = S) or P3 = E or P1′ = A or P1′ = T ) and
P1 = W) or P4 = A or P1′ = A) and P1 = H .

HCV, except through the use of general anti-viral
agents which are not fully effective (Alter, 1997).
As a member of the family Flaviviridae (Francki
et al., 1991), HCV has a 9.5 kb single, positive-sense
RNA genome. The N-terminus of the NS3 protein
contains a serine protease which can perform four
out of five cleavage events in the non-structural re-
gion: NS3/NS4A, NS4A/NS4B, NS4B/NS5A, and
NS5A/NS5B (Bartenschlager et al., 1995; Eckard
et al., 1993; Hijikata et al., 1993; Komoda et al., 1994;
Tomei et al., 1993). Inhibition of the NS3 protease
activity leads to the production of non-infectious viral
particles (Chambers et al., 1990), and NS3 protease
has therefore become one of the main targets for
anti-HCV drugs.

Table 9
The confusion matrix of the best factor rule

Negative Positive Percent (%)

Negative 53 7 88
Positive 4 17 81

Predictive power (%) 93 71 86

It can be seen that the predictive powers were 93% and 71%,
respectively. The total prediction accuracy on the unseen data was
86%. The false positive and false negative rates are 12% and 19%,
respectively.

Due to the flat and featureless substrate binding
sites, NS3 requires a relatively long (at least decamer)
peptide substrate (Steinkhler et al., 1996; Urbani
et al., 1997; Zhang et al., 1997). The nomenclature
of Schechter and Berger (1968) is used to designate
the cleavage sites on the polyproteins, P6, P5, P4,
P3, P2, P1, P1′ , P2′ , P3′ , P4′ (P oligopeptide), the
asymmetric scissile bond being between P1 and P1′ .
The binding sites on the enzyme corresponding to
residues P6, P5, P4, P3, P2, P1, P1′ , P2′ , P3′ , P4′ are
indicated as S6, S5, S4, S3, S2, S1, S1′ , S2′ , S3′ , S4′ (S
oligopeptide). Unlike serine protease such as trypsin
and chymotrypsin that can cleave small peptide sub-
strates, the NS3 protease has an unusual substrate
recognition mechanism, which makes it difficult as
a target for small molecule inhibitors. Also due to
the number of possible decapeptides formed from 20
amino acids (2010), to test them one by one in the
laboratory is impossible. Instead, a restricted number
of oligopeptides have been obtained and the behavior
of NS3 on these observed and recorded. The pat-
tern recognition task is to use this restricted set to
explore patterns in the P oligopeptide for which the
S oligopeptide locks on, to express these patterns in
such a way that allows generalizations to be made,
and therefore to predict the behavior of NS3 on all
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Table 10
Top 10 HCV rules

No. Rule Fisher ratio Testing accuracy (%)

1 jFgReI ∗ fH + fR ∗ hW ∗ iW + +aD ∗ fC + 1.8726 93
2 jFgRcI ∗ fH ∗ hF ∗ iW + +aD ∗ fC + 1.8726 93
3 jFgReI ∗ fH ∗ hF ∗ iW + +aD ∗ fC + 1.8726 93
4 jFgReI ∗ fH ∗ hF ∗ iW + +aD ∗ fC + 1.8718 93
5 jYfYiC ∗ jF ∗ gS ∗ iW + +aD ∗ fC + 1.8718 93
6 jYfYbC ∗ jF ∗ gS ∗ iW + +aD ∗ fC + 1.8598 93
7 jYfYbC ∗ hF ∗ iW + +aD ∗ fC + 1.8598 93
8 jYfYbC ∗ jM ∗ gS ∗ iW + +aD ∗ fC + 1.8548 93
9 jYfIbC ∗ hF ∗ iW + +aD ∗ fC + 1.8548 93

10 jYfYbC + hF ∗ iW + +aD ∗ fC + 1.8110 93

We can see that P1 = C, P6 = D, and P3′ = W were the dominatant sub-rules.

the remaining oligopeptides. Apart from our own
preliminary studies, there has been little attempt to
use pattern recognition techniques to predict HCV
polyprotein cleavability through the recognition of
patterns in P oligopeptides.

We have collected 920 oligopeptides, of which 168
were positive (with cleavage sites) and the rest were
negative. We used 800 oligopeptides for training and
120 for testing. The population size was set to 1000
with 100 evolutionary cycles. We also used 50%

+

f=C*

a=D

j=Fi=W

+

*

h=Wf=R+

f=H*

e=Ig=R

Top HCV Rule: jF=gR=eI=*fH=+fR=*hW=*iW=++aD=*fC=+

Fig. 9. The top scoring rule for the HCV dataset. The rule was (((((P1′ = R and P2 = I) or P1 = H) and P1 = R and P2′ = W) or
P3′ = W or P4′ = F ) and P6 = D) or P1 = C.

offsprings for reproduction in each evolutionary iter-
ation. Table 10 listed top 10 rules, where a, b, c, d, e,
f , g, h, i, and j imply P6, P5, P4, P3, P2, P1, P1′ , P2′ ,
P3′ , and P4′ , respectively. Note that “=”s were omitted
for saving the space. It has been found that P1 = C,
P6 = D, and P3′ = W were the dominatant sub-rules.
Fig. 9 shows the rule with the highest fitness value.
Table 11 showed the confusion matrix for the HCV
dataset. It can be seen that the predictive powers
were 98% and 72%, respectively. The total prediction
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Table 11
The confusion matrix of the best HCV rule

Negative Positive Percent (%)

Negative 100 5 95
Positive 2 13 87

Predictive power (%) 98 72 94

It can be seen that the predictive powers were 98% and 72%,
respectively. The total prediction accuracy on the unseen data was
94%. The false positive and false negative rates are 5% and 13%,
respectively.

accuracy on the unseen data was 94%. The false
positive and false negative rates were 5% and 13%,
respectively.

3.4. HIV protease cleavage site prediction

Proteolytic cleavage is an essential component of
the HIV life cycle (Chou, 1996; Poorman et al., 1991;
Ridly, 1996). HIV-1 protease has a recognized speci-
ficity consisting of eight positions around the cleav-
age site (Chou, 1996). The knowledge of the cleavage
sites can be used in the development of antiviral drugs.
The eight positions around cleavage sites in HIV oc-
tapeptides are denoted by P4, P3, P2, P1, P1′ , P2′ ,
P3′ and P4′ each corresponding to the eight positions
in HIV protease S4, S3, S2, S1, S1′ , S2′ , S3′ and S4′ .
The cleavage occurs between P1 and P1′ . HIV-1 pro-
tease is highly substrate and cleavage specific (Chou,
1996) and is essential for the replication and matura-
tion of HIV. Cleavage often occurs at the site of de-
fined pairs of large, virus-specific polypeptides (Hellen
et al., 1989). There have been studies in designing ef-

Table 12
Top 10 HIV rules

No. Rule Fisher ratio Testing accuracy (%)

1 dL = eF = ∗dA = +fE = dF = ++ 1.3261 90
2 dL = eF = ∗dF = +fE = dN = ++dF = + 1.3260 90
3 dL = eF = ∗dT = +fE = dF = ++dF = + 1.3260 90
4 dL = eF = ∗dF = +fE = dF = ++ 1.3260 90
5 dL = eF = ∗fE = dF = ++ 1.3258 90
6 dL = eF = ∗gA = +fE = dT = ++dF = + 1.3258 90
7 dL = eF = ∗gS = +fE = dF = ++ 1.3253 90
8 dL = eF = ∗hA = +fE = dF = ++ 1.3253 90
9 dL = eF = ∗dF = +fE = dY = ++dF = + 1.3253 90

10 dL = eY = ∗dF = +fE = dY = ++ 1.3253 90

We can see that P1 = L, P2′ = E, and P1 = F were the dominating sub-rules.

===

==
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dd A Ff E

d FL e

*

Top HIV Rule: dL=eF=*dA=+fE=dF=++

Fig. 10. The top scoring rule for the HIV dataset. The rule was
(P1 = L and P1′ = F ) or P1 = A or P2′ = E or P1 = F .

fective HIV protease inhibitor (Ashorn et al., 1990).
In order to design effective HIV protease inhibitors,
there have been many algorithms designed for pre-
dicting the cleavage sites of HIV polyprotein, such as
the h function (Poorman et al., 1991), Markov chain
models (Chou, 1996), ANNs (Cai and Chou, 1998;
Narayanan et al., 2002) and a binary probabilistic
model (Yang, 2001). For a thorough review, see Chou
(1996).

Three hundred and sixty-two HIV oligopeptides
were collected from (Cai and Chou, 1998), of which
114 were positive (with cleavage sites) and the rest
were negative. We used 300 oligopeptides for training
and 62 for testing. The population size was set to 1000
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with 100 evolutionary cycles. Again, we used 50%
offsprings for reproduction in each evolutionary cy-
cle. Table 12 lists the top 10 rules, where a, b, c, d, e,
f , g, and h represent P4, P3, P2, P1, P1′ , P2′ , P3′ , and
P4′ , respectively. It can be seen that P1 = L, P2′ = E,
and P1 = F were the dominating sub-rules. Fig. 10
shows the rule with the highest fitness value. Table 13
shows the confusion matrix for the HIV dataset. It
can be seen that the predictive powers were 100%
and 86%, respectively. The total prediction accuracy
on the unseen data was 95%. The false positive and
false negative rates were 7% and 0%, respectively.
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Fig. 11. The Fisher ratio values in the evolutionary cycles. The evolutionary cycles were 100 for all the datasets. They all approached a
stable state within 100 evolutionary cycles.

Table 13
The confusion matrix of the best HIV rule

Negative Positive Percent (%)

Negative 40 3 93
Positive 0 19 100

Predictive power (%) 100 86 95

It can be seen that the predictive powers were 100% and 86%,
respectively. The total prediction accuracy on the unseen data was
95%. The false positive and false negative rates are 7% and 0%,
respectively.
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Table 14
The GP parameters used for the four datasets

Popsize Iterations CPU Selection (%) Total Training

Trypsin 1000 100 1740 50 413 63
Factor Xa 1000 100 4361 50 481 81
HCV 1000 100 6218 50 920 120
HIV 1000 100 3107 50 362 62

“Popsize” is the number of offsprings used in a pool, “ iterations” is the longest allowed simulation cycles, “CPU” is the CPU time in
seconds, “selection” is the percentage of the offsprings used for reproduction, “ total” is the total number of oligopeptides and “ training”
is the number of oligopeptides used for testing.
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Fig. 12. The fitness values in the evolutionary cycles. The evolutionary cycles were 100 for all the datasets. They all approached a stable
state within 100 evolutionary cycles.
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3.5. The parameters used in the experiments

The experimental parameters on all four datasets
are listed in Table 14. The population size was set
to 1000 to ensure enough diversity during an evolu-
tionary process. For each parent in each evolutionary
cycle, crossover or mutation operation was deter-
mined randomly. Fig. 11 shows the Fisher ratio values
through the evolutionary cycles and Fig. 12 the fitness
values through the evolutionary cycles. It can be seen
that the fitness functions for all four experiments were
approaching stable values within 100 evolutionary
cycles.

3.6. A comparison among four methods

Table 15 gives a comparison between our algo-
rithm, C5, and ANNs. It can be seen that our algo-
rithm was superior to the conventional decision tree
method. For instance, GP’s prediction accuracies for
the trypsin, HCV and HIV cases were higher than
C5. In our experiments, GP was also comparable
with ANNs. In the trypsin case, the accuracy from
GP was 98% compared with 90% from C5. In the
HCV case, the accuracy from GP was 93% compared
with 91% from C5. In the HIV case, the accuracy
from GP was 95% compared with 85% from C5. We
did not manage to complete the C5 experiment for
the Factor Xa dataset before the license expired. For
the Factor Xa case, ANNs did not work as well as
GP. This phenomenon may arise from the fact that
there were many “X” (unknown amino acids) in the
dataset, which caused ANNs difficulty. The full cause
why ANNs did not work well is still under the inves-
tigation.

Table 15
Comparison among different methods

BPNN (%) BBFNN (%) C5 (%) GP (%)

Trypsin 94 99 90 98
Factor Xa 75 77 – 86
HCV 96 97 91 94
HIV 90 93 85 95

The BPNN model was based on the distributed encoding method
(Qian and Sejnowski, 1988) and using 20 hidden neurons. The
BBFNN model used 300 bio-basis functions. GP model was based
on a population size of 1000 with 100 iterations.

4. Summary and future work

Having understood that proteins have their own lan-
guage (Benner and Gaucher, 2001), and that exist-
ing rule extraction tools do not outperform ANNs, we
have presented a new method for extracting rules from
oligopeptides using GP. Three contributions have been
made towards a robust, reliable, and accurate algo-
rithm. The first is the use of the reverse Polish no-
tation, which makes the evolutionary operation much
easier. The second is the use of minimum description
length, which penalizes over-complicated rules so that
possible overfitting can be avoided. The third is that
a min-max function is developed to measure the sim-
ilarity between an oligopeptide and a rule, which is a
complex algebraic equation of amino acids. The Fisher
ratio is then used for evaluating the discriminant abil-
ity of rules with the assistant of the widely used amino
acid similarity matrices. The first two have made the
task of knowledge extraction simpler and better in gen-
eralization. The last one is critically important since it
avoids possible bias in recognizing non-numerical at-
tributes (amino acids) and therefore enhances the ro-
bustness of the process of knowledge extraction. In
the application to four proteolytic activity datasets, we
have shown that our algorithm is superior to the con-
ventional decision tree method and is comparable to
ANN models. Future work will focus on the scoring
functions other than min-max and the integration of
multiple rules using the Bayes rule.
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